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Abstract

Distantly supervised named entity recognition
(DS-NER) has been proposed to exploit the
automatically labeled training data instead of
human annotations. The distantly annotated
datasets are often noisy and contain a consid-
erable number of false negatives. The recent
approach uses a weighted sampling approach
to select a subset of negative samples for train-
ing. However, it requires a good classifier to
assign weights to the negative samples. In this
paper, we propose a simple and straightforward
approach for selecting the top negative samples
that have high similarities with all the positive
samples for training. Our method achieves con-
sistent performance improvements on four dis-
tantly supervised NER datasets. Our analysis
also shows that it is critical to differentiate the
true negatives from the false negatives.!

1 Introduction

Named entity recognition (NER) is one of the fun-
damental tasks in natural language processing, and
it aims to extract the mentioned entities in the
text. Existing supervised approaches (Lample et al.,
2016; Ma and Hovy, 2016; Devlin et al., 2019; Xu
et al., 2021b) have achieved great performance on
many NER datasets. However, they still heavily
rely on the human-annotated training datasets.
Distantly supervised approaches (Ren et al.,
2015; Fries et al., 2017; Shang et al., 2018; Yang
et al., 2018; Mayhew et al., 2019; Cao et al., 2019;
Peng et al., 2019; Liu et al., 2021; Zhang et al.,
2021a; Zhou et al., 2022) have been proposed to
exploit the automatically labeled training data gen-
erated from the knowledge bases (KBs) or dictio-
naries. For such distantly supervised datasets, the
annotated entities mostly have correct labels, but
the overall annotations are frequently incomplete
* This work was done when Lu Xu was under the joint
Ph.D. program between Alibaba and SUTD.

'Our code is available at https://github.com/
xuuuluuu/ds_ner.

Distantly-Annotated

PER 3
{ Barack Obama and Michelle Obama visited Boston last week. |

Human-Annotated

: PER PER i
i Barack Obama and Michelle Obama visited Boston last week. |

Figure 1: An annotated example with distant supervi-
sion. The entity highlighted in red is not recognized.

due to the limited coverage of entities in KBs. We
include comparisons of the distantly-annotated and
human-annotated datasets in Appendix A.
Self-training has been demonstrated as an ef-
fective strategy for addressing the noisy labeled
training data (Jie et al., 2019; Liang et al., 2020;
Zhang et al., 2021b; Meng et al., 2021; Tan et al.,
2022). Specifically, they iteratively refine the entity
labels through teacher-student models. In this way,
the number of false positive and false negative sam-
ples can be reduced. However, such approaches
usually require training multiple models with mul-
tiple iterations. Another line of work improves the
single-stage model by reducing the number of false
negative samples during training. In general, the
problem of false negatives is more severe than false
positives. Li et al. (2021) proposed to sample a por-
tion of negative samples with a uniform sampling
distribution for training. By selecting a subset of all
the negative samples, fewer false negative samples
are involved in the training process. The sampling
strategy can be enhanced by using a weighted sam-
pling distribution (Li et al., 2022). Specifically,
the negative samples are assigned with different
sampling probabilities based on the predicted label
distributions. However, this approach also depends
on quality of the classifier to derive the distribution.
In this paper, we propose a simple and straight-
forward approach to sampling the negatives for
training. Intuitively, the false negatives are positive
samples but are unrecognized based on distant su-
pervision, and they should have high similarities
with positive samples that have the same gold en-
tity type. For the example in Fig. 1, “Michelle

4874

Findings of the Association for Computational Linguistics: ACL 2023, pages 48744882
July 9-14, 2023 ©2023 Association for Computational Linguistics


https://github.com/xuuuluuu/ds_ner
https://github.com/xuuuluuu/ds_ner

Obama” is not identified as PER in the distantly la-
beled dataset. The false negative sample “Michelle
Obama” should have high similarity with the posi-
tive sample “Barack Obama” that has the PER label.
Additionally, the false negative sample should not
have high similarity with other positive samples of
different entity types, such as “Boston”. Therefore,
when the negative samples have high similarities
with all the positive samples, they are more likely to
be true negatives. We select these top negative sam-
ples for training, and we denote our approach as
Top-Neg. Unlike the previous approach of relying
on a classifier for assigning sampling probability,
our approach exploits the encoded representations
to derive the similarity scores. Compared to the
baseline methods, our approach demonstrates con-
sistent performance improvement on four distantly
supervised NER datasets. Our analysis shows that
not all the negative samples are required for train-
ing, but it is critical to filter the false negatives.

2 Approach

The objective of NER task is to extract all the enti-
ties in the text. Given a sentence of length n, X =
{1, z2, ..., z, }, we denote all possible enumerated
spansin X as S = {s1.1, 51,2, .-, Sij, --» Snn}>
where 7 and j are the start and end position of span
si j» and the span length is limited as 0 < j—4 < L.
For all the enumerated spans, our approach predicts
the corresponding entity types from a predefined
label space, including the O label (not an entity).

2.1 Span-based Model

Similar to the previous approaches (Lee et al., 2017,
Luan et al., 2019; Zhong and Chen, 2021; Xu
et al., 2021a), we adopt a span-based model ar-
chitecture. First, we encode the input sentence X
with a pre-trained language model, such as BERT
(Devlin et al., 2019). The encoded contextualized
representation for the sentence X is denoted as
h = [hy, hy, ..., h,]. Then, the span representa-
tion of s; ; € S can be formed as:

sij = [hy; hy; f(4,7)] (D

where f(i,7) indicates a trainable embedding to
encode the span width feature. The span represen-
tation s; ; is then input to a feed-forward neural
network (FFNN) to obtain the distribution of entity

type t.

P(t|s; ;) = softmax(FFNN(s; ;)) ()

2.2 True Negatives vs. False Negatives

In general, the distantly annotated training datasets
contain a significant number of false negative sam-
ples and also a small portion of false positives.
When the model is trained on such datasets, the
performance of precision and recall are affected,
and the preliminary experimental results are given
in Appendix B. We observe that the recall score is
severely affected when compared with the preci-
sion score. Such behavior is because the problem
of false negatives is more severe than false posi-
tives. We also observe a similar phenomenon in the
statistics of the datasets in Appendix A.

Regarding the false negative samples, they are
actually true positives but cannot be annotated
based on only the distantly supervised information.
Through our intuition that is described in Section 1,
the false negative samples should have high simi-
larities with the positive samples having the same
gold entity type and low similarities with other pos-
itive samples of different entity types. Note that a
vanilla model that is trained on the distantly super-
vised dataset can still well differentiate the positive
labels, as demonstrated by the high precision score
in the Appendix B. With the above findings, when
a negative sample has a high similarity with all the
positive samples, it is likely to be a true negative
sample. Therefore, we propose to only utilize the
negative samples that have high similarities with
all the positive samples for training.

At the training stage, we have the label informa-
tion so that we can obtain the span set of positive
samples SP°* = {..., sP°* ...}, and span set of neg-
ative samples S™9 = {...,s"%9 ..}. Note that
S = 5P U §™9. Then, we calculate the average
similarity score of each negative span s € S™¢9
with respect to all the positive spans in SP°%, and
the similarity score & is defined as:

@(Sneg,spos) — % Z S

e ]
3
where M denotes the number of positive samples.
In practice, we calculate the similarity score at the
batch level.

neg gpos

2.3 Training and Inference

We rank the similarity score ® of all the negative
spans in S, Note that the number of the negative
samples is denoted as [V, which has a complexity
of O(n?). To only consider the negative samples
that have high similarities with all the positives
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and also save the computational cost, we select
the top Nr negative samples for training and r is
the hyper-parameter to control the quantity. We
denote the set of the selected negative samples as
Sned = {59 .}, Then, we input all the posi-
tive samples and the selected negative samples to
Eq. 2 to obtain the probability distributions. Our
training objective is defined as:

L=— Z log P(t*[s"%)

spos ESPOS

— Z log P(t*|8"%Y)

gnegegneg

4

where t* denotes the corresponding gold entity type
of a span. During inference, all the enumerated
span representations are passed to Eq. 2 to predict
the corresponding entity types.

3 Experiments

Datasets We evaluate our approach on four dis-
tantly supervised NER datasets: CoNLLO3 (Tjong
Kim Sang and De Meulder, 2003), BC5CDR (Wei
et al., 2015), WNUT16 (Godin et al., 2015), and
WikiGold (Balasuriya et al., 2009). The distantly
supervised datasets are obtained from (Liang et al.,
2020) and (Shang et al., 2018). We use the dis-
tantly supervised data for training and the human-
annotated development and test sets for evalua-
tion. The statistics of the datasets are given in
Appendix A.

Experimental Setup We use the bert-base-
cased and roberta-base as the base encoders for
CoNLLO03, WNUTI16, and WikiGold datasets.
BCS5CDR is in the biomedical domain, and we
adopt the biobert-base-cased-vi.1 as the encoder.
The maximum span length L is set as 8. The r
is set as 0.05. See Appendix C for additional ex-
perimental settings. We use the same combination
of hyperparameters for all experiments, and the
reported results are the average of 5 runs with dif-
ferent random seeds.

Baselines KB Matching retrieves the entities
based on string matching with knowledge bases.
AutoNER (Shang et al., 2018) filters the distantly
annotated datasets through additional rules and dic-
tionaries, and they also proposed a new tagging
scheme for the DS-NER task. Bond (Liang et al.,
2020) proposed a two-stage approach to adopt self-
training to alleviate the noisy and incomplete dis-
tantly annotated training datasets. bnPU (Peng

et al., 2019) formulates the task as a positive un-
labelled learning problem with having the mean
absolute error as the objective function. Conf-
MPU (Zhou et al., 2022) is a two-stage approach,
with the first stage estimating the confidence score
of being an entity and the second stage incorpo-
rating the confidence score into the positive un-
labelled learning framework. Span-NS (Li et al.,
2021) and Span-NS-V (Li et al., 2022) are the neg-
ative sampling approaches, while the latter replaces
the previous uniform sampling distribution with a
weighted sampling distribution.

As discussed by Zhou et al. (2022), the iterative
self-training strategy (Liang et al., 2020; Zhang
et al., 2021b; Meng et al., 2021) could be consid-
ered as a post-processing technique that is orthogo-
nal to the single-stage approach. We consider the
discussion of the self-training (Zoph et al., 2020)
approach beyond the scope of this paper.

Experimental Results Table 1 shows the com-
parisons of our approach with the baseline methods
on four datasets. Our model consistently outper-
forms the previous approaches in terms of the F'1
score. AutoNER achieves good performance on the
BC5CDR dataset by mining the phrases with ex-
ternal in-domain knowledge, but it does not show
similar performance on the other three datasets.
When comparing to the strong baseline Conf-MPU,
our Top-Neg gerr achieves performance improve-
ment of 0.92 and 3.17 F1 points on CoNLLO03 and
BCS5CDR respectively. Note that the Conf-MPU
also reported the results with lexicon feature en-
gineering in the original paper, but they are not
directly comparable with our approach. Our Top-
Neg ggrt also outperforms the previous sampling
approach Span-NS-V by 1.52 F'1 points on average.
As the distantly supervised datasets are noisy in
terms of both positive and negative samples, the
Span-NS-V may not have a good classifier to deter-
mine the sampling probabilities. By contrast, our
method only relies on the encoded representations
of the samples to derive the similarity score for sam-
pling. We also conduct experiments with RoOBERTa
as the encoder so as to have a fair comparison with
the BOND. When the stronger pre-trained model is
applied to our approach, we observe better perfor-
mance on all datasets.

4 Analysis

Comparison with human-annotated training
data We compare the performance of our 7op-
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Mode Model CoNLL03 BC5CDR WNUTI16 WikiGold
P. R. F1 P. R. F1 P. R. F1 P. R. F1

FS  Existing SOTA - - 94.60% - 90.99¢ - 58.98% 6225 66.12 64.13%
KB Matching” 6375 81.13 7140 5124 8639 64321 3222 4034 3583 47.63 4790 47.76
AutoNER (Shang et al., 2018)" 6040 7521 67.00 77.52 8263 79.99" 18.69 4326 26.10 5235 4354 47.54
BONDRoperT: (Liang et al., 2020) 68.90 83.76  75.71 - - - 4152 53.11 46.61 5440 49.17 5155
bnPU (Peng et al., 2019)f 8297 7438 7844 77.06 48.12 59.24 - - - - - -

DS  Conf-MPU (Zhou et al., 2022) 7975 78.58 79.16 8642 69.79 77.22 - - - - - -
Span-NS (Li et al., 2021)} 80.41 7135 7561 8690 7349 79.64 53.51 3976 4562 51.05 4827 49.62
Span-NS-V (Li et al., 2022) 80.19 7291 7638 86.67 73.52 79.56 47.78 4437 4601 5091 4843 49.64
Top-Neg (BERT) 8272 7771 80.08 - 5528 4035 4655 5547 4857 50.65
Top-Neg (RoBERTa) 80.55 60.55

81.07 80.23

Top-Neg (Bio-BERT)

- 82.09 78.90 80.39 -

4533 51.78 5230 53.55 52.86

Table 1: Experiment results. ‘FS” and “DS” indicate fully supervised and distantly supervised respectively. The
existing SOTA results marked with * are retrieved from (Wang et al., 2021a), * are from (Wang et al., 2021b) and *
are from (Zhang et al., 2021b). The results with * are retrieved from (Liang et al., 2020), and the results with T are
retrieved from (Zhou et al., 2022). I indicates the results of our runs with their released code. See Appendix D for
the standard deviation of our results based on 5 different runs and also the results on the development sets.

Model Training P. R. F1

Span HA 91.14 91.68 91.41
Top-Neg HA 9148 91.66 91.57
Span DS 88.25 63.03 73.54
Top-Neg DS 82.72 77.71 80.08

Table 2: Comparisons on human-annotated (HA) and
distantly supervised (DS) training data of CoNLLO3.

Neg with the standard span-based model” on
the human-annotated (HA) and distantly super-
vised (DS) training sets in Table 2. When the HA
dataset is used, our Top-Neg achieves comparable
performance with the standard Span approach. This
demonstrates that using all the negative samples for
training is unnecessary. However, when the noisy
DS dataset is used, the performance of the Span
approach degrades significantly, especially the re-
call score. Our Top-Neg approach achieves better
performance with relatively balanced precision and
recall scores by sampling the effective negatives.
Additionally, the performance gap of our approach
on the HA and DS datasets indicates the room to
further differentiate the true negatives from false
negative samples.

Comparison of sampling strategies As men-
tioned, we propose to differentiate the false nega-
tives from the true negatives based on the similarity
between the negative sample with all positive sam-
ples. We conduct additional evaluations to show
the effect of different sampling strategies on the
performance, and Table 3 shows the comparisons.

2This span-based model uses all the negative samples.

Sampling P. R. F1

Top 3% 84.73 78.61 81.55
Top 5% 85.78 79.38 8242
Top 10% 88.12 75.51 81.33
Bottom 90% 75.33 70.82 73.01
Bottom 95% 80.36 69.00 74.25
Bottom 97% 82.92 71.96 77.05

Table 3: Results on the development set of CoNLLO03
with different sampling strategies.

First, we compare the performance of our approach
when only selecting the negative samples with the
top similarity score (Eq. 3). We observe that the
performance of our Top-Neg with 3% of the nega-
tive samples is worse than 5%. This indicates that
the top 3% of negative samples are not adequate
for training. However, when more negatives are
selected (10 %), we observe a significant drop in
the recall score as the number of false negative sam-
ples could become dominant. By contrast, when
the negative samples with low similarity scores ®
are selected, the performance shows a significant
decrease (lower section of Table 3). Even though
the low similarity score indicates a high probability
of being a true negative sample, however, these
negative samples are less informative.>

5 Conclusion

In this work, we propose an improved approach
of sampling the negatives to reduce the number of

3See Appendix E for the experiment results of using dif-
ferent sampling strategies on the HA dataset.
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false negative samples for training. Specifically,
we differentiate the true negatives from the false
negative samples by measuring the similarity of the
negatives with the positive samples. The experi-
ment results have demonstrated the effectiveness of
our approach. Future work may focus on clustering
the negative samples to further differentiate the true
negatives from the false negatives.

Limitations

Our approach is proposed based on the intuition
that false negative samples should have high sim-
ilarities with the positive samples that have the
same gold entity type, and they also have low sim-
ilarities with the positive samples of different en-
tity types. However, our proposed approach does
not guarantee the selected negatives are true neg-
atives. Furthermore, when the negative samples
are hard false negative samples, they are likely to
have high similarities with other positive samples
as well. However, such hard false negative samples
are not prevalent in the datasets. Another limita-
tion is that there is still a large performance gap
between the distantly supervised datasets and the
human-annotated datasets, as mentioned in Sec-
tion 4.
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A Dataset Statistics

Table 4 shows the evaluation results of the distantly
supervised annotation when compared with human-
annotated datasets. We observe that the results
often show high precision but low recall scores.
Table 5 presents the statistics of the four distantly
annotated datasets. ‘“# Sent.” indicates the number
of sentences and “# Entity” denotes the number
of entities in the datasets. The training set is an-
notated based on the distant supervision, and the
development and test sets are manually annotated.

Datasets Type P. R. F1
PER 8236 82.11 82.23
LOC 99.98 6520 78.93
CoNLLO3 26 9047 6059 72.57
MISC 100.00 20.07 33.43
Chemical  96.99 63.14 76.49
BCSCDR - yiccase 9834 4673 6335

Table 4: Evaluation results of the distantly annotated
datasets based on human annotation.

B Preliminary Experiment Result

Figure 2 shows the experiment results of a standard
span-based model that is trained on the distantly
annotated CoNLLO03 dataset. The evaluation is
conducted on the human-annotated development
and test sets.

T T . :
Precision Recall
100 eeeeeeooood 100F  oesooroooom
sof 1 sl / |
60T — 60} :
—— Train —— Train
40 - Dev | 40} Dev |
1 . . } ‘ ‘
0 5 10 15 0 5 10 15
Epoch Epoch

Figure 2: Precision (%) and recall (%) on the training
and development sets of CoNLLO3. Note that the best
performance (F1 score) on the development set is at the
2nd epoch.

C Additional Experimental Setup

We use the bert-base-cased and roberta-base as the
encoders for CoNLL03, WNUT16, and WikiGold
datasets. BC5CDR is in the biomedical domain,
and we adopt the biobert-base-cased-vi.1 as the
encoder. We use 2 layers of feed-forward neural
networks for the classifier and the hidden size is set
as 150, and the dropout rate is set as 0.2. The maxi-
mum span length L is set as 8. The r is set as 0.05.
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Datasets CoNLLO3 BCS5CDR WNUTI16 WikiGold
Train # Sent. 14,041 4,560 2,393 1,142

# Entity 17,781 6,452 994 2,282
Dev # Sent. 3,250 4,579 1,000 280

# Entity 5,942 9,591 661 648
Test # Sent. 3,453 4,797 3,849 274

# Entity 5,648 9,809 3,473 607

Table 5: Statistics of datasets.

Datasets CoNLL0O3 BCS5CDR WNUTI16 WikiGold
Top-Neg ggrr 82.42 - 44.34 55.10
Top-Neg ropera 83.67 - 48.78 57.46

Top-Neg BioBERT - 80.69 - .

Table 6: Experiment results on the development sets.

We use the same combination of hyperparameters
for all the experiments. We select the best model
based on the performance on the development sets,
and the reported results are the average of 5 runs
with different seeds.

The experiments are conducted on Nvidia Tesla
A100 GPU with PyTorch 1.10.0. The average
running time on the CoNLLO03 dataset is 74 sec-
onds/epoch, and the number of model parameters
is 108.59M when bert-base-cased is adopted.

Datasets CoNLL0O3 BCS5CDR WNUTI16 WikiGold
Top-Neg Bert 0.94 - 1.09 1.03
Top-Neg RoBERTa 0.63 - 0.42 0.25
Top-Neg gioBERT - 0.32 - -

Table 7: Standard deviation of the F'1 score on the test
sets.

D Additional Experiment Results

In this section, we show additional experiment re-
sults. Table 6 presents the results of our approach
on the development sets of the four datasets. As
mentioned that we run our model with different
seeds for 5 times, Table 7 shows the standard devi-
ation of the F'1 scores on the test sets.

E Additional Experiment Results on the
HA Dataset

Table 8 shows the experimental results on the devel-
opment set of CoNLLO3 when using different sam-
pling methods on the HA dataset. The experiment
with the top 5% of the negative samples achieves
comparable performance when using all the nega-
tive samples. We observe a large performance gap
between the settings of the top 5% and bottom 5%.

This indicates that the bottom negative samples are
less informative than the top negatives. When the
bottom 50% of negative samples are selected, the
performance shows improvement, but it still exists
a gap when compared with the top 50%.

Sampling P. R. F1

ALL 95.65 9593 95.79
Top 5% 95.70 95.76 95.73
Bottom 5%  64.85 96.90 77.70
Top 50% 96.10 95.31 95.70
Bottom 50% 89.70 96.13 92.80

Table 8: Comparisons of different sampling strategies
on the development set of the HA CoNLLO3.
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