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Abstract

We study speech-to-speech translation (S2ST)
that translates speech from one language into
another language and focuses on building sys-
tems to support languages without standard text
writing systems. We use English↔Taiwanese
Hokkien as a case study, and present an end-
to-end solution from training data collection,
modeling choices to benchmark dataset release.
First, we present efforts on creating human an-
notated data, automatically mining data from
large unlabeled speech datasets, and adopting
pseudo-labeling to produce weakly supervised
data. On the modeling, we take advantage of
recent advances in applying self-supervised dis-
crete representations as target for prediction in
S2ST and show the effectiveness of leveraging
additional text supervision from Mandarin, a
language similar to Hokkien, in model training.
Finally, we release an S2ST benchmark set to
facilitate future research in this field. 1 2

1 Introduction

Speech-to-speech translation (S2ST) aims at trans-
lating speech from one language into speech in
another language. S2ST technology can not only
enable communication between people speaking
different languages but also help knowledge shar-
ing across the world.

While more than 40% of the languages in the
world do not have text written forms3, S2ST for
unwritten languages still remains a research area
with little exploration mainly due to the lack of
training data. The majority of the previous work on
this topic conducts experiments on datasets built
from applying TTS on S2T corpora to generate
synthetic target speech for model training (Tjandra

1The demo can be found at https://huggingface.
co/spaces/facebook/Hokkien_Translation.

2We open source our code and model at
https://github.com/facebookresearch/
fairseq/tree/ust/examples/hokkien.

3https://www.ethnologue.com

et al., 2019; Zhang et al., 2021). Lee et al. (2022b)
presents the first textless S2ST system trained on
real S2ST data, while it only investigates transla-
tion between high-resource and similar language
pairs (English↔Spanish, English↔French).

In this work, we take Taiwanese Hokkien as an
example of an unwritten language and study S2ST
between English (En) and Taiwanese Hokkien. Tai-
wanese Hokkien (hereafter Hokkien) is one of the
official languages in Taiwan spoken by over 70%
of the population (approximately 15.8 million peo-
ple). Hokkien lacks a unified writing system that is
widely adopted by its native speakers, though a few
possible writing systems exist, e.g. Chinese charac-
ters (Hanji), or romanization systems such as Peh-
ōe-jı̄ (POJ) and Tâi-lô, etc. In addition, Hokkien is
a tonal language that has complex tone sandhi
rules (Cheng, 1968). Wang et al. (2004) investi-
gates Mandarin-Taiwanese Hokkien S2ST with a
cascaded template matching approach. In our work,
we focus on En↔Hokkien, a distant language pair,
and build one-stage S2ST systems.

We take advantage of the discrete unit-based
S2ST approach (Lee et al., 2022a) to translate
source speech into target discrete units, where we
convert the target speech into a sequence of integers
by a self-supervised speech encoder. First, to sup-
port En→Hokkien translation, we extend HuBERT-
based discrete unit extraction (Hsu et al., 2021) and
examine the feasibility of unit-to-waveform gen-
eration (Polyak et al., 2021) for tonal languages.
Second, we leverage the unit-based speech normal-
ization technique proposed in Lee et al. (2022b) to
remove the non-linguistic variations in speech from
multiple speakers. The original study takes advan-
tage of synthetic speech generated from TTS as the
reference target for normalization, while we build
the normalizer with real Hokkien speech data. Last
but not least, we study two S2ST model training
strategies, speech-to-unit translation (S2UT) with
a single decoder (Lee et al., 2022a) or a two-pass
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decoding process (Inaguma et al., 2022) that lever-
ages Mandarin (Zh) as a written language similar
to Hokkien to provide extra text supervision.

As no En↔Hokkien S2ST dataset is available,
we also leverage Mandarin to assist the S2ST data
creation process and create a 60-hr human anno-
tated training set and an open benchmark set. Nev-
ertheless, this is still a low-resource problem. To
tackle the data scarcity issue, we further apply
En↔Zh MT to create weakly supervised data (Pop-
uri et al., 2022; Dong et al., 2022) and learn a joint
embedding space for English and Hokkien through
Mandarin to support data mining from unlabeled
English and Hokkien data (Duquenne et al., 2021).

The contributions of this work are as follows:

• We present empirical studies that consoli-
date various state-of-the-art techniques for
S2ST that were previously studied in a con-
trolled setup with synthetic speech and verify
their effectiveness in En↔Hokkien transla-
tion, where Hokkien is a language without a
widely adopted standard text writing system.

• A benchmark set on En↔Hokkien S2ST 4

and the evaluation model for Hokkien speech
5 will be released to encourage future research
in this direction.

• To the best of our knowledge, we are the first
to build one-stage S2ST systems for an un-
written language in a real-world scenario.

2 Related Work

Conventionally, S2ST can be achieved via the
concatenation of three systems: automatic speech
recognition (ASR), machine translation (MT) and
text-to-speech synthesis (TTS) (Lavie et al., 1997;
Nakamura et al., 2006). In recent years, the ad-
vancement from end-to-end speech-to-text transla-
tion (S2T) (Bérard et al., 2016) or text-to-speech
translation (T2ST) (Zhang et al., 2021; Lee et al.,
2022a) have simplified the S2ST pipeline into two
stages, which reduces error propagation issues and
improves efficiency (Lee et al., 2022a). Most re-
cently, researchers have built one-stage S2ST sys-
tems that can be categorized in several aspects.
First, systems that model directly from source to

4https://sites.google.com/nycu.edu.tw/
speechlabx/tat_s2st_benchmark

5https://github.com/facebookresearch/
fairseq/tree/ust/examples/hokkien

target speech, with Jia et al. (2019, 2022a,b) pre-
dicting spectrogram outputs directly, and Lee et al.
(2022a,b); Huang et al. (2022); Popuri et al. (2022);
Inaguma et al. (2022) leverage self-supervised
speech model such as HuBERT (Hsu et al., 2021)
to encode the target speech into a sequence of dis-
crete units and apply knowledge from speech-to-
text modeling to S2ST. Second, the textless setup,
where Jia et al. (2019, 2022b) require extra super-
vision from target text or phonemes during model
training, while Tjandra et al. (2019); Lee et al.
(2022b); Popuri et al. (2022) show the possibil-
ity of model training with speech data only without
going through text. Finally, multiple decoders with
multi-pass decoding, where Kano et al. (2021); In-
aguma et al. (2022) concatenate multiple decoders
learned with additional text targets or speech units
with different granularity and perform multi-pass
decoding during inference.

While the modeling choices vary, S2ST model
training often faces the challenge of data scarcity.
Jia et al. (2022c) applies high-quality English TTS
and creates an X→En S2ST dataset with synthetic
target speech for 21 languages. To create S2ST
datasets with real speech, Wang et al. (2021a)
aligns ASR transcripts for more than 100 language
pairs, and Duquenne et al. (2022a) applies distance-
based bitext mining to audio, producing a mined
S2ST dataset between 17 European languages.
Weakly supervised data created from TTS (Jia et al.,
2022a) or a cascaded pipeline with ASR and MT
models (Dong et al., 2022; Popuri et al., 2022) is
often combined with the S2ST data. In addition,
self-supervised pre-training with large-scale unla-
beled data also effectively improves S2ST model
performance (Jia et al., 2022a; Popuri et al., 2022).

3 Methodology

In this section, we first present two types of back-
bone architectures for S2ST modeling. Then, we
describe our efforts on creating parallel S2ST train-
ing data from human annotations as well as leverag-
ing speech data mining (Duquenne et al., 2021) and
creating weakly supervised data through pseudo-
labeling (Popuri et al., 2022; Jia et al., 2022a).

3.1 Model architectures

As illustrated in Fig. 1, we study one model archi-
tecture that applies a single-pass decoding process
and directly translates source speech to the target,
and the second one relies on target text (Mandarin

4970

https://sites.google.com/nycu.edu.tw/speechlabx/tat_s2st_benchmark
https://sites.google.com/nycu.edu.tw/speechlabx/tat_s2st_benchmark
https://github.com/facebookresearch/fairseq/tree/ust/examples/hokkien
https://github.com/facebookresearch/fairseq/tree/ust/examples/hokkien


Two-pass decoder

Wav2vec 2.0 
encoder

(source language)

Unit mBART decoder

Text mBART 
decoder

Text 
Encoder

Unit 
Decoder

Single-pass decoder

3 2 87 44 90 
91 56 33 …

Discrete unit

first-pass text
En->Hok: ▁我的 回答 是 …
(Zh text)

Hok->En: ▁My ▁answer ▁is …
(En text)

(target language)

Figure 1: Model architecture of S2ST with single-pass and two-pass decoder. The shaded blocks illustrate the
modules that are pre-trained. Text in italic is the training objective.

text in the case of Hokkien speech) to provide extra
supervision and performs two-pass decoding. Both
architectures predict discrete units as the target, and
the speech encoder and text or unit decoders are
pre-trained with unlabeled speech or text data.

3.1.1 Speech-to-unit translation (S2UT)
We follow the S2UT approach proposed in Lee
et al. (2022a) and adopt HuBERT (Hsu et al., 2021)
to convert target speech into discrete units via
k-means on intermediate representation. While
Hokkien→En systems can be trained on target En-
glish speech generated from single-speaker TTS
to remove variations in accents from multiple
speakers or noises from different recording con-
ditions, when training En→Hokkien systems, we
first apply a unit-based speech normalizer (Lee
et al., 2022b) on the real Hokkien target speech.
The speech normalizer is built by applying Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006) finetuning with the Hokkien HuBERT
model using multi-speaker speech as input and the
corresponding discrete units extracted from real
Hokkien speech from a reference speaker as target.

The resulting S2ST system consists of a
sequence-to-sequence S2UT model and a unit-
based HiFi-GAN vocoder (Polyak et al., 2021)
for unit-to-waveform conversion. For both
model architectures, we pre-train the speech en-
coder with Conformer-based (Gulati et al., 2020)
wav2vec 2.0 (Baevski et al., 2020; Popuri et al.,
2022) using a large amount of unlabeled speech.
To speed up model training, we replace the multi-
layer convolutional feature encoder with the pre-
computed 80-dimensional log-mel filterbank fea-
tures. Preliminary experiments show no perfor-
mance degradation with filterbank input.

3.1.2 Single-pass decoding S2UT
Lee et al. (2022a) proposes to use a single unit

decoder, which can be trained with standard cross-
entropy loss. Following Popuri et al. (2022), we
apply mBART training (Liu et al., 2020), a denois-
ing autoencoder trained with monolingual text in
multiple langauges, using discrete units extracted
from unlabeled speech with consecutive duplicate
units removed, and use the pre-trained decoder to
initialize the unit decoder. During decoding, we
perform beam search with the unit decoder.

3.1.3 Two-pass decoding S2UT: UnitY

UnitY model (Inaguma et al., 2022) also performs
speech-to-unit translation, while it includes a target
text decoder and a target text to target unit encoder-
decoder and incorporates an auxiliary target text
prediction task during training. All the modules
are trained jointly. In En→Hokkien direction, we
use Mandarin as the target text due to its proximity
to Hokkien and abundance in text data. We fol-
low Inaguma et al. (2022) to apply R-Drop (Wu
et al., 2021) regularization during training as well
as initializing the target text decoder with a text
mBART model (Liu et al., 2020) pre-trained on the
combination of En and Zh monolingual text data.

3.2 Training data

In the following sections, we describe three differ-
ent efforts on creating parallel En↔Hokkien data
for model training.

3.2.1 Supervised human annotated data

Since En↔Hokkien bilingual speakers are scarce,
we use Mandarin as a pivot language during the
data creation process whenever possible. We sam-
ple from the following data sources and adopt dif-
ferent strategies to create human annotated par-
allel data: (1) Hokkien dramas, which include
Hokkien speech and aligned Mandarin subtitles
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6, (2) Taiwanese Across Taiwan (TAT) (Liao et al.,
2020b), a Hokkien read speech dataset containing
transcripts in Tâi-lô and Hanji, and (3) MuST-C
v1.2 En-Zh S2T data (Cattoni et al., 2021).

We ask Zh-En bilinguals to translate the subti-
tles of the Hokkien dramas into English to create
Hokkien→En S2T data. For the TAT dataset, we
leverage a small group of En↔Hokkien bilinguals
to translate the Hokkien speech and transcripts di-
rectly into English text. For MuST-C, we ask Zh-
Hokkien bilinguals to translate the Mandarin text
into a mix of Tâi-lô and Hanji script and then record
the Hokkien speech7. The non-standardized script
helps to improve the fluency and accuracy of the
recorded Hokkien speech, while no Hokkien tran-
scripts are used during S2ST training.

In the end, we build S2ST training sets,
where the En→Hokkien set is from MuST-C. For
Hokkien→En training, we apply an English text-
to-unit (T2U) model (Lee et al., 2022b), which is a
sequence-to-sequence Transformer model trained
on English characters as input and units extracted
from the corresponding speech as target, on the En-
glish text collected for Hokkien dramas and TAT,
as well as the English transcriptions provided in
MuST-C, to convert the text into units.

3.2.2 Mined data
To build a shared embedding space for Hokkien and
English speech and text data for performing speech-
to-text or speech-to-speech mining at scale, we
again take advantage of Mandarin text as the bridge
between the two languages. First, to encode En
and Zh text in the same embedding space, we apply
the method proposed in Duquenne et al. (2022b)
to finetune XLM-R LARGE (Conneau and Lam-
ple, 2019) to fit LASER (Artetxe and Schwenk,
2019) English text space using Zh-En parallel MT
data. Then, we minimize the mean squared er-
ror (MSE) loss between the max-pooled output
of the learned text encoder and that of a speech
encoder using aligned Hokkien speech and Man-
darin or English text8. The text encoder is fixed
during speech encoder training, where the latter
is initialized with Conformer-based wav2vec 2.0
pre-trained with Hokkien speech, and this process
further encodes the Hokkien speech, Mandarin and

6Hokkien drama data is obtained from the collaboration
with National Taiwan University.

7The annotators pointed out that it is easier to leverage
both systems, which is another evidence of Hokkien lacking a
commonly adopted text writing system.

8A subset of the Hokkien dramas data has English subtitles.

English text in the same embedding space. Sim-
ilarly, we also leverage the fixed text encoder to
train an En speech encoder using speech and text
pairs from En ASR data. In the end, we create a
shared embedding space for En speech and text,
Mandarin text, and Hokkien speech, which sup-
ports En text and Hokkien speech or En speech and
Hokkien speech mining based on cosine similarity.

3.2.3 Weakly supervised data
We take advantage of cascaded systems to cre-
ate weakly supervised data from ASR and
S2T data (Popuri et al., 2022; Dong et al.,
2022). For En→Hokkien, we apply En→Zh
MT on the En ASR transcriptions, followed by
a Zh→Hokkien text-to-unit-translation (T2UT)
model, which is a Transformer-based sequence-to-
sequence model trained with Mandarin characters
as input and the corresponding Hokkien normal-
ized units as targets. For Hokkien→En, we ap-
ply the Zh→En MT model on the Hokkien drama
Mandarin subtitle, followed by En T2U to create
pseudo-labeled data.

4 Experimental Setup

In this section, we describe the data, model training
details, as well as baseline systems and the evalua-
tion protocol. All experiments are conducted using
fairseq (Ott et al., 2019).

4.1 Data
4.1.1 Supervised human annotated data
We carry out the annotation process in Sec. 3.2.1,
and Table 4 summarizes the statistics of the train-
ing data. In the end, we create a 61.4-hr human
annotated training set for Hokkien→En, and 35-hr
for En→Hokkien. We do not combine the synthetic
English speech created for Hokkien→En with the
real En→Hokkien S2ST dataset during training.

4.1.2 TAT-S2ST: En↔Hokkien S2ST
evaluation dataset

As a part of the effort on creating human anno-
tated data, we also create an En↔Hokkien S2ST
benchmark set to facilitate future research in the
field. The English text translation we collect for
the TAT dev and test sets are proofread first, and
we recruit native speakers to record the English
text translations, producing En↔Hokkien parallel
speech data. Table 5 shows the statistics of this
benchmark set. While Hokkien does not have a
standardized and widely adopted writing system,
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TAT provides Tâi-lô transcripts, which is a stan-
dardized romanization system for Hokkien, which
can be leveraged as reference text in evaluation
(Sec. 4.4).

4.1.3 Mined data
We train the En and Zh joint text encoder on CCMa-
trix (Schwenk et al., 2019), the Hokkien speech en-
coder on Hokkien dramas, and the English speech
encoder on English ASR data from Common-
Voice (Ardila et al., 2020), CoVoST-2 (Wang et al.,
2021b), Europarl-ST (Iranzo-Sánchez et al., 2020),
MuST-C (Di Gangi et al., 2019), Voxpopuli (Wang
et al., 2021a) and Librispeech (Panayotov et al.,
2015). The learning rate is set to 10−4, with an in-
verse square root schedule. The maximum number
of tokens is set to 640k (equivalent to 40 seconds
with 16kHz sampling rate), with a maximum num-
ber of sentences set to 32. We train the models with
48 GPUs for 60k steps.

With the trained text and speech encoders, we
perform data mining between Hokkien speech
from Hokkien dramas and English Common Crawl
text, and between the former and Librivox English
audio9. We post-process the mined data in or-
der to have a maximum of 20% overlap between
any two audio segments. In the end, we obtain
8.1k-hr Hokkien→En S2T mined data and 197-hr
En↔Hokkien S2ST mined data. The difference in
the volume is mainly due to the domain mismatch
in audiobooks from Librivox and Hokkien dramas.

4.1.4 Weakly supervised data
For En→Hokkien, we apply En→Zh MT on
the combination of the English transcripts from
Librispeech (Panayotov et al., 2015) and TED-
LIUM3 (Hernandez et al., 2018), totaling 1.5k-
hr of English speech. The En→Zh MT model is
a 12-layer Transformer model trained on CCMa-
trix (Schwenk et al., 2019) using disjoint BPEs
for En and Zh encoded by the sentencepiece
toolkit (Kudo and Richardson, 2018), each of size
32768. We use 16 GPUs, a batch size of 14,336
tokens and a learning rate of 10−3 during training.

The Zh→Hokkien T2UT model following the
En→Zh translation step is trained on Hokkien dra-
mas and the aligned Mandarin subtitles. We filter
out speech containing Mandarin code-switching by
applying Mandarin ASR and computing the Lev-
enshtein distance between the ASR output and the
subtitles, as well as short sentences with less than

9https://librivox.org/api/

three characters, resulting in 1k-hr Hokkien speech
for training.

For Hokkien→En, we apply Zh→En MT on the
Mandarin subtitles from 8k-hr Hokkien drama data,
followed by an En T2U trained on LJSpeech (Ito
and Johnson, 2017). The Zh→En MT is trained
with the same setup as En→Zh MT.

4.2 Model training

4.2.1 Hokkien HuBERT units
To encode En target speech, we use the multilingual
HuBERT model, the k-means quantizer and the unit
vocoder released from Lee et al. (2022b). Below
we focus on how we build Hokkien units and the
corresponding unit-based speech normalizer and
unit vocoder.

We train a Hokkien HuBERT model using
the combination of 10k-hr Mandarin speech
from WenetSpeech (Zhang et al., 2022) and
2k-hr Hokkien speech from the combina-
tion of Hokkien dramas, TAT and 600-hr of
Hokkien speech with various accents in addition to
Taiwanese Hokkien, licensed from SpeechOcean10.
When modeling Hokkien speech as discrete units,
we empirically find that combining Mandarin
with Hokkien speech during HuBERT training
allows the units to better capture the tones and
produce higher-quality speech output in the
unit-to-waveform conversion stage.

The HuBERT model is of the BASE architecture
and pre-trained for three iterations following Hsu
et al. (2021); Lakhotia et al. (2021). In the begin-
ning of each iteration, we randomly sample 300-hr
Mandarin and Hokkien speech, respectively, for
k-means clustering, and apply temperature sam-
pling to balance the amount of speech from the
two languages during training. We use T = 20,
and the probability of sampling from a language

l is p̃l =
p

1
T
l

∑
i p

1
T
i

, where pi = ni∑
j nj

, and ni is

the number of samples from a language. No ex-
tra language information is required during pre-
training. In each iteration, model weights are ran-
domly initialized and optimized for 400k steps. We
use K = 2500 with features from the 12-th layer
of the model from the third iteration for extracting
Hokkien units.

The Hokkien speech normalizer is trained on 2-
hr speech from TAT. We select speaker THF022 as
the reference speaker, i.e. the normalization target,

10https://en.speechocean.com/
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and create speech pairs by sampling from other
speakers reading the same content in TAT. We use
mask probability of 0.5, mask channel probability
of 0.25 and learning rate of 3 × 10−5 and train
for 25k updates. Finally, the Hokkien unit-based
HiFi-GAN vocoder is trained on the TTS subset of
the TAT dataset, which contains a total of 36 hours
of clean speech from two male and two female
speakers, following the training procedure in Lee
et al. (2022a).

4.2.2 Wav2vec 2.0 encoder
We pre-train the Conformer En wav2vec 2.0
LARGE encoder (Baevski et al., 2020) with the
Libri-light corpus (Kahn et al., 2020), which con-
tains around 54k hours of read speech audio. The
encoder is trained with a batch size of 2.1-hr for
1M updates, with 32k warmup steps and a peak
learning rate of 5× 10−4. For masking, we sample
a probability of 0.065 of all time-steps to be start-
ing indices and mask the subsequent 10 time steps.
For the Hokkien wav2vec 2.0 encoder, we pre-train
it with 30k-hr Hokkien drama data using the same
hyper-parameters as the En wav2vec 2.0 encoder.

4.2.3 Single-pass decoding S2UT
The Hokkien unit mBART is trained with 30k-hr
Hokkien dramas and 10k-hr Mandarin data from
WenetSpeech. The model is trained on 64 GPUs
with a batch size of 3072 units, learning rate of
3× 10−4 with Adam and 10k warmup steps. The
model is trained with 500k updates with dropout
0.1. We use the En unit mBART released by Popuri
et al. (2022) for training Hokkien→En models.

With the pre-trained wav2vec 2.0 encoder and
the unit mBART decoder, we follow the best fine-
tuning strategy in Popuri et al. (2022), where the
whole encoder and the LayerNorm and both en-
coder and self attention in the decoder are finetuned
with the parallel S2ST data. The models are trained
on 32 GPUs with a batch size of 160k tokens. We
used 0.1 dropout for all models and 0.2 Layer-
Drop (Fan et al., 2019). The models are trained
using Adam optimizer with 3× 10−4 learning rate,
10k warmup steps an 50k maximum updates.

4.2.4 Two-pass decoding S2UT: UnitY
The text mBART model is pre-trained on the combi-
nation of Mandarin and English text data from CC-
100 (Conneau et al., 2020), Newscrawl (Akhbardeh
et al., 2021), Leipzig Corpora (Goldhahn et al.,
2012), NewsCommentary (Tiedemann, 2012).

There are 2B English sentences and 230M Man-
darin sentences. We learn BPE of size 65536 jointly
on both languages and apply temperature sampling
with 1

T = 0.7 during training.
We combine the pre-trained wav2vec 2.0 en-

coder, the text mBART decoder, and two randomly
initialized Transformer layers for the text encoder
and the unit decoder, respectively, to build the
UnitY model. We train our two-pass models on
16 GPUs with a batch size of 120k tokens, dropout
0.1 for all models except for the human annotated
data only setup where we use dropout 0.3. We use
LayerDrop (Fan et al., 2019) 0.1 and label smooth-
ing 0.1, and train the model with a learning rate
of 5 × 10−4, 2k warmup steps, and a maximum
update of 50k steps. The weight on the auxiliary
loss from the text decoder is set to 8.0.

4.3 Baselines

We build two-stage and three-stage cascaded base-
line systems for both En↔Hokkien directions. The
two-stage cascaded system consists of a source
speech (En or Hokkien) to target text (Mandarin
or En) end-to-end S2T model and a target text
to target speech unit T2U model (T2UT in the
case of Zh→Hokkien). The three-stage cascaded
system further breaks down the En→Zh S2T
model into En ASR followed by En→Zh MT,
and the Hokkien→En S2T model is split into a
Hokkien→Zh S2T step and a Zh→En MT step.

All the speech encoders for the En ASR and
S2T models are initialized with wav2vec 2.0
(Sec. 4.2.2). The text decoders of S2T models
are initialized with the text mBART (Sec. 4.2.4).
We use the En↔Zh MT models, the En T2U model
and the Zh→Hokkien T2UT model described in
Sec. 4.1.4 for building the cascaded systems.

4.4 Evaluation

To evaluate the translation quality, we com-
pute ASR-BLEU on the TAT-S2ST evaluation
set (Sec. 4.1.2) by applying ASR on the gener-
ated speech and computing 4-gram BLEU against
the reference text using SACREBLEU (Post,
2018). We use an open-sourced En ASR
model11 when evaluating Hokkien→En systems.
For En→Hokkien systems, we build an ASR
model to transcribe Hokkien speech into Tâi-
lô. The Hokkien ASR is initialized with a w2v-

11https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self
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BERT (Chung et al., 2021) LARGE model pre-
trained on 10k-hr Mandarin speech from Wenet-
Speech and 30k-hr Hokkien speech from Hokkien
drama, followed by finetuning with CTC loss on
480-hr Hokkien speech and Tâi-lô scripts from
TAT (Liao et al., 2020b). Each Tâi-lô syllable is
split into initial and final with tone as the target.
The resulting Hokkien ASR model achieves 6.8%
syllable error rate (SER) on the TAT-Vol1-test-
lavalier set. To evaluate En→Hokkien translation
quality, we compute syllable-level ASR-BLEU.

To evaluate the naturalness of the speech output,
we collect mean opinion scores (MOS) ranges from
1 (the worst) to 5 (the best) from human listening
tests. Each item is labeled by three annotators.

5 Results

5.1 Single-pass vs. two-pass decoding

We first study the model architecture choice in
both En↔Hokkien directions. Table 1 summarizes
the results. We include ASR-BLEU from the tar-
get reference speech as an indication of the effect
from the unit vocoder and the ASR errors (row
7). We start from training on human annotated
data, and it results in very low BLEU score in both
directions (row 3, 5), indicating that pre-training,
including wav2vec 2.0 and unit or text mBART,
is not enough for building a S2ST system under
low-resource for distant language pairs. With ex-
tra supervision from text, the UnitY model works
slightly better than single-pass S2UT by 3.7 BLEU
in Hokkien→En (row 3 vs. 5).

We then combine the human annotated data with
weakly supervised data. Both systems achieve
significant gain (6.2-7.5 BLEU) in both direc-
tions, indicating the effectiveness of combining
self-supervised pre-training and data augmentation
with weakly supervised data in low-resource S2ST
for a distant language pair.

In addition, we find that UnitY outperforms
single-pass S2UT in Hokkien→En direction (row
4 vs. 6) by 2.9 BLEU. However, in En→Hokkien,
UnitY is merely 0.4 BLEU higher than single-pass
S2UT. The larger impact from the additional text
supervision in Hokkien→En may be due to the fact
that the target text and speech are of the same lan-
guage, or the larger amount of training data avail-
able. As the focus of this work is to present a data
creation and model training strategy, we leave the
investigation to future work.

For the cascaded baselines, the two-stage sys-

tem is worse than the three-stage system in both
En↔Hokkien directions (row 1 vs. 2). Our best
one-stage system performs similarly to the best
cascaded systems (row 2 vs. 6).

For MOS, the cascaded systems and single-stage
S2UT systems have similar naturalness in both
En→Hokkien and Hokkien→En directions.

5.2 Mined data

In this section, we study how to leverage mined
Hokkien→En S2T and En↔Hokkien S2ST data.

5.2.1 Leveraging mined En↔Hokkien S2ST
in En→Hokkien direction

In Table 2, we show the results of lever-
aging the mined En↔Hokkien S2ST data in
En→Hokkien direction. In order to train the
UnitY model, we apply Hokkien→Zh S2T to gen-
erate pseudo-labeled Mandarin text for the mined
Hokkien speech as the auxiliary task target.

We first train both one-stage models with mined
data and the human annotated data. While the
single-pass decoding S2UT model still yields very
low BLEU score (row 8), the UnitY model achieves
4.8 BLEU improvement with the extra 197-hr of
mined S2ST data (row 5 vs. 10), showing that noisy
Mandarin text generated from pseudo-labeling still
provides useful signals in model training. We then
further combine with weakly supervised data but do
not see significant gain with the additional mined
data (row 4 vs. 9, 6 vs. 11). Note that the size
of mined data is only 13% of the total amount of
weakly supervised data we have. As discussed
in Sec. 4.1.3, the limited amount of mined data
available is mainly due to the domain mismatch
issue. In the future, we plan to explore mined data
from more similar domains and aim to increase the
amount of data for better S2ST performance.

We convert the mined Hokkien→En S2T data to
S2ST data with the En T2U model and train UnitY
models with the combination of human annotated
data and optionally the 8k-hr weakly supervised
data to examine the effect of mined data on model
performance. Table 3 shows the ASR-BLEU scores
on the TAT-S2ST test set with respect to different
thresholds on the similarity scores of the mined
pairs.

We see that adding 4.7k-hr mined S2T data
(t = 1.065) in Hokkien→En is the most helpful
and improves the model quality by 3.6 BLEU when
only human annotated data is available. With 8.1k-
hr mined data (t = 1.06), the BLEU gain drops
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Table 1: Dev / test ASR-BLEU on TAT-S2ST dataset. MOS results are reported with 95% confidence interval. (∗:
synthetic Hokkien speech is generated by applying unit vocoder on the normalized units extracted from the ground
truth Hokkien speech, while synthetic En speech is generated by applying En T2U followed by the unit vocoder on
the ground truth En text. ∗∗: Human annotated TAT data (2-hr) is not included in the training data of Hokkien→Zh
S2T system due to lack of Mandarin translation.)

En→Hokkien Hokkien→En
Training data ASR-BLEU MOS Training data ASR-BLEU MOS

ID Model
Human Weakly

Dev Test Test
Human Weakly

Dev Test Test
(35-hr) (1.5k-hr) (61.4-hr) (8k-hr)

Cascaded systems:
1 Three-stage ✓ ✓ 8.9 7.5 3.54 ± 0.05 ✓∗∗ ✓ 10.7 10.0 3.22 ± 0.06
2 Two-stage ✓ ✓ 8.4 6.9 3.52 ± 0.05 ✓ ✓ 11.4 8.1 3.09 ± 0.06

Single-stage S2UT systems:
3 Single-pass decoding ✓ ✗ 0.1 0.0 - ✓ ✗ 0.1 0.1 -
4 Single-pass decoding ✓ ✓ 8.6 7.4 3.58 ± 0.05 ✓ ✓ 8.1 7.1 3.06 ± 0.06
5 Two-pass decoding (UnitY) ✓ ✗ 1.0 0.3 - ✓ ✗ 4.2 3.8 -
6 Two-pass decoding (UnitY) ✓ ✓ 9.3 7.8 3.69 ± 0.05 ✓ ✓ 11.8 10.0 3.15 ± 0.06
7 Synthetic target∗ ✗ ✗ 61.9 61.8 3.85 ± 0.05 ✗ ✗ 76.4 78.5 3.24 ± 0.05

Table 2: Results of En→Hokkien models trained with
mined En↔Hokkien S2ST data. We report dev / test
ASR-BLEU on TAT-S2ST dataset.

Training data ASR-BLEU

ID Model
Human Weakly Mined

Dev Test
(35-hr) (1.5k-hr) (197-hr)

3 ✓ ✗ ✗ 0.1 0.0
8 Single-pass ✓ ✗ ✓ 0.1 0.1
4 decoding ✓ ✓ ✗ 8.6 7.4
9 ✓ ✓ ✓ 7.2 7.3
5 ✓ ✗ ✗ 1.0 0.3
10 Two-pass ✓ ✗ ✓ 5.9 5.1
6 (UnitY) ✓ ✓ ✗ 9.3 7.8
11 ✓ ✓ ✓ 9.0 7.7

Table 3: ASR-BLEU scores on TAT-S2ST dev/test set
from Hokkien→En UnitY models trained with mined
data filtered at different thresholds (t) for the similarity
score. Amount of mined data (hr) per threshold is listed.

Data combined No filter t=1.08 t=1.07 t=1.065 t=1.06
with mined (0-hr) (356-hr) (2274-hr) (4732-hr) (8101-hr)

human (61.4-hr) 4.2/3.8 8.2/7.1 7.6/6.3 9.0/7.4 6.1/4.7
human (61.4-hr)

11.8/10.0 11.6/9.9 12.0/10.7 12.3/10.5 12.2/10.8
+ weakly (8k-hr)

to 0.9 BLEU. In addition, it is 5.3 BLEU lower
than the UnitY model trained with human anno-
tated data and 8k-hr of weakly supervised data
(Table 1 row 6). As the Hokkien speech for both
weakly supervised data and mined data comes from
the same Hokkien dramas dataset, the gap implies
that pseudo-labeling is a generally effective data
augmentation technique for low-resource scenarios,
while the quality of the mined data is constrained by
the content of the data available for mining. How-
ever, combining all three types of data together
is still beneficial. We obtain 0.5 BLEU gain by
adding 4.7k-hr mined data to the combination of
human annotated and weakly supervised data.

6 Conclusions

We present the first En↔Hokkien S2ST systems,
where Hokkien is an oral language that does not
have standard and widely adopted text writing sys-
tems, i.e. an unwritten language. To tackle the
challenges of speech translation for unwritten lan-
guages and the lack of parallel training data, we
present an end-to-end study. First, we explore three
options of training data creation including human
annotation, weakly supervised data from pseudo-
labeling and data mining. Second, we investigate
two modeling choices including direct speech-to-
unit translation with a single speech unit decoder
and two-pass decoding that leverages extra super-
vision from target text. Experimental results show
that leveraging a similar high-resource written lan-
guage (Mandarin in the case of Hokkien) is effec-
tive in both the data creation process and model
training. Finally, we release the benchmark dataset
and ASR evaluation model to facilitate research in
this field. In the future, we aim to expand study
and establish an S2ST model building strategy that
works for a diverse set of unwritten languages.

7 Limitation

In our research, we have focused on one language
pair, English↔Hokkien, and experimenting in both
directions. In the future, we plan to apply the same
methodology to additional unwritten languages to
evaluate its broad applicability.

Our approach leverages parallel speech-to-text
data between the unwritten language and a linguis-
tically similar written language. There remains a
question of whether there are unwritten languages
without similar written languages.
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A Dataset stats

Data source # samples
Source Target

speech (hrs) speech (hrs)

Hokkien→En
Hokkien dramas 6,125 5.8∗ synthetic

TAT 1,673 4.6 (74M, 86F) synthetic

MuST-C 13,733
51 (8M, 14F) synthetic

En→Hokkien 35∗ 51 (8M, 14F)

Table 4: Statistics of the human annotated training sets.
(M: male, F: female, ∗: no gender information available)

# samples Duration (hrs) # speakers

Dev
En

722
1.62 10 (5 M, 5 F)

Hokkien 1.46 10 (8 M, 2 F)

Test
En

686
1.47 10 (5 M, 5 F)

Hokkien 1.42 10 (3 M, 7 F)

Table 5: Statistics of the TAT-S2ST benchmark set. (M:
male, F: female)
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Table 6: Statistics of datasets (train/dev/test splits) used in pre-training, data augmentation and cascade systems.
TTS data is used to build the unit vocoder to synthesize waveform from discrete unit.

Dataset type # samples source (hrs) target (hrs)
usage
ASR, Hokkien-TaiLo
TAT (Liao et al., 2020a) 133k 480 -
Hokkien HuBERT, Hokkien ASR
ASR, Chinese
WenetSpeech (Zhang et al., 2022) 17.8M 10k -
Hokkien HuBERT
ASR, En
Librispeech (Panayotov et al., 2015) 282k / 5.6k / 5.5k 960 / 10.5 / 10.7 -
TED-LIUM3 (Hernandez et al., 2018) 268k / 507 / 1.2k 452 / 1.6 / 2.6 -
Unlabeled Speech, Hokkien
Hokkien drama 26M 23k -
Hokkien HuBERT
SpeechOcean 679k 597 -
Hokkien HuBERT
Unlabeled Speech, En
VoxPopuli (Wang et al., 2021a) 1.8M 14k -
Librilight (Kahn et al., 2020) 18.6M 60k -
Parallel Text, Zh-En & En-Zh
CC-Matrix (Schwenk et al., 2019) 38M - -
MT
Unlabelled Text, Zh
Newscrawl (Akhbardeh et al., 2021) 14M - -
Leipzig Corpora (Goldhahn et al., 2012) 7M - -
NewsCommentary (Tiedemann, 2012) 0.5M - -
CC-100 (Conneau et al., 2020) 208M - -
Unlabelled Text, En
Newscrawl (Akhbardeh et al., 2021) 260M - -
NewsCommentary (Tiedemann, 2012) 0.7M - -
CC-100 (Conneau et al., 2020) 2.1B - -
TTS, Hokkien
TAT-TTS (4 speakers) 45k 40 -
TTS, English
LJSpeech (Ito and Johnson, 2017) 13.1k 24 -
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�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
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�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
We have internal review to make sure we collect data with the right consent.
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that is the source of the data?
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