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Abstract
Ambiguous questions are a challenge for Ques-
tion Answering models, as they require an-
swers that cover multiple interpretations of the
original query. To this end, these models are
required to generate long-form answers that
often combine conflicting pieces of informa-
tion. Although recent advances in the field have
shown strong capabilities in generating fluent
responses, certain research questions remain
unanswered. Does model/data scaling improve
the answers’ quality? Do automated metrics
align with human judgment? To what extent do
these models ground their answers in evidence?
In this study, we aim to thoroughly investigate
these aspects, and provide valuable insights
into the limitations of the current approaches.
To aid in reproducibility and further extension
of our work, we open-source our code here.

1 Introduction

Question Answering (QA) has been subject to great
progress in the past years, largely thanks to the rep-
resentational capabilities of modern architectures
like the Transformer (Vaswani et al., 2017), but also
due to the curation of large, high-quality datasets
that enabled the effective training of these mod-
els (Joshi et al., 2017; Kwiatkowski et al., 2019).

At the same time, the presence of ambiguous
questions has been a challenging aspect of QA. In
order to answer such questions, models are required
to generate long answers with fluency and cohesion,
which is often referred to in the literature as Long-
Form Question Answering (LFQA). To tackle this,
Min et al. (2020) curated the AmbigQA dataset,
which contains disambiguations for various ques-
tions that were present in popular benchmarks. Ex-
tending this work, Stelmakh et al. (2022) selected
a subset of the questions and crowd-sourced gold
answers that cover all possible interpretations of
each question, resulting in the ASQA dataset.
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Recently, Krishna et al. (2021) performed a case
study on ELI5 (Fan et al., 2019), one of the largest
collections available for LFQA, and pointed out
several issues that complicate the development and
evaluation of suitable models. In particular, the au-
thors questioned whether the retrieved documents
are considered by the generative models when pro-
ducing an answer, and the correlation of the com-
mon evaluation metrics with human judgment.

In this work, we aim to investigate whether the
baselines set on ASQA by Stelmakh et al. (2022)
suffer from the issues pointed out by Krishna et al.
(2021), but also to analyze the modeling choices
that contribute to performance. Concretely, we set
out to answer the following research questions:

RQ1 Does scaling the size of the generative models
affect the quality of the generated answers?

RQ2 Can an intermediate round of fine-tuning on
non-ambiguous LFQA collections improve
performance in ambiguous QA?

RQ3 When comparing models head-to-head, does
human judgment reflect the difference in the
automated evaluation metrics?

RQ4 Do models base their answers on the retrieved
evidence, or could they be hallucinating?

2 Methodology

We design a standard retrieval-augmented system,
to identify the dimensions that contribute to disam-
biguating questions and generating factual answers.

2.1 The LFQA Pipeline

Evidence Retrieval The first step of the pipeline
is to identify the documents that will form the basis
of the generated answers. Given a question q, we
employ a retrieval method R that fetches the top-k
relevant documents {di}ki=1. For a document di to
be considered relevant, it needs to cover at least
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one aspect of q. To completely resolve the ambi-
guity, the passages1 in the index should suffice to
collectively answer all aspects of a given question.

Answer Generation Once the evidence has been
collected, we feed the retrieved passages to a gener-
ative model to summarize them in a concise answer
that disambiguates the question at hand. As is the
standard practice in contemporary literature, we opt
for a sequence-to-sequence model G that follows
an encoder-decoder architecture, which first creates
a dense representation of the concatenation of the
question and the passages, and then produces the
answer by attending to this latent representation:

answer = G([q; d1; . . . ; dk])

with [· ; ·] being the concatenation of ≥ 2 passages.

2.2 Modeling Choices
We expect more sophisticated pipelines to provide
better answers for ambiguous questions, and thus
we make a distinction based on the complexity of
the interaction between the two components.

Naive We implement the QUESTION baseline,
which repeats the ambiguous question a few times
in order to match the typical length of the answers
in the dataset. This is a lower bound on the task, as
we are not truly answering the question at hand.

Retrieval-Only In this case, we rely exclusively
on a retriever to fetch the top-k passages as a re-
sponse to the ambiguous question. We experiment
with different values of k to evaluate whether using
more passages leads to an answer that covers more
of the disambiguated questions.2

Sequence-to-Sequence A generative language
model is often used to produce a concise response
that summarizes all of the disambiguating answers.
We analyze three scenarios:

• Closed Book: In the most extreme approach,
we assume that the model is not conditioned
on the results of a retriever, but rather only on
the question itself, and relies on its parametric
knowledge (Roberts et al., 2020) to respond.
We expect this to significantly harm perfor-
mance, as the available context to provide an
accurate answer is limited.

1We use the terms document and passage interchangeably.
2Employing some form of result diversification has the po-

tential to improve the performance of the retrieval component,
but we leave this direction as future work.

• Random Retrieval: In order to verify whether
the model grounds its answers on the retrieved
documents (Krishna et al., 2021), we design a
controlled scenario where we randomly sam-
ple passages from our index as evidence.

• Open Book: In the most realistic setting, the
model treats the top-k results of a retriever
as context to respond appropriately. We ex-
pect stronger retrieval methods to lead to
more comprehensive answers, as the gener-
ative model will be conditioned on more di-
verse and relevant information.

3 Experimental Setup

We aim to assess whether LFQA systems can gener-
ate concise answers that disambiguate the provided
questions. In this section, we present the datasets
and models used, as well as the evaluation metrics.

3.1 Datasets

We use the ASQA dataset to train and evaluate our
systems. It is a subset of the AmbigQA dataset, with
long-form answers and additional context for each
of the selected samples. More specifically, it con-
tains 6,316 ambiguous questions, with each one
being paired to a set of disambiguated questions,
the corresponding short answers, and the Wikipedia
passages where the answers were found. For each
question, the dataset curators crowd-sourced a long-
form answer that resolves the ambiguity by summa-
rizing all short answers. The annotators provided
one reference answer for all train (4,353) samples,
and two for all dev (948) and test (1,015) samples.3

Although ASQA is a useful resource for LFQA,
when going through the dataset for preliminary
analysis, we found cases where the ambiguity was
to identify when “last/this year” refers to. We argue
that training a model on such samples is counter-
intuitive, as we generally assume that the informa-
tion is coming from a fixed snapshot of a knowl-
edge base. We provide a few examples that cover
similar types of questions in Appendix A.

Additionally, given the limited size of the ASQA
dataset, we follow one of the proposed research di-
rections posed by Stelmakh et al. (2022) and inves-
tigate the impact of intermediate fine-tuning on a
larger LFQA collection, before training on ASQA. In

3An illustration of ambiguity can be observed in a seem-
ingly straightforward query like “Who was the ruler in France
in 1830?”, which presents a challenge due to the existence of
two rulers during that period.
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particular, we use a processed version of the ELI5
dataset4 that addresses some of the issues raised
by Krishna et al. (2021) (226,147 train / 3,020 dev
samples), as well as the NLGEN set of the MS MARCO
QA dataset (153,725 train / 12,467 dev samples).

3.2 Models

The typical QA pipeline comprises a retrieval and
a generative model, which can be pre-trained sepa-
rately and then fine-tuned on the downstream task.
Although this can be done in an end-to-end fash-
ion, we chose to keep the retriever frozen, to avoid
re-indexing of the support passages during training,
and only train the generative model. We provide
detailed training information in Appendix B.

Retrieval Models We experiment with both
sparse (lexical) and dense (neural) methods, in or-
der to investigate whether the type of the question
encoder has an impact on the relevancy of the re-
trieved passages. We chose BM25 (Robertson et al.,
1995) for the former, and DPR (Karpukhin et al.,
2020) for the latter, as they were both supported
by the Pyserini (Lin et al., 2021) toolkit and they
constitute two of the most explored options in their
corresponding fields. In both cases, we use the pre-
built indices of Wikipedia provided by Pyserini to
have a common knowledge base that matches the
one used by the dataset curators.

Generative Models We use two of the most pop-
ular Transformer-based encoder-decoder models,
namely T5 (Raffel et al., 2019) and BART (Lewis
et al., 2020). More specifically, we experiment with
three variants of these models, in increasing param-
eter count: BART-base (140M params), T5-base
(220M params), and BART-large (400M params).
By doing so, we aim to verify whether increasing
the capacity of the generative model corresponds
to an increase in answer quality.

3.3 Metrics

Automated Evaluation Evaluating the perfor-
mance of generative models is one of the most chal-
lenging aspects for LFQA. For recall-oriented QA
systems, the most common metric used is ROUGE-
L (Lin, 2004), which identifies the longest common
sub-sequence between the generated answer and a
reference (gold) answer. Sequences are penalized
proportionally to their length to prevent generating
a longer output to artificially increase the overlap

4Available on HuggingFace: lfqa & lfqa_support_docs.

with the reference text. However, a recent study by
Krishna et al. (2021) revealed that ROUGE-L did
not always correlate with human judgment, point-
ing to the need for a more diverse evaluation setup.
Specifically for ambiguous LFQA, Stelmakh et al.
(2022) proposed two metrics to quantify the disam-
biguation ability of the model:

1. STR-EM (String Exact Match): the fraction
of disambiguated answers that the model in-
cludes verbatim in its output.

2. DISAMBIG-F1: the fraction of answers that
can be deduced with a text comprehension
model, using the predicted long answer and
the disambiguated question:

DISAMBIG-F1 =
1

N

∑

k

1

n(k)

∑

i

ϕ(y
(k)
i , ŷ

(k)
i )

where N is the number of evaluation samples, n(k)

the number of disambiguations for the k-th ques-
tion, y(k)i its i-th ground-truth short answer, ŷ(k)i

the predicted short answer5, and ϕ a function that
computes the token-level F1 score between them.

Finally, they define another metric, namely DR,
which is the geometric mean of DISAMBIG-F1 and
ROUGE-L, as an overall estimate of the perfor-
mance in both disambiguation and answer overlap.

Human Evaluation To better align the model’s
performance with the overall satisfaction of the hu-
man users that interact with the system, we follow
Stelmakh et al. (2022) in creating an anthropocen-
tric evaluation pipeline. Our approach differs in
that it performs head-to-head comparisons between
different models, aiming to draw conclusions about
the design choices that lead to a well-performing
LFQA system. For a pair of answers, we compare
their comprehensiveness (COMP); whether the an-
swer suffices to understand both the source of ambi-
guity in the question, and the relation between the
individual answers, their fluency (FLUE); whether
the answer is coherent and fluent from a human
reading stance, and the overall human impression
(OVER); which of the answers is prefered overall.

4 Results

Automated Evaluation We evaluate our mod-
els on the development set of ASQA using the au-

5Generated from a RoBERTa (Liu et al., 2019) model
trained on SQUAD2.0 (Rajpurkar et al., 2018), with the pre-
dicted long answer and the disambiguated question as input.
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ANSWER LENGTH ROUGE-L STR-EM DISAMBIG-F1 DR
QUESTION 71.6 15.3 1.2 0.1 1.4
T5-base CLOSED BOOK 38.1 30.7 3.7 2.7 9.1
BART-base CLOSED BOOK 44.5 31.5 3.9 2.8 9.3
BART-large CLOSED BOOK 50.2 33.4 7.1 4.5 12.2
BM25@1,3,5 103.7 / 310.9 / 518.0 28.6 / 20.3 / 15.2 18.6 / 30.0 / 36.4 10.6 / 14.7 / 17.4 17.4 / 17.3 / 16.2
DPR@1,3,5 103.5 / 310.4 / 517.3 31.4 / 22.1 / 16.4 29.3 / 44.0 / 50.8 17.5 / 22.8 / 25.7 23.5 / 22.5 / 20.5
T5-base DPR@1,3,5 51.4 / 57.8 / 57.8 31.6 / 33.7 / 33.9 23.9 / 26.4 / 26.2 17.6 / 17.8 / 17.9 23.6 / 24.5 / 24.6
T5-base NLGEN DPR@1,3,5 48.5 / 56.0 / 56.0 31.2 / 33.7 / 33.7 24.6 / 26.0 / 26.7 16.8 / 18.1 / 17.8 22.9 / 24.7 / 24.5
BART-base DPR@1,3,5 52.4 / 57.1 / 56.7 33.1 / 33.9 / 33.9 24.2 / 25.1 / 24.5 16.1 / 16.5 / 16.4 23.1 / 23.7 / 23.5
BART-large DPR@1,3,5 54.7 / 62.5 / 63.3 34.2 / 36.4 / 36.6 26.0 / 30.0 / 29.8 18.1 / 20.8 / 20.5 24.9 / 27.5 / 27.4
BART-large ELI5 DPR@1,3,5 55.2 / 59.7 / 59.9 35.1 / 36.6 / 37.0 26.7 / 30.3 / 29.7 19.0 / 21.0 / 21.0 25.8 / 27.7 / 27.6

Table 1: Performance comparison on the development set of ASQA, using the metrics described in Section 3.3. For
retrieval-augmented models, @1, 3, 5 indicates using 1/3/5 retrieved passages as evidence. Bold scores indicate
best result among different number of retrieved passages, underlined scores indicate best result in each setup.

tomated metrics introduced in Section 3.3. Ta-
ble 1 displays the results for the naive baseline, the
retrieval-only experiments using both BM25 and
DPR, and the closed/open book experiments with
DPR. In cases where we use a retriever, we fetch
the top-k relevant documents, for k ∈ {1, 3, 5}. As
the level of information contained in the retrieved
passages has a direct impact on the answer quality,
we perform a short study on the upper bound of
retrieval in Appendix C.

Naturally, the naive QUESTION baseline per-
forms the worst, with a ROUGE-L score of 15.3
and a DISAMBIG-F1 score of 0.1, leading to an
overall DR score of 1.4. Focusing on the retrieval-
only experiments, we observe that DPR consis-
tently outperforms BM25 in all metrics, which is
anticipated as semantic matching allows us to re-
trieve passages that answer different aspects of the
question. Remarkably, although the closed-book
variants surpass the retrieval-only methods in terms
of ROUGE-L, we see the opposite trend for all other
metrics. The open-book variants outperform the
rest, confirming our hypothesis that augmenting
the generative model with a retriever is crucial for
performance. We also notice that the increase in
performance closely follows the growth in parame-
ter count, implying that [RQ1] model scaling im-
proves the quality of the answer.6 Surprisingly, the
impact of fine-tuning on larger collections on per-
formance is marginal, as the disambiguation met-
rics only narrowly improve. For completeness, we
report the intermediate fine-tuning results for the
closed-book experiments in Appendix D. In gen-
eral, we deem that [RQ2] naively fine-tuning on
non-ambiguous LFQA datasets has limited added

6To gain further insight into some of the common errors,
we showcase a few example model outputs in Appendix E.

COMP FLUE OVER

T5-base vs BART-base∗ 50% 38% 50%

BART-large vs BART-base∗ 61% 61% 61%

BART-large ELI5 vs BART-large∗ 61% 50% 61%

BART-large: DPR@3 vs DPR@1 75% 50% 75%

DPR@1 vs BART-base DPR@1 61% 38% 50%

BART-large DPR@1 vs DPR@1 38% 50% 75%

Table 2: Head-to-head comparison using human evalua-
tion metrics. Pairs with ∗ use DPR@3 for retrieval. Bars
indicate the annotators’ preference for either model.

value, as the models are not inclined to identify any
uncertainty in the meaning of the questions asked.

Human Evaluation We perform a head-to-head
comparison between a selection of approaches
to determine which modeling aspects contribute
more/less to the performance. For each pair, we
asked 2 assessors to compare the models blindly
using the human evaluation metrics defined in Sec-
tion 3.3. We report our results in Table 2, where we
observe that most comparisons follow the trends we
described previously using the automated metrics.
Noticeably, when comparing T5-base DPR@3 vs
BART-base DPR@3 and DPR@1 vs BART-base
DPR@1, human annotators seem to equally prefer
both models overall. However, the difference in
DR for these pairs is merely a few decimal points,
which justifies the inability to distinguish between
them. Hence, we confirm that [RQ3] the overall
human impression aligns with automated metrics.

Random Retrieval Finally, we evaluate whether
the generated answers are grounded on the re-
trieved passages. Table 3 showcases the perfor-
mance for the models used in our open-book exper-
iments, and we generally see a decrease in perfor-
mance when compared to fetching relevant docu-
ments. Interestingly, BART-base with random re-
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ROUGE-L STR-EM DIS-F1 DR
T5-base 20.5 2.0 0.7 3.7
T5-base NLGEN 20.8 1.6 0.8 4.1
BART-base 29.8 5.5 3.5 10.3
BART-large 24.3 4.4 2.2 7.2
BART-large ELI5 29.6 4.8 3.0 9.5

Table 3: Random Retrieval performance. We use k = 3
random passages from the DPR index as evidence.

trieval performs better compared to its closed-book
variant. As this is the smallest model we tested,
we speculate that for LFQA, under-parameterized
architectures may be relying more on the question
and not the corresponding evidence. Despite this,
[RQ4] models for ambiguous LFQA appear to be
well grounded in the retrieved evidence overall.

5 Conclusion

In conclusion, by exploring the LFQA field in an-
swering ambiguous questions, we find that the ASQA
dataset is a good foundation to develop and evalu-
ate models. We notice that larger generative models
produce better answers, with semantic matching
for retrieval having a positive impact. To compen-
sate for the small size of the dataset, we experiment
with intermediate fine-tuning on larger collections
and find that doing so only marginally improves
the results. By comparing the performance when
using relevant versus random documents, we show
the models’ dependency on the provided context.
Our human evaluation confirms the general trends
we observed using the automated metrics, giving
credit to their disambiguating ability.

Limitations

We see two main limitations in our study. Primar-
ily, given the clear trend of larger generative mod-
els producing higher quality answers, an obvious
question is to investigate whether this continues
to be the case indefinitely, or whether it saturates
after a critical amount of parameters. Despite this,
due to hardware restrictions, we were unable to
experiment with models larger than BART-large.
Additionally, considering that the field of ambigu-
ous QA inherently requires complementary pieces
of evidence, there is no doubt that diversification
methods are bound to yield better results in terms
of disambiguation quality. In this work, however,
we limited ourselves to using a typical neural re-
triever, shifting our focus toward the factuality and
the fluency of the generated answers.

Ethics Statement

As we use a publicly available Wikipedia index as
our knowledge base, it is possible that the gener-
ated answers may contain some form of bias that re-
flects the information submitted by the anonymous
editors of the website. To prevent this, follow-up
work could examine how to detect misinformation
or hate speech in indexed passages, before using
them as evidence for the generative models.
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A Potential Issues with ASQA

During our experiments, we notice certain issues
regarding the ASQA dataset. In particular, we ob-
served that in some cases the ambiguity in the ques-
tion is pedantic. For instance, there are questions
where a date is not specified (e.g., “What kind of
car won the Daytona 500 this year?”), and in a
typical scenario, the system would assume that the
question refers to the current year. Instead, in ASQA
this type of question is considered ambiguous, and
the short answers resolve the ambiguity by reformu-
lating the question for different years (e.g., 2017,
2016, 2015, etc.). In addition, we argue that some
of the disambiguated questions and their short an-
swers are too specific. This results in the model
being penalized for not generating the exact correct
terms, even though its answer semantically cov-
ers some part of that interpretation (e.g., the last
example in Table 6).

B Implementation Details

We use the official T5-base, BART-base, and BART-
large implementations from HuggingFace. We
train each model for 20 epochs on the ASQA7 dataset
with the AdamW optimizer (Loshchilov and Hutter,
2017), using a weight decay of 0.01, and a learning
rate of 10−5 for T5 and 5 · 10−6 for BART. Train-
ing is stopped early if the validation loss doesn’t
decrease after 5 epochs. We use a train batch size
of 8 for open-book experiments, and 16 for closed-
book, with an evaluation batch size of 8 in both
cases. We train our models on one NVIDIA Titan
RTX GPU, and use 16-bit mixed precision to accel-
erate training. All of the models converged within
∼30 minutes of training.

For our intermediate fine-tuning experiments,
we first train T5-base on NLGEN subset8 of the MS
MARCO dataset for 1 epoch with a learning rate of
10−4 and then continue training on ASQA as de-
scribed above. For BART, we use a publicly avail-
able instance from HuggingFace that has been pre-
trained on ELI59, and continue training on ASQA.

Finally, we use beam decoding with 5 beams and
a max sequence length of 100 tokens. We force the
model to not repeat the same trigram in its output by
using the option no_repeat_ngram_size=3 when
generating answers.

7https://huggingface.co/datasets/din0s/asqa
8https://huggingface.co/datasets/din0s/msmarco-nlgen
9https://huggingface.co/vblagoje/bart_lfqa

C Upper Bound for Retrieval

To investigate the efficiency of our retrieval mod-
els, we perform an analysis for the upper bound
of the retrieved passages’ relevancy to the corre-
sponding gold answers. In particular, for each of
the systems used, we count the number of relevant
short answers retrieved using an exact string match
with the dataset’s gold answers. In Table 4, we
notice that even the best retrieval setup at our dis-
posal, namely DPR@5, only fetches ∼ 44% of
the relevant answers on average or up to 58% in
cases where it identifies at least one relevant pas-
sage. This emphasizes the need for a multi-hop
retrieval system like JPR (Min et al., 2021) in order
to fully utilize the power of the first component
of the pipeline. It is evident that a higher upper
bound for retrieval will increase the overall perfor-
mance of the systems that tackle ambiguous LFQA,
making it a high priority for follow-up work.

Avg # of short answers retrieved

In all results
In results with

≥ 1 correct answer
BM25@1 0.52 (14.71%) 1.61 (45.44%)
BM25@3 0.89 (24.10%) 1.83 (49.35%)
BM25@5 1.11 (29.81%) 1.96 (52.53%)
DPR@1 0.89 (24.70%) 1.74 (48.38%)
DPR@3 1.39 (37.73%) 2.00 (54.61%)
DPR@5 1.62 (43.79%) 2.15 (58.15%)

Table 4: Number of relevant chunks of evidence identi-
fied using different retrieval systems. This constitutes an
upper bound to the generative model’s ability to answer
the various disambiguated questions.

D Effect of Intermediate Fine-Tuning for
the Closed Book Experiments

Table 5 displays the impact of the intermediate fine-
tuning on a larger LFQA collection in the closed-
book setting, using automated evaluation metrics.
Similarly to the open-book setting, BART-large
ELI5 performs the best, which confirms the hypoth-
esis that larger models are able to benefit the most
when given more training data.

ROUGE-L STR-EM DIS-F1 DR
T5-base 30.7 3.7 2.7 9.1
T5-base NLGEN 30.0 2.9 2.8 9.2
BART-base 31.5 3.9 2.8 9.3
BART-large 33.4 7.1 4.5 12.2
BART-large ELI5 34.1 7.7 4.8 12.8

Table 5: Closed-book performance, showcasing the ef-
fect of intermediate fine-tuning on a large LFQA dataset.
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E Answer Demonstration

We demonstrate a brief selection of answers gener-
ated by our best-performing model (BART-large
ELI5) in Table 6. We observe that the main rea-
son for our model’s inability to disambiguate all
parts of the question is that the passages retrieved
with DPR simply do not cover all possible interpre-
tations. In most cases, the first passage retrieved
suffices to answer at least one of the disambiguated
questions, and the rest passages are either not rele-
vant or answer the same question again. Contrary
to the results of Stelmakh et al. (2022), our model
does not hallucinate or repeat itself. We hypoth-
esize that since their model (T5-large) is almost
twice as big as BART-large in terms of parame-
ter count, it can better utilize its context but at the
same time be overconfident in its answers.
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Question, provided disam-
biguations, and answers

Generated model output:
BART-large ELI5 DPR@3

DPR@3 retrieved passages Answer analysis

Q: Who was the ruler of
France in 1830?

Q1: Who was the ruler of
France until 2 August 1830?
A1a: Charles Philippe
A1b: Charles X

Q2: Who was the ruler of
France after 9 August 1830?
A2: Louis-Philippe I

the french revolution of
1830, also known as the
july revolution or in french,
the second french revolu-
tion, led to the overthrow of
king charles x, the french
bourbon monarch, and the
ascent of his cousin louis
philippe, duke of orléans,
who himself, after 18 pre-
carious years on the throne,
would be overthrown in
1848.

July Revolution The French Revo-
lution of 1830, also known as the
July Revolution ("révolution de Juil-
let"), Second French Revolution or
in French ("Three Glorious [Days]"),
led to the overthrow of King Charles
X, the French Bourbon monarch,
and the ascent of his cousin Louis
Philippe, Duke of Orléans, who him-
self, after 18 precarious years on
the throne, would be overthrown in
1848..
July Monarchy 1840, to general in-
difference. The publicś attention
was concentrated on the trial of
Marie Lafarge..
July Revolution ..led to the over-
throw of King Charles X, the French
Bourbon monarch, and the ascent of
his cousin Louis Philippe, Duke of
Orléans, who himself..

We do not notice any
hallucination or repe-
tition in this example.
The model manages
to correctly answer
the ambiguous ques-
tion with fluency and
coherency. In addi-
tion, through reading
the answer we under-
stand why the ques-
tion asked was am-
biguous.

Q: The repetition of phrases
or sentences with similar
structures or meanings is
called?

Q1:The repetition of
phrases or sentences with
similar structures is called?
A1a: parallel construction
A1b: parallelism
A1c: Parallel syntax

Q2: The repetition of
phrases or sentences with
similar meanings is called?
A2: Schesis onomaton

parallelism, also known as
parallel structure or paral-
lel construction, is a bal-
ance within one or more sen-
tences of similar phrases or
clauses that have the same
grammatical structure. the
application of parallelism af-
fects readability and may
make texts easier to process.

Parallelism (grammar) In grammar,
parallelism, also known as paral-
lel structure or parallel construc-
tion, is a balance within one or
more sentences of similar phrases
or clauses that have the same gram-
matical structure..
Metathesis (linguistics) Metathesis
(; from Greek , from "I put in a dif-
ferent order"; Latin: "trānspositiō")
is the transposition..
Resultative Resultative In linguis-
tics, a resultative (abbreviated ) is
a form that expresses that something
or someone has undergone a change
in state as the result of the comple-
tion of an event..

In this example, the
model only manages
to get one of the two
answers that disam-
biguate the question.
We do not observe
any hallucinations or
repetition.

Q: When does callie come
in grey’s anatomy?

Q1: What date does
Callie Torres first appear in
Grey’s Anatomy?
A1: February 26, 2006

Q2: Which episode
does Callie Torres first
appear in Grey’s Anatomy?
A2: "What Have I Done to
Deserve This?" (2.19)

Q3: What date does
Callie Torres start to appear
in Grey’s Anatomy as a
series regular?
A3: September 21, 2006

Q4: What episode Cal-
lie Torres start to appear in
Grey’s Anatomy as a series
regular?
A4: "Time Has Come
Today" (3.01)

grey’s anatomy is an amer-
ican medical drama tele-
vision series created by
shonda rhimes, which airs
on the abc in the united
states. the character callie
torres was introduced in sea-
son two, as a senior orthope-
dic resident as a love interest
for intern george o’malley
(t.r. knight). she was orig-
inally contracted to appear
on a recurring basis, but
received star billing in the
third season. at the end of
the show’s twelfth season,
ramirez

Callie Torres ..."Callie" Torres, M.D.
is a fictional character from the med-
ical drama television series "Greyś
Anatomy"... She was introduced in
season two, as a senior orthopedic
resident, as a love interest for in-
tern George OḾalley (T.R. Knight).
Eventually becoming an attending
orthopedic surgeon, the character
was originally contracted to appear
on a recurring basis, but received
star billing..
Callie Torres ..Eventually becoming
an attending orthopedic surgeon, the
character was originally contracted
to appear on a recurring basis, but
received star billing in the third sea-
son..’
Callie Torres Ramirez was nomi-
nated for several awards for her por-
trayal of Torres, including the..

Here the model is
not able to get any of
the answers correctly.
However, one could
argue that two of the
four disambiguated
questions were par-
tially answered since
the model outputs
that the character was
introduced in season
two and became a
series regular in the
third season. We
also do not notice
any hallucinations or
repetition.

Table 6: Qualitative analysis. Green/orange text highlights correct/partially-correct parts of the answer.
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