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Abstract

Large-scale datasets in the real world inevitably
involve label noise. Deep models can gradually
overfit noisy labels and thus degrade model
generalization. To mitigate the effects of la-
bel noise, learning with noisy labels (LNL)
methods are designed to achieve better gener-
alization performance. Due to the lack of suit-
able datasets, previous studies have frequently
employed synthetic label noise to mimic real-
world label noise. However, synthetic noise is
not instance-dependent, making this approxi-
mation not always effective in practice. Recent
research has proposed benchmarks for learn-
ing with real-world noisy labels. However, the
noise sources within may be single or fuzzy,
making benchmarks different from data with
heterogeneous label noises in the real world.
To tackle these issues, we contribute Noisywik-
iHow, the largest NLP benchmark built with
minimal supervision. Specifically, inspired by
human cognition, we explicitly construct multi-
ple sources of label noise to imitate human er-
rors throughout the annotation, replicating real-
world noise, whose corruption is affected by
both ground-truth labels and instances. More-
over, we provide a variety of noise levels to
support controlled experiments on noisy data,
enabling us to evaluate LNL methods systemat-
ically and comprehensively. After that, we con-
duct extensive multi-dimensional experiments
on a broad range of LNL methods, obtaining
new and intriguing findings.1

1 Introduction

Large-scale labeled data has become indispensable
in the notable success of deep neural networks
(DNNs) in various domains and tasks (Russakovsky
et al., 2015; Wang et al., 2019). Due to imper-
fect sources like crowd-sourcing and web crawl-
ing (Xiao et al., 2015; Zhang et al., 2017b; Lee

∗Corresponding author.
1The dataset is publicly available at https://github.

com/tangminji/NoisywikiHow.

Input Output

(a) Take prescription weight loss medications.
Losing
Weight(b) Check calories on food packaging.

(c) Include cultural and ethnic foods in your plan.

(d) Talk about food differently.

Table 1: Instances (a)–(d) depict examples of our task.
Input: a procedural event. Output: a plausible inten-
tion toward that event.

et al., 2018), datasets frequently include real-world
label noise (Chen et al., 2021), which may induce
model overfitting to noisy labels and hurt the gener-
alization of deep models (Zhang et al., 2017a; Wu
et al., 2022a,b). To alleviate this issue, learning
with noisy labels (LNL) methods for robustly train-
ing deep models have been studied extensively.

Due to the lack of appropriate benchmarks, pre-
vious research often studied synthetic label noise
to simulate real-world label noise (Zhang et al.,
2018; Lukasik et al., 2020). As a general and real-
istic noise, real-world noise may have several noise
sources (i.e., be heterogeneous) (Northcutt et al.,
2021) and be instance-dependent (i.e., P (ỹ|y, x),
where the probability of an instance being assigned
to the incorrect label ỹ depends on the original
ground-truth label y and data x) (Han et al., 2021;
Song et al., 2022). However, synthetic noise is
generated from an artificial distribution and is thus
instance-independent (i.e., P (ỹ|y)), which may not
always work well in practice.

Recently, various benchmarks for learning
with real-world noisy labels have been proposed
across fields like computer vision (CV) (Li et al.,
2017), audio signal processing (ASP) (Gemmeke
et al., 2017), and natural language processing
(NLP) (Hedderich et al., 2021). To fully evalu-
ate robust learning methods with real-world label
noise, benchmarks should be as close to real-world
scenarios as possible. Meanwhile, controlled ex-
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periments are encouraged to verify whether LNL
methods can remain effective over a wide range of
noise levels (Jiang et al., 2020). Nevertheless, the
noise levels in most datasets are fixed and unknown,
resulting in uncontrolled label noise (Fonseca et al.,
2019a; Song et al., 2019). Moreover, the noise
therein often comes from the same or ambiguous
sources (Li et al., 2017; Jiang et al., 2020), which
conflicts with the heterogeneous characteristics of
real-world noise. These problems prevent a better
understanding of LNL methods.

To bridge this gap, we present NoisywikiHow,
a new NLP benchmark for evaluating LNL meth-
ods focusing on the intention identification task.
Intention identification promotes numerous down-
stream natural language understanding tasks, from
commonsense reasoning (Sap et al., 2019) to di-
alogue systems (Pepe et al., 2022). Additionally,
the complexity of the task (total of 158 categories)
facilitates a deeper investigation of the efficacy of
LNL approaches. The task form is shown in Ta-
ble 1.

To make the benchmark more representative of
real-world scenarios, we propose a practical as-
sumption: Real-world label noise in a dataset is
mainly induced by human errors, regardless of
whether the dataset’s construction is automated
or crowd-sourced. Existing psychological and cog-
nitive evidence further supports our hypothesis. It
shows that different annotators have different pref-
erences and biases (Beigman and Klebanov, 2009;
Burghardt et al., 2018), which means human la-
beling errors typically result from multiple noise
sources. Furthermore, humans may make random
labeling errors due to random attention slips. But
they are more likely to produce label noise when
labeling hard cases (Klebanov et al., 2008) (i.e.,
noise is instance-dependent), such as instance (c)
in Table 1.

Motivated by this human cognition, we first col-
lect data from the wikiHow website,2 which con-
tains a collection of professionally edited how-to
guideline articles, providing a vast quantity of clean
scripts and corresponding categories for free to
help achieve controlled experiments and ensure
benchmark quality. After that, we explicitly in-
ject a variety of noise sources into clean data to
replicate human annotation errors, thus introducing
real-world label noise into the benchmark. Notably,
training samples in our benchmark exhibit a long-

2https://www.wikihow.com

tailed class distribution, which is in line with the
facts, i.e., data in real-world applications is heav-
ily imbalanced (Van Horn et al., 2018; Liu et al.,
2019b). Besides, we achieve minimal human su-
pervision by using a series of automated labeling
procedures, saving lots of time and human effort.

To evaluate NoisywikiHow, we carry out exten-
sive experimentation across various model archi-
tectures and noise sources, execute plentiful LNL
methods on our benchmark, compare the more real-
istic real-world noise with the extensively studied
synthetic noise, and investigate a case study and
long-tailed distribution characteristics.

2 Related Work

2.1 Datasets with real-world noisy labels

In early studies of the LNL problem, due to a lack
of appropriate benchmarks, synthetic noise was of-
ten used to reflect noise in the real world and assess
the effectiveness of methods (Han et al., 2018b;
Zhang et al., 2018). However, unlike real-world
noise, synthetic noise follows an idealized artificial
distribution, which leads to inaccurate approxima-
tions and inadequate evaluations.

Recent studies have proposed numerous datasets
with real-world noisy labels. Table 2 depicts a
comparison of existing real-world noisy datasets
for evaluating LNL methods in CV, ASP, and NLP.
As shown in Table 2, most datasets fail to perform
controlled experiments on real-world label noise
and cannot be used to study DNNs across different
noise levels (Fonseca et al., 2019a,b).

A few benchmarks with controlled label noise,
such as NoisyNER (Hedderich et al., 2021) and
Red MiniImageNet (Jiang et al., 2020), were pro-
duced. However, the noise source in their datasets
may be vague. Furthermore, NoisyNER focuses on
the named entity recognition task in NLP. Though
seven noisy label sets are provided, it is challenging
to determine the precise noise level of each label
set because a sentence-level instance has numer-
ous word-level labels. Besides, Red MiniImageNet
relies heavily on careful human annotation and fol-
lows a balanced class distribution, which diverges
from real-world application scenarios. In this pa-
per, we publish NoisywikiHow to solve the above
limitations. As shown in Table 2, to the best of
our knowledge, NoisywikiHow is the largest NLP
benchmark for assessing LNL methods.
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Dataset Classes Distribution Controlled Human
Annotation Size

CV
Food-101N (Lee et al., 2018) 101 Balanced No No 367K
Animal-10N (Song et al., 2019) 10 Balanced No Yes 55K
Red MiniImageNet (Jiang et al., 2020) 100 Balanced Yes Yes 55K
Red Stanford Cars (Jiang et al., 2020) 196 Balanced Yes Yes 16.1K
Clothing1M (Xiao et al., 2015) 14 Imbalanced No No 1M
WebVision (Li et al., 2017) 1K Long-tailed No No 2.4M

ASP
AudioSet (Gemmeke et al., 2017) 527 Long-tailed No Yes 2M
FSDnoisy18K (Fonseca et al., 2019a) 20 Imbalanced No No 18.5K
FSDKaggle2019 (Fonseca et al., 2019b) 80 Balanced No No 29.2K

NLP
NoisyNER (Hedderich et al., 2021) 4 Long-tailed Yes No 14.8K

NoisywikiHow 158 Long-tailed Yes No 89K

Table 2: Comparison between our benchmark and other datasets.

2.2 Intention identification
Intention identification is critical to many applica-
tions (Huang et al., 2016; Sap et al., 2019). There-
fore, ensuring task reliability is essential. Some
previous work formulates intention identification
as an event process typing task. Given a sequence
of events, the model is designed to understand the
overall goal of the event process in terms of an
action and an object (Chen et al., 2020; Pepe et al.,
2022). In other studies, intention identification is
modeled as a sentence classification task (Zhang
et al., 2020a,b). When given a procedural event,
the system predicts its intention in a 4-choose-1
multiple-choice format. However, none of these
studies deal with task reliability. By building Noisy-
wikiHow, we make a preliminary exploration of
task reliability (i.e., model performance under la-
bel noise). Following Zhang et al. (2020b), we
model intention identification as a sentence classi-
fication task. The difference is that our benchmark
(including 158 labels) is analogous to the retrieval
task in a more practical and challenging way.

3 NoisywikiHow Dataset

3.1 Data Collection
We construct NoisywikiHow by crawling how-to ar-
ticles from the wikiHow website. Detailed crawling
strategies and related statistics are in Appendix A.1.
We define the input as a procedural event, i.e.,
the header of a paragraph in a wikiHow article
(e.g., Talk about food differently in Table 1), and
the output as the intention of the event, namely
the category of this article (e.g., Losing Weight
in Table 1). Note that categories present a hierar-
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Figure 1: Number of events per category of the training
set of NoisywikiHow.

chy (e.g., Health ≫ Nutrition and Food Health ≫
Weight Management ≫ Losing Weight), and we
select the category with the finest granularity as the
label.

3.2 Data Cleaning

Similar to Jiang et al. (2020) and Hedderich et al.
(2021), we realize controlled label noise by inject-
ing various amounts of noise into clean data. How-
ever, the data collection process introduces a lot
of low-quality or irrelevant data. As a result, we
develop a data cleaning procedure to remove bad
data and facilitate the target task from two aspects:
(1) input filtering and (2) label filtering. Regard-
ing input filtering, we first devise four automatic
filters and execute them sequentially to remove
low-quality or ambiguous data.

• Sample Length Filter intends to retain in-
stances with more informative and complete
semantic information by filtering excessively
short or long data.

• Format Normalization is to standardize in-
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stances (e.g., unifying the description of
“Click Defragment Your Hard Drive.” and
“Click Defragment your hard drive.”), ensur-
ing the effectiveness of subsequent strategies.

• Deduplication tries to eliminate redundant
or ambiguous data (e.g., a procedural event
corresponds to multiple intents).

• TF-IDF Filter attempts to preclude overly
uninformative instances by calculating the TF-
IDF for each token.

After that, we receive high-quality data Dh,
which follows a long-tailed class distribution with
limited data on tail classes, resembling the distri-
bution in Fig. 1. We create a Sample Size Filter
to exclude the categories with too few samples
(≤ 300), ensuring an appropriate split of training,
validation, and test sets.

We observe that the labels have two types, i.e.,
concepts defined as nominal phrases (e.g., Nutri-
tion and Food Health), and event mentions defined
as nominal or verbal phrases that refer to events
(e.g., Losing Weight) (Min et al., 2020; Yu et al.,
2021). Therefore, label filtering is required to re-
tain only events, ensuring the effectiveness of in-
tention identification. Specifically, each category is
annotated by three graduate students from the NLP
field and is regarded as an event if more than two
annotators agree. Human annotators are asked to
label 736 categories and achieve a high agreement
(Fleiss-κ = 0.84) (Fleiss, 1971).

After data cleaning, we obtain clean data D
involving 89,143 instances in 158 classes. Due to
the limited space, complete filtering strategies and
more details are in Appendix A.2.

3.3 Label Noise Injection
To create a benchmark of real-world noisy labels,
we introduce various sources of controlled label
noise into the clean data. Prior to this, we as-
sume that human mistake is the primary cause
of real-world label noise in a dataset. Psychologi-
cal and cognitive findings further corroborate the
rationality of the assumption. It demonstrates that:
(1) apparent differences between annotators result
from different preferences and biases (Reidsma and
op den Akker, 2008; Beigman and Klebanov, 2009;
Burghardt et al., 2018), suggesting that human er-
rors are heterogeneous; (2) label noise from hu-
mans regularly affects hard cases (Klebanov et al.,
2008; Klebanov and Beigman, 2009), proving that
noise is instance-dependent.

Heterogeneous noise sources. Based on the
above preliminaries, we simulate various mistakes
committed by annotators to produce real-world
noise containing heterogeneous noise sources.
Specifically, human errors are often induced by
ambiguity, insufficient annotator expertise, and ran-
dom attention slips (Beigman and Klebanov, 2009;
Hollenstein et al., 2016). Motivated by this, we
develop three noise sources as follows:

• Sub-categories (SC) under the same category
(e.g., Starting a Business and Running a Busi-
ness) tend to have higher semantic similarities
and can be easily confused. SC depicts the
noise caused by labeling ambiguous instances.

• Intents beyond the commonsense categories
(BCC) are hard to identify (e.g., Dog Groom-
ing), readily inducing noisy labels. BCC por-
trays a scenario annotated by a human lack of
expert knowledge.

• Considering the long-tailed distribution, even
a few labeling errors on tail classes can se-
riously affect learning of these categories.
Therefore, achieving robust training on tail
classes is critical. We concentrate on intents
under the tail categories (TC), which describe
the noise generated by humans randomly shift-
ing their attention.

Then, we design a simple mapping from noise
sources to classes to facilitate the subsequent in-
jection of noise from different sources and cate-
gories. Specifically, each class is associated with
a noise source, and classes under various noise
sources do not overlap. This mapping can cover
all categories during noise injection and determine
the potential noise source for each class. Finally,
we divide 158 categories into 68, 36, and 54 to
correspond to the sources SC, BCC, and TC, re-
spectively. More details about the mapping can be
found in Appendix A.3.
Injecting instance-dependent label noise. Since
each noise source contains a set of categories,
each of which may involve hard cases, instance-
dependent label noise exists in each noise source.
Note that real-world label noise always comes from
an open rather than a finite category set (Wang
et al., 2018). We therefore enable label noise to
derive from categories other than the current label
set. However, this operation changes the number
of labels and impacts the target classification task.
To solve this problem, when injecting label noise
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into an instance (x, y), we leave the label y (out-
put) unchanged like Jiang et al. (2020) but replace
the procedural event x (input) with the one (x̃) un-
der the other category (ỹ), which may not be in
the existing 158 classes. Moreover, NoisywikiHow
supports five noise levels (i.e., 0%, 10%, 20%, 40%,
and 60%). Like Li et al. (2017) and Saxena et al.
(2019), we assume that, given a specified noise
level t, t is uniform across noise sources. For ex-
ample, t = 10% represents that each source has
roughly 10% label noise.

We further identify hard cases and inject
instance-dependent noise for each noise source. In-
tuitively, when we mislabel an instance from (x, y)
into (x̃, y), if (x, y) is a hard case, the semantic
representations of events x and x̃ should be very
similar. As a result, for any (x, y), we can assess
its difficulty by finding an (x̃, ỹ) whose x̃ has the
maximum semantic similarity with x. To identify
(x̃, ỹ), we take the following steps: (1) Determine
Dn: the candidate set of (x̃, ỹ). To avoid introduc-
ing bad data or duplicate data after noise injection,
we construct Dn as follows:

• For the sources BCC and TC, Dn = Dh −D.

• For the source SC, let Ds be the sample set
of all other sub-categories except y under the
same category, and Dn = (Dh −D) ∩ Ds.

(2) Locate x̃ in Dn. Following Zhang et al.
(2020b), we map each event to a vector represen-
tation by taking the average of the BART embed-
dings (Lewis et al., 2020) of the verbs. x̃ thus can
be calculated as:

x̃ = argmax
vx′

cosine(vx, vx′), (x′, y′) ∈ Dn, (1)

where v(·) is the vector representation of an event,
and cosine(·) denotes the cosine similarity of two
vectors. For any (x, y), its difficulty can be ob-
tained by calculating a score sx:

sx = cosine(vx, vx̃). (2)

The larger the sx, the harder the instance (x, y).
We inject noise into the training set Dtr ⊂ D.

Given a specified noise level t (e.g., 10%), all in-
stances in Dtr are arranged in decreasing order of
sx, with the top t of the samples in each source con-
sidered hard cases. We inject instance-dependent
noise by replacing x for each hard case with x̃.

4 Experiments

We first present the general settings for experiments
(Section 4.1). Further, we systematically evalu-

Noise Level(%): 0, 10, 20, 40, 60

Noise Sources Class Train Val Test Total

SC 68 39,674 3,400 3,400 46,474
BCC 36 20,413 1,800 1,800 24,013
TC 54 13,256 2,700 2,700 18,656

Total 158 73,343 7,900 7,900 89,143

Table 3: Overview of NoisywikiHow of multiple noise
sources and controlled label noise, where SC, BCC, and
TC denote noise sources from sub-categories, categories
beyond the commonsense, and tail categories.

ate our benchmark with varied model architectures
(Section 4.2) and noise sources (Section 4.3). Also,
we assess a broad range of LNL methods on Noisy-
wikiHow (Section 4.4) and compare real-world
noise with synthetic noise (Section 4.5). Finally,
we conduct a case study (Section 4.6). In addition,
we discuss the long-tailed distribution characteris-
tics of NoisywikiHow in Appendix B.2.

4.1 Experimental settings

On our benchmark, all methods are trained on the
noisy training sets3 and evaluated on the same clean
validation set to verify whether these approaches
can resist label noise during training and achieve
good generalization on the noise-free data. Before
adding label noise, we randomly split out 15,800
instances from clean data and then equally divide
them into two sets: a validation set and a test set.
The remaining 73,343 instances serve as the train-
ing set, which follows a typical long-tailed class
distribution and is analogous to heavily imbalanced
data in real-world applications, as shown in Fig. 1.
The statistics of NoisywikiHow are shown in Ta-
ble 3. We cast intention identification as a classifi-
cation problem. We exploit the cross-entropy loss
for training models and use Top-1 accuracy and
Top-5 accuracy as the evaluation metrics.

4.2 Comparison of Model Architectures

Baselines: We first evaluate the performance of
different model architectures under varying levels
of real-world label noise. Regarding the model ar-
chitectures, we use seven state-of-the-art (SOTA)
pre-trained language models, including BERT (De-
vlin et al., 2019), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019a), GPT2 (Radford et al.,
2019), ALBERT (Lan et al., 2020), T5 (Raffel et al.,

3Synthetic noise and various noise sources under real-
world noise correspond to diverse noisy training sets.

4860



Method
Noise Level

0% 10% 20% 40% 60%

Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5)

BERT (Devlin et al., 2019) 60.29(83.53) 58.86(83.82) 57.42(82.57) 52.91(79.84) 48.20(75.37)
XLNET (Yang et al., 2019) 59.77(85.24) 60.23(85.90) 58.25(84.29) 53.74(81.73) 50.23(79.44)

RoBERTa (Liu et al., 2019a) 60.59(85.10) 59.65(84.16) 57.77(83.77) 54.18(81.56) 50.85(78.87)
GPT2 (Radford et al., 2019) 59.84(85.39) 58.35(84.90) 57.0(83.94) 52.71(80.81) 48.25(78.08)
ALBERT (Lan et al., 2020) 55.13(80.80) 56.21(82.15) 53.68(80.52) 49.93(78.44) 44.81(74.41)

T5 (Raffel et al., 2020) 58.35(83.63) 56.87(83.03) 56.19(82.20) 52.29(79.94) 47.47(77.39)
BART (Lewis et al., 2020) 61.72(86.90) 60.28(85.92) 58.94(84.67) 54.57(82.38) 49.75(78.84)

Table 4: Top-1 (Top-5) classification accuracy (%) of pre-trained language models on the NoisywikiHow test set
under different levels of real-world label noise. Top-1 results are in bold.

2020), and BART (Lewis et al., 2020). We fine-
tune each model for 10 epochs with batch size 64,
learning rate 3e-5. These hyperparameters remain
unchanged in subsequent experiments unless in-
dicated otherwise. In this paper, we conduct all
experiments utilizing the base-sized version of the
pre-trained language models. Besides, due to long
output sequences in partial categories, we adopt
beam search (Sutskever et al., 2014) in T5, with a
beam width of 5 and a length penalty of α = 1.0.

Results: As shown in Table 4, the Top-1 accu-
racies of SOTA pre-trained language models on
our benchmark are generally not high, and an in-
crease in noise levels can lead to considerable per-
formance degradation for a given model, demon-
strating the challenge of the NoisywikiHow dataset.

In Table 4, different architectures are representa-
tive of diverse capacities. For example, RoBERTa
and XLNet consistently outperform ALBERT un-
der different noise levels. In addition, we observe
that BART achieves the best performance among
these SOTA models under a majority of noise lev-
els, regardless of Top-1 or Top-5 classification ac-
curacy. This is mainly because a better denois-
ing objective (i.e., masked language modeling) is
used during pre-training of BART. In pre-training,
BART gains better denoising ability by corrupting
text with an arbitrary noise function (thus making
the noise more flexible) and learning to reconstruct
the original text. In the following, we use the BART
model as the base model.

4.3 Effects of Distinct Noise Sources

We further explore the characteristics of different
noise sources. To this end, we pick the same model
(i.e., the base model) and separately validate the
performances on individual noise sources under
the same noise level. For convenience, we denote

Noise Sources Top-1 Top-5

SC+BCC+TC 60.28 85.92
SC 60.14 85.49

BCC 59.65 85.39
TC 57.99 84.37

Table 5: Test accuracy (%) of the base model under
distinct noise sources with 10% label noise, where
SC+BCC+TC denotes the default NoisywikiHow with
a mixture of noise sources.

noise-free data by correct samples and data with
label noise by incorrect samples.

Results: Table 5 shows the results of the base
model under four different noise sources with 10%
label noise. As shown in Table 5, there exists an
evident gap between the results under noise source
TC and those in other conditions. The label noise
from noise source TC is more difficult to mitigate
than others at the same noise level, mainly due to
the limited data on tail categories. When all noisy
labels are derived from TC, fewer correct samples
are left, leading to inadequate model training and
degradation of model performance. It indicates
that resisting label noise from different sources
may have varying difficulty levels, although the
noises in these sources are all real-world label noise.
Additional details are provided in Appendix B.1.

4.4 Effectiveness of Different LNL methods

Baselines: We perform an extensive evaluation
of the existing LNL methods on our benchmark.
Seven representative baselines are involved for
comparison: (1) Base model, which finetunes the
BART model with no extra LNL methods; (2)
Mixup (Zhang et al., 2018), which mitigates mem-
orization of noisy labels by DNNs regularization,
i.e., introducing a data-agnostic data augmentation
routine; (3) Data Parameter (Saxena et al., 2019),
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Figure 2: Test accuracy (Top-1) of representative LNL methods trained with controlled label noise.

(a) Real-world label noise. (b) Synthetic label noise

Figure 3: Training loss distributions of correct samples and incorrect ones at the 4-th epoch with 40% label noise.

which equips learnable parameters to help DNNs
generalize better via learning from easier instances
first; (4) SR (Zhou et al., 2021), which introduces
the sparse regularization strategy, making any loss
robust to noisy labels conforming to the specified
assumption; (5) Co-teaching (Han et al., 2018b),
which combats noisy labels by training two net-
works, and each network aims to teach the other
one with clean data, i.e., the instances with small-
loss; (6) CNLCU (Xia et al., 2022), which con-
siders the uncertainty of loss estimation to refine
correct sample selection; (7) SEAL (Chen et al.,
2021), which provides instance-dependent label
correction to resist real-world noise. Complete ex-
perimental results and unique hyperparameters for
each noise level for each baseline are in Tables 8
and 9 in the Appendix.

Results: As Fig. 2(a) shows, Mixup outper-
forms the base model with limited performance
improvement. It is because Mixup fails to con-
sider the specialty of real-world label noise and im-
proves generalization with a generic regularization-
based method. The performance of Data Param-
eter is comparable to or slightly better than the
base model under different noise levels. Although

Data Parameter models the situation that instances
within a class have different difficulty levels, it as-
sumes small-loss training samples as correct sam-
ples and splits correct and incorrect samples via
a loss-based separation. However, as shown in
Fig. 3(a), loss distributions of correct and incorrect
data overlap closely in the real-world label noise,
making Data Parameter has no advantage under
real-world label noise. Similarly, Co-teaching and
CNLCU fulfill sample selection following the same
assumptions. They perform worse than the base
model, with the exception of individual noise lev-
els. It implies that Co-teaching and CNLCU are
inapplicable to the heterogeneous and instance-
dependent label noise. SR precedes the base model
only at certain noise levels. This is because SR
guarantees noise tolerance if and only if the label
noise satisfies the instance-independent condition,
which is inconsistent with noise in the real world.
Hence, the validity of SR is not ensured on our
benchmark. SEAL consistently outperforms the
base model by a large margin on all noise levels,
as SEAL provides instance-dependent label correc-
tion to combat real-world noise. However, during
the correction, SEAL retrains the classifier using
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Figure 4: Test accuracy of the base model trained with controlled label noise.

Noise
Sources Incorrect sample Noisy label Ground-truth label

(unobservable)

SC (a) Rinse off the paste using warm water. Coloring Hair Making Skin Look Lighter

BCC (b) Mow your lawn and the leaves. Lawn Care Cleaning up Garden

(c) Avoid over-fertilizing your tree. Growing Trees and Shrubs Growing Fruit

TC (d) Give yourself a span of time to mourn. Domestic Violence Rebuilding Life After Divorce

(e) Place the bananas on a wire rack. Steaming Food Food Preservation Techniques

Table 6: Five incorrect instances from three different noise sources in the NoisywikiHow dataset.

the averaged soft labels, introducing excessive com-
putational overhead.

4.5 Real-world Noise vs. Synthetic Noise

Aside from the real-world label noise, synthetic
label noise is one of the most widely studied la-
bel noises (Patrini et al., 2017; Wang et al., 2018;
Reeve and Kabán, 2019). Unlike real-world noise,
which is widespread in real applications, synthetic
noise does not exist but is generated from artificial
distributions. We further examine the differences
between the two label noises. In this paper, syn-
thetic label noise is implemented with symmetric
label noise (Han et al., 2018a; Charoenphakdee
et al., 2019) (the most common synthetic noise),
assuming each label has the same probability of
flipping to any other class. We build the dataset
of controlled synthetic label noise by injecting a
series of synthetic label noises into clean data in a
controlled manner (i.e., 10%, 20%, 40%, and 60%
noise levels). We pick the same baselines as in
Section 4.4. More details are in Tables 10 and 11
in the Appendix.

Results: As shown in Fig. 2(b), SEAL and
Mixup consistently outperform the base model,
showing their advantages in combating synthetic
label noise. Unlike the real-world label noise, SR is
effective for the synthetic label noise and achieves
improvement over the base model regardless of the

noise levels since the synthetic label noise meets
the instance-independent condition. Besides, Co-
teaching, Data Parameter, and CNLCU improve
the base model by an apparent margin under the
synthetic label noise. In this case, as shown in
Fig. 3(b), the loss distributions of correct and incor-
rect samples can be well split, allowing loss-based
separation to work well.

We discover that few LNL methods can effec-
tively resist both real-world and synthetic noises si-
multaneously, highlighting the imperative of bench-
mark construction. Many LNL approaches can mit-
igate the synthetic but not real-world label noise. It
is because synthetic noise is generated from artifi-
cial distributions to approximate real-world noise.
The mislabeled probability is independent of each
instance under synthetic noise but dependent on
distinct instances under real-world noise, which
makes complex modeling of the latter. Thus, our
benchmark contributes to a more systematic and
comprehensive assessment of LNL methods. Fur-
ther, since most LNL method evaluation datasets
focus on the CV and ASP, our NLP benchmark fa-
cilitates the modal integrity of the existing datasets.

We also contrast the performance of the base
model trained for 20 epochs under real-world label
noise and synthetic label noise. In Fig. 4, as the
running epochs and noise levels increase, the test
accuracy curve with the real-world noise (Fig. 4(a))
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is much flatter than that with the synthetic noise
(Fig. 4(b)) at the same noise level (e.g., with 40%
and 60% noise). It demonstrates that the model gen-
eralizes much better under real-world noise than
synthetic noise of the same noise level.

4.6 Case Study
We construct a benchmark encompassing real-
world noise involving multiple noise sources with
minimal human supervision, which is analogous
to human errors during annotation. To observe the
dataset more clearly and intuitively, we randomly
select five incorrect instances (i.e., samples with
noisy labels) across multiple noise sources. As in-
dicated in Table 6, we find it difficult to determine
whether the sample contains noise. On the other
hand, for any sample, the noise label and the respec-
tive ground-truth label are overly similar, making
it challenging to distinguish one from another.

5 Conclusion

In this paper, we study the problem of learning
with noisy labels and establish an NLP benchmark
called NoisywikiHow with minimal human super-
vision, which contains more than 89K procedu-
ral events with heterogeneous and controlled real-
world label noise. Experimental results reveal sev-
eral new findings. (1) Some widely accepted LNL
methods are not always impactful, especially with
real-world label noise. (2) Different noise sources
may have varying difficulties resisting label noise,
although they are all from real-world noise. (3) Few
LNL methods can effectively combat real-world
noise and synthetic noise at the same time. (4) The
model trained under the real-world label noise has
better generalization performance.

Limitations

In this paper, we simplify intention identification
into a sentence classification task, i.e., exploiting
a specific procedural event in an event process to
predict the intention of the whole event process. A
more realistic way to model this task is to enter the
entire event process rather than a single event. We
will go into more detail about this type of task in
future work.

Ethics Statement

This work presents NoisywikiHow, a free and open
dataset for the research community to study learn-
ing with noisy labels. Since the data in Noisywiki-
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A Details of Dataset Construction

A.1 Crawling Strategy

According to wikiHow’s crawler rules,4 we use the
crawling platform Scrapy (Kouzis-Loukas, 2016)
to crawl all the articles in the 19 top-level cate-
gories (e.g., Arts and Entertainment, Computers
and Electronics, etc.) of the latest wikiHow web-
site, with a total of 100,623 pages (how-to articles),
including 1,407,306 samples in 3,334 categories,
as shown in Table 7.

A.2 Filtering Strategies

In the main paper, we apply a collection of filters to
ensure low-quality instances removal, better dataset
division, and task effectiveness. The details of each
filter are as follows:

Sample Length Filter: We remove instances
with overly short or long event descriptions or with
icon information. As too-short events may be less
informative, too-long depictions may exceed the
length restriction of the pre-trained language model.
Icons in events present rich text starting with “smal-
lUrl” without specific semantic information and
may interfere with the understanding of procedural
events.

Format Normalization: We observe that some
identical event descriptions would be slightly dif-
ferent in distinct articles (e.g., “Click Defragment
Your Hard Drive.” and “Click Defragment your
hard drive.”). Prior to the deduplication proce-
dure, we devise format standardization operations.
The manipulations involve standardizing varied lan-
guages and symbols with Unidecode, stopword ex-
clusion and lemmatization with spaCy (Honnibal
and Montani, 2017), word segmentation & POS
tagging by applying the model “en_core_web_sm”
in spaCy and reserving events containing verbs.

Deduplication: We first apply inter-class dedu-
plication to remove instances with labels of multi-
ple categories. Then, we filter out repeated samples
to achieve in-class deduplication. After the dedupli-
cation operation, each procedural event (i.e., event)
corresponds to a unique event intent (i.e., category).

TF-IDF Filter: We exploit the TF-IDF filter
to preclude events from being overly uninforma-
tive when identifying the corresponding event in-
tent and guarantee the instances are representative.
Specifically, each wikiHow article is considered a
document. We calculate the TF-IDF for each token

4https://www.wikihow.com/robots.txt
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and preserve only the events containing keywords.
In this context, keywords refer to tokens whose
TF-IDF values are in the top 10% in decreasing
order. Each article includes a minimum of 3 and a
maximum of 10 keywords.

Label Filter: We filter labels by manual annota-
tion to retain categories depicting only events. For
human labeling, we used three graduate students
from the NLP field. They were educated for two
hours about annotation strategy before the labeling
process. Specifically, we use Min et al. (2020)’s
and Yu et al. (2021)’s definitions of event mention
(i.e., an event with surrounding context (text)) as
guidelines for annotating events. In addition, cat-
egories exhibit a hierarchical structure. Typically,
the descriptions of the upper categories are rela-
tively general and vague (e.g., Cleaning), while the
more fine-grained categories have more specific in-
tentions (e.g., Kitchen Cleaning, Cleaning Metals).
Accordingly, we label the category with the finest
granularity as an event except for two cases.

• If a candidate category has a broad intent
meaning (e.g., Selling in Finance and Busi-
ness ≫ Managing Your Money ≫ Making
Money ≫ Selling), it will not be considered
an event.

• If it is difficult to distinguish semantically be-
tween two candidate categories, the category
with the larger sample size is designated as an
event. For example, in hierarchical categories
(Hobbies and Crafts ≫ Crafts ≫ Needlework
≫ Knitting and Crochet ≫ Crochet ≫ Cro-
chet Stitches), we label Crochet (with 1,263
samples) as an event rather than Crocheet
Stitches (with 445 samples).

This annotation strategy facilitates the balance be-
tween definite event intent and sample size. Sample
size and class info reserved after data cleaning are
provided in Table 7.

A.3 Mapping from Noise Sources to Classes

In the main paper, we briefly present the correspon-
dence between noise sources and task categories.
In particular, we first define 54 tail categories, each
containing no more than 400 samples. Following
that, we draw on the discussion of commonsense
knowledge in Liu and Singh (2004)5 and use it as a
guideline for labeling categories beyond common-
sense. We define the overall 45 categories beyond

5See Section 1.1 for more details.

Operation Class Size

Crawling 3,334 1,407,306

Input
Filtering

Sample Length Filter

3,334 777,135Format Normalization

Deduplication

TF-IDF Filter

Sample Size Filter 736 412,080

Label Filtering 158 89,143

Table 7: Statistics of reserved valid sample size and
classes after different operations.
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Figure 5: Test accuracy (%) of typical LNL methods
under distinct noise sources with 10% label noise.

commonsense by asking three annotators to label
158 categories as commonsense or not, fulfilling a
high agreement (Fleiss-κ = 0.88). To ensure that
the label sets under different noise sources do not
overlap, we remove 9 categories also appearing in
tail categories from the 45 categories and eventu-
ally receive 36 categories beyond commonsense.
Lastly, the remaining 68 of the 158 classes are des-
ignated as the noise source SC.

B Experiments Details

For each experimental dimension, we refine the
hyperparameters for every baseline across different
noise levels. Optimal hyperparameters are obtained
by using a popular hyperparameter optimization
tool Hyperopt (Bergstra et al., 2013).

B.1 Effects of Distinct Noise Sources

We examine the base model’s performance under
four different noise sources. In addition, Fig. 5 fur-
ther compares the efficacy of typical LNL methods
under various noise sources. We discover that re-
gardless of the method employed, they are all less
effective in reducing the effect of the noise source
TC, further confirming our point of view.
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Figure 6: Performance improvements under different
long-tailed learning methods in original papers.

B.2 Long-tailed Distribution Properties

Baselines: Our training set follows a typical long-
tailed class distribution akin to that in the real world.
However, DNNs can be readily biased towards
dominant classes with massive training data, trig-
gering poor model performance on tail classes with
limited data. This problem inspires large numbers
of long-tailed learning studies. To fully explore
the characteristics of the NoisywikiHow dataset,
we select five long-tailed learning methods in three
classical categories as baselines: (1) BBN (Zhou
et al., 2020), which applies a resampling strategy to
sample more tail-class samples for improving tail-
class performance; (2) LDAM (Cao et al., 2019),
which rebalances classes by designing an effective
loss and training schedule; (3) Decoupling (Kang
et al., 2020), which decouples the learning proce-
dure (including three baselines: Decoupling-NCM,
Decoupling-cRT, and Decoupling-LWS) to under-
stand how the long-tailed recognition ability is
achieved. Complete experimental results of long-
tailed learning methods are shown in Table 12. We
also demonstrate the settings of optimal hyperpa-
rameters in Table 13.

Results: We focus on the relative performance
boost with various baselines in original papers and
that on Noisywikihow. In Fig. 6, we find that all
baselines evaluated on the CV datasets can address
the long-tailed problem properly and achieve a
significant test accuracy boost (7.37%–20.9%) in
the original papers. However, as shown in Fig. 7,
the performance improvements across varied noise
levels on our NLP benchmark are limited, with
some methods not exceeding the base model (-
0.07%–2.56%).

Experimental results indicate that the effective-
ness of long-tailed learning methods needs to be
examined on datasets with different modals. More-
over, although the base model obtains performance
degradation with the increase in the noise level, the

effectiveness of each long-tailed learning method
is not significantly affected by the noise level vari-
ation. The main reason is that the test accuracy
we report is the best peak accuracy, producing an
effect similar to the early stop and thus preventing
the model from overfitting label noise.
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Method
Noise Level

0% 10% 20% 40% 60%

Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5)

Base model (Lewis et al., 2020) 61.72(86.90) 60.28(85.92) 58.94(84.67) 54.57(82.38) 49.75(78.84)
Mixup (Zhang et al., 2018) 62.08(86.99) 61.34(86.61) 58.92(85.76) 55.91(83.49) 51.59(81.09)

Data Parameter (Saxena et al., 2019) 61.91(86.54) 60.87(86.24) 58.97(85.56) 54.70(82.05) 50.94(79.70)
SR (Zhou et al., 2021) 62.32(87.35) 60.95(86.23) 58.78(86.09) 55.22(82.81) 50.14(79.70)

Co-teaching (Han et al., 2018b) 61.68(87.04) 60.41(86.11) 58.48(83.99) 54.57(81.58) 49.20(77.06)
CNLCU (Xia et al., 2022) 61.25(86.67) 60.08(85.25) 58.33(83.52) 54.95(81.20) 50.91(78.08)
SEAL (Chen et al., 2021) 63.29(87.65) 62.53(87.27) 61.49(86.57) 57.35(84.41) 52.73(81.56)

Table 8: Top-1 (Top-5) classification accuracy (%) of representative LNL methods on the test set of NoisywikiHow
under different noise levels. Top-1 results are in bold.

Method Optimal Hyperparameters Settings

Mixup (Zhang et al., 2018) α = 1
Data Parameter (Saxena et al., 2019) lr_inst_param=0.2, wd_inst_param=0.0

SR (Zhou et al., 2021) τ = 0.05, λ0 = 0, epochs=20
Co-teaching (Han et al., 2018b) Tk = 8, τ = ϵ (ϵ is the noise level)

CNLCU (Xia et al., 2022) Tk = 8, τmin = 0.3, fixed-length time intervals=5
SEAL (Chen et al., 2021) Number of iterations=4

Table 9: Optimal hyperparameter settings for different controlled real-world label noise on NoisywikiHow.

Method
Noise Level

10% 20% 40% 60%

Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5)

Base model 59.83(85.66) 58.89(84.97) 55.66(82.03) 51.49(78.29)
Mixup (Zhang et al., 2018) 61.61(86.40) 59.78(85.57) 57.01(83.20) 51.80(78.97)

Data Parameter (Saxena et al., 2019) 60.94(85.74) 59.56(85.39) 55.81(82.41) 51.69(78.73)
SR (Zhou et al., 2021) 60.25(82.35) 59.51(81.54) 56.80(79.71) 51.90(77.38)

Co-teaching (Han et al., 2018b) 60.86(86.06) 59.97(85.16) 56.92(82.99) 52.95(79.85)
CNLCU (Xia et al., 2022) 60.46(85.84) 59.49(84.92) 57.16(83.05) 52.51(78.28)
SEAL (Chen et al., 2021) 62.69(87.66) 61.41(86.99) 58.97(84.77) 54.66(80.92)

Table 10: Top-1 (Top-5) test accuracy (%) of representative LNL methods with controlled synthetic label noise.

Method Optimal Hyperparameters Settings

Mixup (Zhang et al., 2018) α = 1
Data Parameter (Saxena et al., 2019) lr_inst_param=0.2, wd_inst_param=0.0

SR (Zhou et al., 2021) τ = 0.5, λ0 = 0, epochs=20
Co-teaching (Han et al., 2018b) Tk = 3, τ = ϵ (ϵ is the noise level)

CNLCU (Xia et al., 2022) Tk = 3, τmin = 0.1, fixed-length time intervals=5
SEAL (Chen et al., 2021) Number of iterations=4

Table 11: Optimal hyperparameter settings for different controlled synthetic label noise on NoisywikiHow.

Method
Noise Level

0% 10% 20% 40% 60%

Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5) Top-1(Top-5)

BBN (Zhou et al., 2020) 63.11(87.06) 62.03(86.79) 60.03(85.73) 55.59(83.68) 50.22(80.47)
LDAM (Cao et al., 2019) 64.25(86.82) 62.71(86.19) 60.69(85.18) 56.29(82.53) 50.79(79.52)

Decoupling-NCM (Kang et al., 2020) 62.54(85.59) 60.85(85.61) 58.94(84.71) 54.86(82.58) 50.09(79.76)
Decoupling-cRT (Kang et al., 2020) 62.89(86.16) 61.86(86.53) 59.99(85.41) 55.80(83.29) 51.82(81.40)
Decoupling-LWS (Kang et al., 2020) 61.87(85.75) 60.42(85.96) 58.61(84.63) 54.30(82.20) 49.61(79.50)

Table 12: Top-1 (Top-5) test accuracy (%) of long-tailed learning methods on NoisywikiHow under different noise
levels.
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Method Noise Level

0% 10% 20% 40% 60%

BBN (Zhou et al., 2020) -
LDAM (Cao et al., 2019) C=0.2, s=10 C=0.5, s=10 C=0.7, s=7 C=0.8, s=7 C=0.8, s=10

Decoupling-NCM (Kang et al., 2020) -
Decoupling-cRT (Kang et al., 2020) epoch’=5, num_samples_cls=4
Decoupling-LWS (Kang et al., 2020) epoch’=5, num_samples_cls=4

Table 13: Optimal hyperparameter settings for different controlled real-world label noise on NoisywikiHow.

BBN LDAM Decoupling-NCM Decoupling-cRT Decoupling-LWS
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Figure 7: Performance improvements over the base model under different long-tailed learning methods on Noisy-
wikiHow. Given a method (e.g., BBN) and a noise level, a column height reflects performance when only using the
base model. The length of the pink line on the column represents the performance boost from adopting the method.
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