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Abstract

This paper proposes a new task of common-
sense question generation, which aims to yield
deep-level and to-the-point questions from the
text. Their answers need to reason over dis-
joint relevant contexts and external common-
sense knowledge, such as encyclopedic facts
and causality. The knowledge may not be ex-
plicitly mentioned in the text but is used by
most humans for problem-shooting. Such com-
plex reasoning with hidden contexts involves
deep semantic understanding. Thus, this task
has great application value, such as making
high-quality quizzes in advanced exams. Due
to the lack of modeling complexity, existing
methods may produce shallow questions that
can be answered by simple word matching. To
address these challenges, we propose a new
QG model by simultaneously considering ask-
ing contents, expressive ways, and answering
complexity. We first retrieve text-related com-
monsense context. Then we disentangle the key
factors that control questions in terms of reason-
ing content and verbalized way. Independence
priors and constraints are imposed to facilitate
disentanglement. We further develop a discrim-
inator to promote the deep results by consider-
ing their answering complexity. Through ad-
versarial inference, we learn the latent factors
from data. By sampling the expressive factor
from the data distributions, diverse questions
can be yielded. Evaluations of two typical data
sets show the effectiveness of our approach.

1 Introduction

Text-oriented question generation (QG) aims to en-
dow machines with the ability to ask relevant and
thought-provoking questions about the given text.
This task can support a wide range of real-world
applications, such as yielding quizzes from course
materials for education (Qu et al., 2021), and gen-
erating questions as synthetic data to train a QA
system (Wang et al., 2019). According to Bloom’s
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Figure 1: Sample deep question whose answer needs to
be derived by complex commonsense reasoning skills.

taxonomy (Zhang et al., 2022), questions can be
classified into different levels of cognitive ability.
The simple ones involve only the shallow meaning
of the text. For example, the question “What is
the longest river in the world?” about the given
text “The Nile is the longest river in the world”
can be answered directly by matching. However,
matching is far from a real understanding of the
semantics (Ko et al., 2020). For example, in the
field of education, simple questions are hard to
fully evaluate students’ learning effects, especially
in advanced exams. Thus, the deep questions that
require semantic understanding and reasoning have
attracted extensive attention. As shown in Fig.(1),
the question asks about some kind of clothing. The
answer needs to be deduced from multiple rele-
vant but disjoint clues in the contexts, i.e., “tradi-
tional local costumes,” “mountain,” “Mount Fuji,”
as well as implicit commonsense knowledge, such
as Mount Fuji is a famous mountain in Japan, Ki-
mono is the traditional local costume of Japanese,
and Japanese kimono is a kind of robe clothing.
Here, commonsense refers to the self-evident and
unwritten knowledge shared by most humans, such
as encyclopedism and causality. Although it does
not appear in the text, it is hard to find the correct
answer without it due to the incomplete context.
Asking this kind of question requires a full under-
standing of commonsense and the ability to make
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inferences. That is a key ingredient for general
intelligence. Some works have studied how to an-
swer such questions, represented by commonsense
QA and multi-hop QA (Rajani et al., 2019), but
less effort explores how to generate them. We thus
propose a new QG task to fill this research gap.

Raising deep questions involves three fundamen-
tal processes: what to ask, how to ask, and how to
answer. What to ask is to identify the answer and
its relevant reasoning contents. Learning how to
ask focuses on the language qualities, such as gram-
matical correctness and expressive diversity, since
the question could be asked in various ways and
each way needs to be fluent. Respectively, how to
answer reflects the question’s complexity, shallow
questions only need to match the text while deep
reasoning ones require understanding the seman-
tics in contexts with long-range dependencies and
hidden commonsense knowledge. For these pro-
cesses, traditional QG models have considerable
defects. The rule-based method relies on hand-
crafted rules or transformation templates with a
limited scale. That would restrict the coverage of
results. Due to the neglect of indispensable answer-
ing feedback, the results are not guaranteed to be
inferable and deep. On the other hand, the neural
model mainly follows the sequence-to-sequence
framework which is data-driven and labor-saving,
but this monotonous mapping is hard to learn the
one-to-many diversified generation. Besides, this
method cannot cover the nuances of data by using
a single vector to encode complex input features,
especially when the training data is insufficient or
has a long tail distribution. Spurious correlations
and unexpected variances would easily mislead the
single-factor model and deteriorate its robustness.

Motivated by the above observations, we pro-
pose a practical model for the new commonsense
reasoning QG task. Concretely, we first leverage
a knowledge-enhanced model to represent the text
contexts, as well as relevant commonsense con-
cepts and relations. We then learn the key factors
related to the necessary ask contents and expressive
ways. The first factor refers to the reasoning clues
involved in asking deep questions, including enti-
ties and relations in the commonsense deductive
context. Another encompasses other variations not
covered by the content factor, like the verbalized
styles and patterns. These factors can be sampled
from the data manifold and used as conditions to
generate results. This sampling-then-generate way

alleviates the difficulty of collecting real data at the
lower ends of a distribution tail in order to learn
diversified generation. All these unknown factors
may be mutually interrelated. Simply assuming
that they are independent would oversimplify the
latent manifold, leading to unsatisfied results due to
the incorrect preservation of the redundant noises.
We thus propose to disentangle such factors explic-
itly to ensure their independence and prevent infor-
mation leakage between them. To achieve this goal,
we introduce two kinds of latent variables to char-
acterize the factors and impose constraints to learn
their disentangled representations. These variables
are forced to obey two prior non-overlapping dis-
tributions, including an isotropic Gaussian for the
expressive way and another conditional Gaussian
mixture for the reasoning content. Each component
can be viewed as a cluster of neural templates or
prototypes, which can be used as a guide to control
the detailed nuances of a generation process. To
encourage the deep and inferable questions, we im-
pose regularization on the distributions by consid-
ering the answering complexity, including whether
the answer matches the question and involves multi-
hop reasoning with implicit commonsense knowl-
edge. Moreover, we design an adversarial inference
mechanism to derive optimal distributions for the
disentangled factors. To facilitate deployment, we
further employ the prefix-tuning technique (Li and
Liang, 2021) that can support inference with lim-
ited labeled data. Our model enables one-to-many
generation by randomly sampling the expressive
factor from the distributions to yield new reason-
ing questions. Experimental results on two popular
data sets show the effectiveness of our approach.

The main contributions of this paper include,

• We are the first to study the task of common-
sense reasoning question generation from text.

• We propose a new model for the common-
sense reasoning QG task. By a latent space
with disentangled priors, our model can grasp
the key factors that control the reasoning con-
tent and expressive way. Based on the factors
as generative conditions, we can yield new
diverse results by sampling data distributions.

• We design a discriminator and learn it by ad-
versarial inference. It can provide complexity
feedback as a guide to regularize the generator.
Extensive experiments are conducted to evalu-
ate our model quantitatively and qualitatively.
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Figure 2: Overview of our approach for the task of generating deep question with commonsense reasoning ability.

The rest of this paper is organized as follows.
Section 2 elaborates on the proposed method for the
new commonsense QG task. Afterward, Section
3 presents experimental results. Section 4 reviews
related works and Section 5 concludes the paper.

2 Approach

As shown in Fig.(2), we propose a new framework
for this task. We first encode the text context and
relevant commonsense knowledge. We then dis-
entangle the key ask-related factors on reasoning
content and expressive way. The answering feed-
back is also considered. By sampling the learned
data manifold, we can derive factors as conditions
to yield new questions. Next, we define some nota-
tions and then show the details of each component.

2.1 Notations and Problem Formulation

Given a passage c, the QG task aims to gener-
ate a valid question y corresponding to c and the
answer a. The answering process involves de-
ducing over a subset of disjoint supporting clues
Py = {p1, · · · , pk} from c, that is, {y → p1 →
· · · → pk → a}, where → represents entailment,
pj is a necessary problem-solving clue which can
be a sentence or entity in c, k is the number of
clues. When k = 1, we call y a traditional shallow
question whose answer can be found by one-step
matching of the given text. Respectively, when
k > 1, y is a deep question with k reasoning steps.
In complex reasoning, some clues are not in c, but
from the background knowledge outside c. That is,
a cannot be derived by using only c, and we have
to answer y by introducing commonsense knowl-
edge to supplement the missing contexts. Our task
aims to yield this kind of question with a common-
sense multi-step reasoning requirement. Compared
to existing QG tasks, our question needs a deeper
understanding of the semantics in c. Moreover, it
is necessary to simultaneously figure out the ask-

related contents, verbalized ways, and answering
complexity. This task can be applied to many com-
mercial scenarios like making quizzes for advanced
exams. Since a question can be asked in many ac-
ceptable ways, where each y should be answered
by a, we input a to indicate the asking direction.

2.2 Commonsense-enhanced Representation
Since asking deep questions involves understand-
ing and reasoning the input text content, we need
to derive a good semantic representation of the
text. In particular, we first embed the context
features in the input sample by looking up the
pre-trained vectors in RoBERTa (Liu et al., 2019).
The given text c and answer a are embedded as
eac = ROBERTA([CLS], c, [SEP ], a, [SEP ]),
where [CLS] and [SEP ] are special separator
tokens. Similarly, question y is represented as
ey = ROBERTA(y). Afterward, we retrieve the
commonsense features related to the given text. We
resort to the knowledge graphs (KG) which contain
plentiful human-shared knowledge. The first KG
we consider is ConceptNet (Li et al., 2016). It con-
tains millions of factual knowledge like encyclope-
dic concepts and parent-child relations. Another
is ATOMIC (Sap et al., 2019) with plentiful proce-
dural knowledge like if-then causal events. Such
KGs can help to fill the implicit commonsense gap
in the context. Since the KGs have different struc-
tures, we adopt the work of Ma et al. (2019b) to
elicit the relevant KG contents. In particular, we
identify ConceptNet entities appearing in the text
by phrase-based matching, and then collect the
relevant ν-hop triples. Accordingly, we utilize a
transformer called COMET (Bosselut et al., 2019)
which is pretrained on ATOMIC to generate the
event triples based on the text and pre-defined re-
lation types. Nine reasoning types in COMET are
employed. Based on the extracted and generated
contents, we can obtain a commonsense augmented
graph. We then employ graph convolutional net-
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works (GCN) (Kipf and Welling, 2017) to encode
the graph as ekgc = GCN(V,E), where V , E de-
notes the set of nodes and edges, respectively. The
nodes are the concepts, entities in the text and KGs,
and the edges represent their relations. To integrate
context and commonsense features, we apply an
MLP network with ReLU activation to fuse the vec-
tors as u = MLP ([eac; e

kg
c ]), where [·; ·] is the

concatenation operator.

2.3 Commonsense Reasoning QG Model

Traditional QG methods often learn an encoding
vector of the input to decode the result. This single
vector is insufficient to grasp the subtle structure of
reasoning questions, and the one-to-one mapping is
hard to capture diverse expressive ways. It is also
difficult to find a suitable mapping for the rare cases
at the distribution tail. We thus design a conditional
generation framework that can disentangle multi-
ple factors to finely model the reasoning contents
and expressive patterns. The results can be easily
inferred from a continuous data manifold, which
has better generalization ability than learning the
mapping of scattered points. That provides great
flexibility to yield diverse results by adjusting the
expression factors sampled from data distributions.

Conditional Generation: Our QG model yields
the question based on the input of two latent vari-
ables. One is to characterize the reasoning contents
related to what to ask, namely zu. Another is used
to quantify the verbalized expressions of how to
ask, i.e., ze. These variables can be learned from
data by conducting approximate inference. Since
the latent space allows invariance of distracting
transformations, it is easier to discover elements
of variations governing the data distribution. That
helps to reason the data at an abstract level and find
the key question-controlled factors. Our task can
be formalized as an iterative word generative pro-
cess based on a marginal distribution pθ(ŷ|ze, zu),
where θ is the model parameters. ze can be sam-
pled from a verbalized prior distribution, which
helps to form the results expressed in various ways.
To reduce the labeled data demand for training
θ, we further employ the prefix-tuning technique
that can freeze pre-trained vectors and learn only a
few prompt parameters. The continuous prompt is
designed as Mθ[i, :] = MLPθ([M

′
θ[i, :]; ze; zu]),

where M′
θ is a learnable matrix, MLP (·) is a mul-

tilayer network. Based on this prompt, we can pro-
duce the question word-by-word by Eq.(1), where

ŷ<t represents the outputted 1th to (t− 1)th words.

pθ(ŷ|ze, zu) =
∏J
t=1 pθ(ŷt|ŷ<t,Mθ[i, :]) (1)

To well capture abundant expressive patterns in
the questions, we let ze obey the prior distribution
pψ of factorized Gaussian N (ze;µ

y
e , λeI), where

µye is the mean, and λe is the variance. Different
from a standard normal distribution N (0, I), this
allows us to associate its mean with the linguis-
tic features Φ(y) from the question y by µye =
WyΦ(y), where Wy is a project matrix and Φ(y)
is the mean of question encodings. Considering
the given text may contain multiple inquiry top-
ics, the content latent zu is expected to be com-
posed of K-independent components. Thus, we
make zu follow Gaussian mixture distributions,
i.e.,

∑K
k=1 pψ(Mk|u)N (zu;µ

y
uk , λuI), where Mk

is a random variable to indicate the kth component.
Disentangled Inference: To better learn the la-

tent representation z, we introduce a series of con-
straints. First, the latent vector should be able to
fully characterize the corresponding content. That
can be quantified by maximizing mutual infor-
mation (MI) (Cheng et al., 2020) of MI(ze, y)
and MI(zu,u), where u is the commonsense-
enhanced representation of the inputs c and a. To
improve the model’s robustness, we impose disen-
tangled constraints. The content vector is encour-
aged to encode disjoint information with the expres-
sion vector and vice versa. That can reduce redun-
dancy and provide refined control over results. We
seek to explicitly minimize the shared information
of vectors by adding a divergence-based regulariza-
tion of Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2012), as MMD(p(ze|y), p(zu|u)). By
aggregating the constraints, our generator’s objec-
tive of Eq.(1) can be reformulated as Eq.(2).

max
∫
pθ(ŷ|ze, zu)pψ(ze|y)pψ(zu|a, c)dzedzu

= max
∑n

i=1 [log p(ŷ|yi, ai, ci) +MI(zyi , yi)
+MI(zui ,ui)−MMD(p(zyi |yi), p(zui |ui))]

(2)
We then utilize the variational inference technique
to solve it since direct optimization is intractable. A
variational posterior qϕ(·) is introduced to approxi-
mate the prior distribution pψ(·). By maximizing
the evidence lower bound (ELBO) of Eq.(2), we
can derive an equivalent objective as Eq.(3).

maxEqϕ(ze,zu|y,u)[log pψ(ŷ, ze, zu|y,u)
− log qϕ(ze, zu|y,u)]

(3)

This ELBO can be decomposed into Eq.(4) by min-
imizing the reconstruction loss Lr of y given the
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inputs c and a (encoded as u), and regularizing the
approximate posterior qϕ(·) to be close to the prior
pψ(·) by KL divergence, where Le and Lu are the
divergence losses for latent ze and zu, respectively.

Lgenerator(ψ, ϕ, y, c, a) = Lr + Le + Lu
Lr = Eqϕ(ze, zu|y,u)[log pψ(ŷ|ze, zu)]
Le = DKL(qϕ(ze|ŷ, y)||pψ(ze|y))
Lu = DKL(qϕ(zu|ŷ, u)||pψ(zu|u))

(4)

Le is the loss related to the expression factor. Simi-
lar to the prior pψ(·), the posterior qϕ(·) is followed
the factorized Gaussian, as N (ze;µ

y
e , diag(σ2

ye)).
By applying the reparameterization trick (Kingma
and Welling, 2014), we can calculate the latent ze
as µe + σe ⊙ ϵe, where ϵe is the Gaussian factor
drawn from N (0, I), ⊙ is the element-wise product.
Based on ze, Le can be calculated as Eq.(5).

Le = − 1
λe
||ze − µye ||2 + logσ2

ye (5)

Another loss Lu is relevant to the reasoning con-
tents in passage c and answer a. Considering the
contents may contain multiple inquiry topics, we
characterize the posterior qϕ by Gaussian mixture
distributions, and introduce K latent topic proto-
types {tk}Kk=1. Each Gaussian component is pro-
moted to be close to the prototype variational dis-
tribution. That can be achieved by making the
component be N (zu;µ

y
uk , diag(σ

2
u)). The K is

preset, when the value is small, the content mod-
eling is simple and coarse-grained. The reason-
ing aspects involved in the generated results will
be less. When the K value is large, the conver-
gence speed becomes slower. By tuning, we set
K to 10 in the experiment. To encourage its mean
corresponding to one kind of topic, we compute
µyuk as Wttk, where tk is the centroid of a clus-
ter k. Each cluster can be computed by the k-
means method. The probability of the input content
belonging to the k prototype is parameterized as

qϕ(Mk|u) =
exp(−dist(zu,µy

uk
)/τ)∑

k′ exp(−dist(zu,µ
y
uk′ )/τ)

, where τ is

a temperature set to 1 normally, dist(·) is a Eu-
clidean distance between the mean and the latent
zu. In this way, we compute the loss Lu as Eq.(6)

Lu =
K∑
k=1

qϕ(Mk|u)[− 1
2λu

||zu − µpuk ||2] + logσ2
u

(6)
Adversarial Training: Unlike shallow question,

complex one has an inherent reasoning structure.
Based on traditional supervised training, the model
is only required to have maximum likelihood with

the ground truth, but neglects to grasp this crucial
structure. It may learn some trivial tricks to sim-
ply copy similar terms, leading to shallow results.
Thus, it is necessary to inject the answering feed-
back into the generator for judging the rationality
of results. Instead of using a discrete judged metric,
we design a differentiable discriminator that can
guide the generator optimization via policy gradi-
ent. It is trained to distinguish between real data
examples and synthetic ones produced by the gener-
ator. The generator is then optimized for fooling the
discriminator. By their adversarial game, the distri-
bution of the generated examples moves towards
the distribution of real data. That directs the gen-
erator to learn complex distributions and produce
reasonable realistic questions. In particular, we use
a QA model called UNICORN (Lourie et al., 2021)
to capture the answerable feedback. It obtains state-
of-the-art performance on solving commonsense
reasoning questions. For each sample (c, a, ŷ), we
compute dans = σ1(W1[eâ; ea]), where W is the
weight, σ(·) is the logistic function, eâ is the an-
swer predicted by UNICORN(c, ŷ), ea is an an-
swer encoding. To ensure that the question is infer-
able, we thus leverage a typical matching-based QA
model called gated-attention reader(GA) (Dhingra
et al., 2017). We then compare its answer against
the reasoning model UNICORN. When these two
answers match, there is no need for reasoning. It is
highly likely to be a simple but not deep question.
We introduce a metric dcpx = σ2(W2[eâ1 ; eâ2 ]),
where eâ1 and eâ2 are the answers predicted by
UNICORN(c, ŷ) and GA(c, ŷ), respectively.

The discriminator is developed by integrating
these aspects. For each sample x = (c, a, y), we
can predict a reward as dδ(x) = γdans(x) + (1−
γ)dcpx(x), where λ is a trade-off factor. This re-
ward can be used as guidance to co-train the gen-
erator by reinforcement learning. The discrimina-
tor can be trained based on the supervised loss of
human-written data. Considering such labeled data
may not be sufficient, we use the model-generated
samples as extra data to augment the training.

In the prediction phase, the input is a passage and
an answer. Each test case can generate multiple
questions with three steps. We first encode the
input passage and answer, and then derive a latent
content factor zu based on pψ(zu|u). Accordingly,
we sample another verbalized factor ze from the
prior pψ. Afterward, we feed them into the prefix
encoder and decode question ŷ by pθ(·) in Eq.(1).
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3 Evaluations

We extensively evaluated the effectiveness of our
method with quantitative and qualitative analysis.

3.1 Data and Experimental Settings
Since QG is a complementary task of QA, we con-
ducted experiments on two typical QA data sets that
involved commonsense reasoning, including Cos-
mos QA (Huang et al., 2019) and MCScript 2.0 (Os-
termann et al., 2018). These data sets were split as
train/dev/test sets with the size of 25.6k/3k/7k and
14.2k/2.0k/3.6k samples, respectively. The sam-
ples mostly required context understanding and
commonsense reasoning. They were more suitable
than other data sets like CommonsenseQA (Tal-
mor et al., 2019) which provided no text context,
SQuAD (Rajpurkar et al., 2016) did not need multi-
hop deduction, and LogiQA (Liu et al., 2020) with
the general questions such as “Which one is true?”
that can be yielded by rules. For each test case, our
inputs included a passage and an answer to guide
the asking direction. We employed three standard
metrics in the field of text generation to evaluate the
generative quality based on n-gram overlap with
the ground truth, including BLEU-4 (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Lin, 2004). In addition, we observed
that the question involves fine-grained reasoning
logic on the answering process. Even if a similar
word is substituted, the questions may mismatch
the answers, or become too shallow to be inferable.
Thus, we utilized two distribution overlap met-
rics, i.e., QA-based Evaluation (QAE) (Zhang and
Bansal, 2019b), and Reverse QAE (R-QAE) (Lee
et al., 2020a) to measure diversity instead of using
traditional similarity-based metrics. To compute
QAE, we first trained a QA model on the generated
data and then tested it on ground-truth data. The
score is high when these two distributions match,
which indicates the generated quality reaches hu-
man annotations. R-QAE was calculated by swap-
ping the train and test data. Its value is lower when
the generated data is more diverse than the ground
truth. That is more suitable to evaluate our task by
considering the answering process. Besides, the
commonsense reasoning ability was evaluated by
human evaluation. To avoid biases, we randomly
sampled 500 test cases and rated the predictions
by a crowdsourcing platform Figure-Eight 1 with
five participants. It was a rating in terms of three

1https://appen.com/figure-eight-is-now-appen/

metrics, including valid syntax, relevance to input
text, and commonsense deductibility of the answer.
We averaged the cumulative scores of judgments as
performance. The scores are between 1∼10, where
1 is the worst, 10 is the best. For the methods with
multiple diverse results, we computed metrics for
each prediction and reported the average scores.

Our model was implemented based on the Py-
Torch (Paszke et al., 2019) and ran on the 24 GB
Nvidia RTX 3090 GPU for 18 hours. We leveraged
the RoBERTa-large (355M parameters) model pro-
vided by HuggingFace library to initialize the word
embeddings. We employed the transformer-based
GPT-2 medium as the decoder. In the diversity eval-
uation, the metrics (i.e., QAE and R-QAE) were
computed based on the UNICORN QA model. We
trained for a maximum of 10, 000 steps and val-
idated every 200 steps, with early stopping after
one round of no improvement in validation loss.
AdamW (Loshchilov and Hutter, 2019) was used
as the optimizer, with a linear learning rate sched-
uler taking 5,000 warm-up steps. Gradients were
clipped if their norm exceeds 1.0, and weight decay
on all non-bias parameters was set to 0.01. In the
prediction phase, the outputted candidate size was
set to 3. The trade-off factor γ was tuned to 0.3.

3.2 Comparisons against State of the Arts

To evaluate the model persuasively, we utilized six
baselines that performed well in the QG task, in-
cluding (a) NQG++ (Zhou et al., 2017), a basic
sequence-to-sequence model; (b) UniLM (Dong
et al., 2019), a pre-trained language model that can
fine-tune on KGs to incorporate commonsense con-
text; (c) SGGDQ (Pan et al., 2020), a graph-based
model which can produce results with multi-hop de-
duction ability by capturing the context dependency
of the text; (d) HCVAE (Lee et al., 2020b), a VAE-
based model that can yield results in several ways
for one test case. (e) DAANet (Xiao et al., 2018),
dual learning of QG and QA that mutually provided
feedback to enhance each other simultaneously; (e)
SemQG (Zhang and Bansal, 2019b), which trained
QG by reinforcement learning with a QA-based
reward. These baselines were open-source and we
reimplemented them with the original settings.

Fig.(3) showed the comparison results in terms
of three n-gram overlap metrics. Our model held
the best performance against other baselines. As
illustrated in Tab.(1), our model obtained high QAE
but low R-QAE. That reflected the synthetic data
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Figure 3: Comparisons of methods in terms of n-gram
overlap metrics with corresponding variances.

Table 1: Comparisons of evaluated methods in terms of
distribution overlap metrics with related variances.

Datasets Cosmos QA MCScript

Method QAE(↑) R-QAE(↓) QAE(↑) R-QAE(↓)

NQG++ 78.5 ± 0.2% 88.1 ± 0.2% 77.4 ± 0.3% 89.2 ± 0.4%
UniLM 80.2 ± 0.3% 85.3 ± 0.1% 79.2 ± 0.3% 86.3 ± 0.6%
SGGDQ 81.3 ± 0.2% 84.2 ± 0.5% 80.2 ± 0.4% 83.2 ± 0.4%
HCVAE 83.6 ± 0.3% 82.6 ± 0.6% 81.8 ± 0.5% 81.7 ± 0.3%
SemQG 82.4 ± 0.3% 80.3 ± 0.7% 81.2 ± 0.3% 79.6 ± 0.4%
DAANet 84.1 ± 0.2% 81.4 ± 0.3% 81.5 ± 0.4% 80.1 ± 0.2%
Ours 88.9 ± 0.2% 77.3 ± 0.4% 83.4 ± 0.3% 75.6 ± 0.3%

were closer to human annotations. As shown in
Lee et al. (2020a), lower R-QAE means resultant
data covers larger distributions. Although trivially
invalid questions may also cause low R-QAE, a
combination of high QAE and low R-QAE can in-
dicate the diversity of our results. By a single en-
coded vector, NQG++ was difficult to cover the nu-
ances of data. UniLM could encode commonsense
but its reasoning ability was insufficient. The graph
model SGGDQ was good at multi-hop samples, but
its monotonous mapping framework is difficult to
support one-to-many generation. Due to the lack of
disentanglement, VAE-based model HCVAE would
be affected by unexpected irreverent noises which
will harm performance. All baselines neglected
to consider the feedback of answering complex-
ity. Without this crucial guidance, the performance
would be deteriorated. DAANet and SemQG used
the QA feedback, but the dual soft constraint of
DAANet and the high variance of the reinforced
SemQG were hard to ensure results’ consistency.

Moreover, we evaluated our model’s applica-
bility in low-resource scenarios. We started to
train it with the full training data and gradually
halved the size. The results on 1/2 and 1/8 data
size were presented in Tab.(2) and Tab.(3), respec-
tively. We found that our performance decline

was smallest when training sets shrunk. That re-
flected our model had a good generalization ability
to achieve greater outperformance by disentangling
key question-controlled factors.

Table 2: Performance change ratios on 1/2 data size.

CosmosQA BLUE4 METEOR ROUGE QAE R-QAE

NQG++ ↓ 16.0% ↓ 16.7% ↓ 17.9% ↓ 9.7% ↑ 9.4%
UniLM ↓ 15.0% ↓ 15.3% ↓ 14.4% ↓ 9.2% ↑ 9.0%
SGGDQ ↓ 18.8% ↓ 17.6% ↓ 16.7% ↓ 8.0% ↑ 7.8%
HCVAE ↓ 12.0% ↓ 13.4% ↓ 12.4% ↓ 9.0% ↑ 8.5%
SemQG ↓ 12.5% ↓ 14.8% ↓ 15.5% ↓ 8.6% ↑ 8.0%
DAANet ↓ 13.6% ↓ 14.1% ↓ 13.9% ↓ 7.8% ↑ 7.6%
Ours ↓ 9.0% ↓ 8.7% ↓ 7.1% ↓ 3.3% ↑ 3.1%

MCScript BLUE4 METEOR ROUGE QAE R-QAE

NQG++ ↓ 21.8% ↓ 22.0% ↓ 23.2% ↓ 10.2% ↑ 9.9%
UniLM ↓ 18.0% ↓ 19.3% ↓ 18.4% ↓ 9.3% ↑ 9.0%
SGGDQ ↓ 22.4% ↓ 20.9% ↓ 21.8% ↓ 8.4% ↑ 7.7%
HCVAE ↓ 14.8% ↓ 16.5% ↓ 17.2% ↓ 9.2% ↑ 8.9%
SemQG ↓ 15.0% ↓ 16.3% ↓ 17.3% ↓ 8.8% ↑ 8.1%
DAANet ↓ 17.2% ↓ 19.7% ↓ 17.6% ↓ 8.0% ↑ 7.2%
Ours ↓ 7.9% ↓ 7.5% ↓ 8.1% ↓ 3.9% ↑ 3.4%

Table 3: Performance change ratios on 1/8 data size.

CosmosQA BLUE4 METEOR ROUGE QAE R-QAE

NQG++ ↓ 50.5% ↓ 51.1% ↓ 52.1% ↓ 18.3% ↑ 13.8%
UniLM ↓ 45.2% ↓ 45.8% ↓ 46.3% ↓ 14.2% ↑ 11.4%
SGGDQ ↓ 44.3% ↓ 44.8% ↓ 45.7% ↓ 13.8% ↑ 11.0%
HCVAE ↓ 41.7% ↓ 40.2% ↓ 42.8% ↓ 12.1% ↑ 10.7%
SemQG ↓ 46.2% ↓ 45.3% ↓ 47.2% ↓ 12.6% ↑ 10.3%
DAANet ↓ 43.6% ↓ 43.7% ↓ 45.6% ↓ 11.5% ↑ 9.4%
Ours ↓ 30.2% ↓ 29.5% ↓ 31.4% ↓ 7.8% ↑ 6.8%

MCScript BLUE4 METEOR ROUGE QAE R-QAE

NQG++ ↓ 57.1% ↓ 58.4% ↓ 60.1% ↓ 17.8% ↑ 13.0%
UniLM ↓ 55.2% ↓ 56.2% ↓ 57.2% ↓ 15.7% ↑ 12.2%
SGGDQ ↓ 56.3% ↓ 55.5% ↓ 55.8% ↓ 14.3% ↑ 11.6%
HCVAE ↓ 49.6% ↓ 50.2% ↓ 52.3% ↓ 14.0% ↑ 11.5%
SemQG ↓ 51.2% ↓ 50.8% ↓ 51.7% ↓ 13.5% ↑ 10.8%
DAANet ↓ 53.6% ↓ 54.0% ↓ 53.2% ↓ 14.8% ↑ 11.2%
Ours ↓ 38.4% ↓ 37.2% ↓ 39.6% ↓ 8.1% ↑ 7.5%

3.3 Ablation Studies
To better gain insight into the relative contributions
of our QG’s components, we performed ablation
studies on four parts, including (1) Ours-LM which
replaced the commonsense-enhanced model with
the raw PLM; (2) Ours-Disentangler that discarded
the independence constraints with disentangled pri-
ors; (3) Ours-Prefix threw away the prefix tuning
then trained the model on the full parameters; (4)
Ours-Discriminator that abandoned the discrimina-
tor and learned with typical supervised loss.

As shown in Tab.(4), the ablation of all evaluated
parts led to a performance drop, where some drops
were more than 10%. We could infer that common-
sense knowledge can help to supplement missing
contexts implied in the text. Without this guidance,
the results’ rationality will be harmed. When the
prefix tuning module was discarded, the training
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Table 4: Ablation studies, performance change ratios.

CosmosQA BLUE4 METEOR ROUGE QAE R-QAE

-LM ↓ 4.6% ↓ 5.2% ↓ 5.1% ↓ 4.4% ↑ 3.6%
-Disentanger ↓ 14.0% ↓ 15.2% ↓ 16.3% ↓ 5.8% ↑ 4.5%
-Prefix ↓ 6.1% ↓ 6.4% ↓ 6.6% ↓ 4.8% ↑ 3.7%
-Discriminator ↓ 11.3% ↓ 9.5% ↓ 10.7% ↓ 5.6% ↑ 4.0%

MCScript BLUE4 METEOR ROUGE QAE R-QAE

-LM ↓ 5.8% ↓ 5.3% ↓ 5.7% ↓ 4.8% ↑ 4.0%
-Disentanger ↓ 18.2% ↓ 16.1% ↓ 17.5% ↓ 5.9% ↑ 4.8%
-Prefix ↓ 7.4% ↓ 8.1% ↓ 8.6% ↓ 5.0% ↑ 4.1%
-Discriminator ↓ 12.5% ↓ 13.0% ↓ 13.8% ↓ 5.7% ↑ 4.5%

adequacy would be reduced with limited labeled
data. Deleting a disentangled module would reduce
the model’s robustness and controllability. Without
the discriminator, there was inadequate to indicate
that the results were deep and logically consistent.

3.4 Human Evaluations and Analysis
Furthermore, we conducted human evaluations to
judge whether the results were deep and had high-
level answering skills like commonsense reasoning.
We employed Randolph’s kappa for inter-rater relia-
bility measurement. The kappa κ scores were 0.77,
0.65, and 0.75 for syntax, relevance, and deductibil-
ity, respectively, which indicated a good agreement.
As presented in Fig.(4), our model significantly out-
performed the baselines in terms of three metrics.
That was consistent with the quantitative results
in the previous section. The improvement in the
deductibility metric was the largest. That indicated
our results were to-the-point and valid, especially
inferable, due to the simultaneous consideration of
what to ask, how to ask, and how to answer.

Figure 4: Human Analysis. κ agreement > 0.65

3.5 Evaluations on the Trade-off Parameter
To examine the trade-off parameter (i.e., γ) in the
discriminator dδ, we tuned it from [0, 1] with 0.1
as an interval. The performance change curve was
plotted in Fig.(5). The best results were obtained at

around 0.3. The performance dropped dramatically
when any parameter was close to 0 or 1. We could
infer that all loss metrics were helpful, thereby
training our model efficiently.

Figure 5: Evaluations on the trade-off parameters.

3.6 Case Studies and Discussions
We next conducted case studies to analyze the re-
sults of each method qualitatively. As exhibited
in Fig.(6), our model could produce multiple com-
monsense questions. Contrastively, the sequential
NQG++ yielded a shallow question that can be an-
swered by directly matching the input text. The pre-
trained UniLM showed a bit of fluency and graph-
based SGGDQ reflected a certain amount of rea-
soning. Their results were monotonous and cannot
yield results in other acceptable expressive ways.
HCVAE could produce diverse results which could
not match the answers. The reinforced SemQG and
dual model DAANet were answer-related, but their
results’ deductibility was weak. These results fur-
ther validated the effectiveness of our model. By
analyzing our bad cases, the mistakes mainly came
from temporal errors, e.g. “do” should be “did”
at “Which country do Bob visit yesterday?” and
special symbols errors, e.g. missing “’s.” These
challenges would be studied in future work.

Figure 6: Case study on our commonsense QG model.
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4 Related Works

Question Generation (QG) is a hot research topic
that can support many valuable applications, in-
cluding synthesizing training data for the question-
answering (QA) task (Duan et al., 2017), producing
exercises on the textbook (Chen et al., 2018), and
clarifying users’ needs for a dialog agent (Alianne-
jadi et al., 2019). Previous studies mainly focus on
shallow questions (Wang et al., 2020a). They can
be tackled by matching the text without demanding
a real understanding of semantics (Yu et al., 2023).
The researchers gradually pay attention to deep
questions (Hua et al., 2020), such as multi-hop
QG (Yu et al., 2020). However, these questions
only involve the context that appears in the text
without the need of understanding the common-
sense knowledge. Asking questions with this back-
ground knowledge is indispensable for machine
intelligence, but has been less explored. Thus, we
propose a new QG task to fill this research gap.

Most of the earlier methods in the QG task were
rule-based (Dhole and Manning, 2020). The hand-
crafted rules were labor-intensive with poor scala-
bility (Zhang et al., 2022). To reduce labor costs, re-
cent attempts turned to a data-driven neural model
with better language flexibility (Dou and Peng,
2022). They learned direct mappings from input
texts to questions by an encoder-decoder frame-
work (Du et al., 2017). Considering the question
would be asked in diverse ways (Shu et al., 2020), it
was hard to support one-to-many generation based
on a fixed encoded vector (Lachaux et al., 2020).
Some studies proposed to enhance the generaliza-
tion ability (Wang et al., 2021) by variational auto-
encoder (VAE) (Li et al., 2022a). It can learn an
ask-related vector (Li et al., 2022b) which can be re-
sampled to produce multiple questions (Wang et al.,
2022) based on data distribution. However, one sin-
gle vector was not sufficient to capture the complex
and entangled asking features (Wang et al., 2020b).
In contrast, we consider multiple factors and disen-
tangle them to control the generation finely.

Deep questions require reasoning the knowledge
both inside and outside the text (Zhang et al., 2021),
including hidden commonsense context (Lv et al.,
2020). To capture this context, we can resort to
the knowledge graphs (KG) (Zhao et al., 2020) or
pre-training models (Chen et al., 2020), such as
BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019), and GPT-3 (Brown et al., 2020). The KG
knowledge can be collected by matching (Ye et al.,

2022), and the pre-training one is often obtained
by prompt learning (Gao et al., 2021). In addition,
the depth of questions is mainly reflected in how
to answer (Hu et al., 2017). There are often two
ways to incorporate the answering feedback (Liu
et al., 2022). One is reinforcement learning which
views the answer as a reward (Bao et al., 2018).
Since there is no prior guidance, the robustness of
this method is weak (Bao et al., 2018). Another
way is to use generative adversarial learning (GAN)
to jointly train the QA and QG tasks (Sun et al.,
2020). This method only judges the final answer
but neglects to grasp the answering process, lead-
ing to the results’ lack of commonsense reasoning
ability (Wu et al., 2022). Also, this discrete judge
is non-differentiable (Jin et al., 2020), causing un-
stable training (Ma et al., 2019a). In contrast, our
discriminator simultaneously consider the matched
answer and its reasoning complexity, which can
facilitate the training of deep question generator.

5 Conclusions

We have proposed a new commonsense reasoning
QG task which aimed to generate valid and infer-
able questions about the given text. Unlike tradi-
tional QG tasks, our questions needed to deduce
multiple clues in disjoint contexts, where not all
clues were provided in the given text, and some
required to resort to commonsense knowledge out-
side the text. Since understanding semantics is the
prerequisite to asking high-quality questions, our
complex QG task requires a higher level of machine
intelligence. Due to the lack of modeling complex-
ity, traditional methods often yield shallow results.
To address the problem, we proposed a practical
framework that can flexibly incorporate the asking
contents, expressive ways, and answering complex-
ity to yield deep results by disentangling adversar-
ial inference. We first retrieved the commonsense
knowledge related to the given text. We then disen-
tangled the key question-controlled factors in terms
of reasoning content and verbalized way based on
the independency priors and constraints. To pro-
mote deep results, we further designed a discrimi-
nator to regularize the generator by providing the
answering feedback. By adversarial inference, we
can derive the factors and use them as conditions
to decode questions. By sampling the expressive
factor from the data distribution, diverse results can
be produced. Experimental results on two typical
data sets showed the effectiveness of our approach.
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Limitations

Deep questions not only require an in-depth un-
derstanding of the semantics in the text, but also
involve the formulation of questions with correct
grammar, such as tense transformation, and special
symbols adjustment. For this task, our model simul-
taneously capture the key factors on the reasoning
content, expressive way, and answering complexity,
aiming to make results valid, relevant and inferable.
However, as mentioned in the case study section,
our model has some bad cases with grammatical
flaws. For example, “do” needs to be transformed
to “did” when the given text is in the past tense.
This requires linguistic knowledge on top of words.
Learning to ask with the guidance of this abstract
knowledge is not covered in this paper. One way to
tackle this problem is to resort to post-processing
with a grammar error corrector. In addition, the in-
terpretability of latent variables and the robustness
of the model are not explored in this paper. We will
investigate them in future works.

Ethics Statement

The technology proposed in this paper can be used
in many applications, such as in the fields of edu-
cation, Q&A, and dialogue systems. For example,
it can yield quizzes for exams, or provide reason-
able clarification question to warm up the conver-
sation. Unlike shallow matching-based questions,
our deep questions require fully understanding the
semantics inside and outside the text. That involves
many high-level cognitive skills, including reason-
ing the incomplete contexts with hidden common-
sense knowledge. That can better support the real
applications such as advanced exams in TOEFL
and SAT, since there are few or even no simple

questions. When excluding the misusage scenarios,
there are usually no ethical issues with this tech-
nology. However, the questions can be generated
as long as we input the text. It is possible to input
some inappropriate content related to the topics of
racial discrimination, war, and so on, resulting in
some offensive questions. This problem can be
addressed by limiting the topics of input contents.
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A Settings of All Evaluated Baselines

The pre-trained language model RoBERTa was
used to initialize the word embeddings. The dis-
tribution overlap metrics (i.e., QAE and R-QAE)
were computed by the UNICORN QA model.

Settings of NQG++: The hidden state size of
the GRU was set to 512. The lexical and answer po-
sition features were embedded to 32-dimensional
vectors. The dropout was used with a probability
p = 0.5. Stanford CoreNLP v3.7.0 was utilized to
annotate POS and NER tags in the sentences. Dur-
ing training, the model was initialized randomly by
a Gaussian distribution with the Xavier scheme. A
combination of Adam and simple SGD was used as
the optimizer. For the Adam optimizer, the learning
rate was set to 0.001 with two momentum parame-
ters β1 = 0.9 and β2 = 0.999 respectively. ϵ was
set to 10−8. The SGD optimizer was initialized
with a learning rate of 0.5 and halved if the BLEU
score on the development set drops for twelve con-
secutive tests. Gradient clipping with range [−5, 5]
was utilized for both Adam and SGD phases. To
speed up convergence, grid search was employed
with the mini-batch size of 64. In the test phase, a
beam search was used with a size of 12.

Settings of UniLM: The batch size was 32. The
masking probability, learning rate and label smooth-
ing rate were 0.7, 2e−5 and 0.1, respectively.

Settings of SGGDQ: It adopted a 1-layer GRU
with hidden units of 512 dimensions. For the graph
encoder, the node embedding size was set to 256,
plus the POS and answer tag embeddings with 32
dimensions for each. The number of layers was set
to 3 and the hidden state size was 256. Adam was

employed with a mini-batch size 32. The learning
rate was initially set to 0.001, and adaptive learning
rate decay was applied. Early stopping was utilized
with a dropout rate of 0.3 for both the encoder and
decoder and 0.1 for all attention mechanisms.

Settings of HCVAE: The hidden dimension of
the Bi-LSTM was set to 300 for posterior and prior
generation networks. The dimension of the encoder
and the decoder was set to 450 and 900, respec-
tively. The dimension of latent variable zx was
set as 50, and zy was defined to be a 10-way cat-
egorical variable. The QA model was fine-tuned
for 2 epochs. Adam optimizer was used with a
batch size of 32 and the initial learning rate of
5 · 10−5 and 10−3 respectively. To prevent poste-
rior collapse, the model multiplied 0.1 to the KL
divergence terms of question and answer.

Settings of DAANet: The parameters were ran-
domly initialized by the fan-avg strategy. Dropout
was mainly applied to the encoding layer with a
keep rate of 0.9. The coverage loss weight κ was
1.0. The gradient was clipped by restricting its
ℓ2 − norm less than or equal to 5.0. Adam opti-
mizer was adopted with a batch size of 16. The
learning rate was increased from zero to 0.001 with
an inverse exponential function and then fixed for
the remainder of the training. During testing, auto-
regressive decoding was conducted separately for
QA and QG. Decoding is terminated when the
model encountered the first <END> or when the
sequence contained more than 100 words.

Settings of SemQG: The WordPiece tokenizer
was used to tokenize each word and extend the
POS / NER tags to each word piece. A 2-layer
LSTM-RNNs was employed for both the encoder
and decoder with a hidden size of 600. Dropout
with a probability of 0.3 was applied to the input of
each LSTM-RNN layer. Adam was utilized as the
optimizer with a learning rate of 0.001 for teacher
forcing and 0.00001 for reinforcement learning.
The batch size was set to 32. For stability, It was
first pre-trained with teacher forcing until conver-
gence, then fine-tuned with the mixed loss. Hyper-
parameters were tuned on the development set with
γqpp = 0.99, γqap = 0.97, and n : m = 3 : 1.
The beam search was employed with the size of 10
for decoding. The bigram and trigram repetition
penalty was applied.

B Human Evaluation Settings

The rated guideline was shown in Fig.(7).
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Figure 7: Human evaluation guideline and an evaluated example.
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