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Abstract

Few-shot or zero-shot fact verification only re-
lies on a few or no labeled training examples.
In this paper, we propose a novel method called
ProToCo, to Prompt pre-trained language mod-
els (PLMs) To be Consistent, for improving
the factuality assessment capability of PLMs
in the few-shot and zero-shot settings. Given
a claim-evidence pair, ProToCo generates mul-
tiple variants of the claim with different rela-
tions and frames a simple consistency mech-
anism as constraints for making compatible
predictions across these variants. We update
PLMs by using parameter-efficient fine-tuning
(PEFT), leading to more accurate predictions
in few-shot and zero-shot fact verification tasks.
Our experiments on three public verification
datasets show that ProToCo significantly out-
performs state-of-the-art few-shot fact verifi-
cation baselines. With a small number of un-
labeled instances, ProToCo also outperforms
the strong zero-shot learner TO on zero-shot
verification. Compared to large PLMs using in-
context learning (ICL) method, ProToCo out-
performs OPT-30B and the Self-Consistency-
enabled OPT-6.7B model in both few- and zero-
shot settings.

1 Introduction

The problem of misinformation has sparked signifi-
cant attention on the task of fact verification within
the natural language processing (NLP) community.
Such task, typically represented by Fact Extraction
and VERIification (FEVER) benchmark (Thorne
et al., 2018), requires models to verify if pieces
of evidence support, refute, or contain not enough
information (NEI) to validate a given claim.

Fully supervised fact verification has been widely
studied and achieved good performance on the data
of different domains (Nie et al., 2019; Ma et al.,
2019; Wadden et al., 2020; Guo et al., 2022). How-
ever, collecting a large set of training data is labor-
intensive, time-consuming and costly especially
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Figure 1: An illustration of our consistency mechanism
for evidence-based fact verification when the evidence
supports the claim. The PLM’s judgements on the vari-
ants should be logically consistent across the different
variants of the claim.

with the constant emergence of new events, such
as COVID-19 (Lee et al., 2021; Pan et al., 2021;
Saakyan et al., 2021), that may be out-of-domain.
Few-shot fact verification is an urgent need but has
been paid little attention because its performance is
previously not competitive given very few training
data (Lee et al., 2021; Zeng and Zubiaga, 2022),
not to mention the zero-shot setting without any
labeled data available at all.

In this paper, we try to improve PLMs’ capa-
bility on factuality assessment for few-shot and
zero-shot evidence-based fact verification. In gen-
eral, consistency in fact verification dictates our
assessment on the veracity of a claim based on
the evidence given. For example, Figure 1 shows
that given the same evidence and three major
variants of the claim, the judgement of factual-
ity on the confirmation variant “It is true
that [claim]” should remain the same as
that of the original claim, while the judgement
on the uncertainty variant “It is unclear
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that [claim]” and negation variant “It 1is
false that [claim]” should be opposite to
that of the original claim. The relations (i.e., con-
firmation, uncertainty and negation) between the
claim and its variants naturally constrain what de-
cisions should be made for the variants once the
decision on the claim is determined, and vice versa.
Such simple consistency constraints with minor
adjustments can be generalized to different cases
(e.g., when the evidence refutes the claim. See Sec-
tion 4.3 for detail). Meanwhile, prior studies on
consistency in other domains (e.g., knowledge base
and question answering (QA)) have shown a strong
correlation between PLM’s performance and their
self consistency (Elazar et al., 2021; Wang et al.,
2022), but it is empirically observed that PLMs are
insufficient to transfer self-consistency to down-
stream tasks (Ettinger, 2020; Kassner and Schiitze,
2020; Kassner et al., 2021; Elazar et al., 2021). We
therefore aim to explicitly impose consistency on
PLMs for improving few-shot and zero-shot fact
verification performance.

Inspired by the recent success of prompt-enabled
PLMs on various few-shot NLP tasks via forming
natural language prompts using templates (Radford
et al., 2019; Brown et al., 2020; Gao et al., 2021;
Liu et al., 2022a), we construct the variants of a
given claim by simply altering prompt templates
while keeping the claim itself unchanged. Further,
we define a factuality-grounded consistency mech-
anism based on the aforementioned relations be-
tween the claim and its variants, and assign the
labels (i.e., support, refute, and NEI) satisfying
the consistency to the variants, so that we obtain a
set of claim-evidence pairs with consistency con-
straints. To bring such consistency to PLMs, we
then use these pairs to fine-tune T-Few (Liu et al.,
2022a), a prompt-enabled PLM with a parameter-
efficient fine-tuning (PEFT) method by only up-
dating a small number of parameters. We name
our method as ProToCo, Prompt PLMs To be
Consistent, for improving the consistency of PLMs
for few-shot and zero-shot fact verification. Our
main contributions can be summarized as follows ':

* We design a general factuality-grounded consis-
tency scheme to provide explicit consistency con-
straints for improving few-shot fact assessment,
which is generalizable to zero-shot setting.

'Code and dataset are available at https://github.
com/znhy1024/ProToCo

* We propose ProToCo, a novel prompt-based con-
sistency training method for improving PLMs on
few-shot and zero-shot fact verification.

» Evaluation results on three public fact verifica-
tion datasets from different domains confirm that
ProToCo outperforms the state-of-the-art few-
shot baselines by up to 30.4% relative improve-
ment in terms of F1, and also consistently outper-
forms the strong zero-shot learner TO-3B (Sanh
et al., 2022) in zero-shot verification.

* When compared to large PLMs in both settings,
ProToCo achieves overall better performance
than OPT-30B (Zhang et al., 2022) and signifi-
cantly outperforms the Self-Consistency-enabled
OPT-6.7B model based on Chain-of-Thought
(CoT) prompting (Wang et al., 2022).

2 Related Work

Existing methods tried to address few-shot fact
verification by utilizing the implicit knowledge of
PLMs encoded in their parameters without gradi-
ents update. Lee et al. (2021) hypothesized that
the perplexity of concatenated claim-evidence text
sequence evaluated by a language model could ben-
efit claim verification, and used a few training in-
stances to find the threshold of perplexity scores
for determining the label of test claim. Zeng and
Zubiaga (2022) utilizes PLMs to create a set of
representative vectors for each class based on the
semantic difference between claim and evidence
of a few training instances, which are used to la-
bel test claims based on Euclidean distance dur-
ing inference. However, these models do not up-
date model parameters solely relying on the pre-
encoded knowledge of PLMs, which cannot im-
prove the language model itself and may not gener-
alize well in new domains. And they also cannot
perform zero-shot task as a few labeled instances
are required as the anchors for labeling new in-
stances. Our method aims to update PLMs effi-
ciently to utilize new knowledge in a few exam-
ples and enforce model’s consistency for improving
both few-shot and zero-shot verification.

Recently, several studies worked to generalize
PLMs to the target domain by fine-tuning the model
with the full training dataset of fact verification
from a different domain (Wadden et al., 2020;
Saakyan et al., 2021; Schuster et al., 2021; Wad-
den et al., 2022). Meanwhile, some works targeted
to instruct PLMs to generate task-specific training
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data used to fully train a classifier for fact verifica-
tion (Pan et al., 2021; Wright et al., 2022). Such
works need a carefully crafted generation policy
based on real corpus of the task, and the perfor-
mance heavily depends on the quality of generated
data. These approaches are considered distantly
supervised, and significantly differ from ours as
they do not aim to build any few-shot or zero-shot
model. Unlike these studies, we assume that the
language model is minimally aware of fact verifi-
cation task with only a few task-specific examples,
which may be even unlabeled.

In general, PLMs have shown strong few-shot learn-
ing ability in various NLP tasks (Brown et al.,
2020; Sanh et al., 2022). In-context learning (ICL)
uses natural language prompts or instructions to
elicit desired output from PLMs without gradi-
ent updates (Radford et al., 2019; Brown et al.,
2020). However, ICL is hard to deal with many
prompted instances (Liu et al., 2022a), sensitive
to the prompt design (Liu et al., 2022b; Lu et al.,
2022) and performs worse than fine-tuning (Brown
et al., 2020; Liu et al., 2022a). An alternative ap-
proach is parameter-efficient fine-tuning (PEFT)
by updating only a small number of parameters to
bridge the gap with standard fine-tuning (Houlsby
et al., 2019; He et al., 2022; Mahabadi et al., 2021;
Lester et al., 2021; Wei et al., 2022; Ben Zaken
et al., 2022; Liu et al., 2022a). Our method uti-
lizes T-few (Liu et al., 2022a), a state-of-the-art
PEFT-enabled model, as our backbone to perform
the factuality-grounded consistency training.

Previous works evaluate the self-consistency of
PLMs by modifying the context of input sen-
tences (Ettinger, 2020; Kassner and Schiitze,
2020; Ravichander et al., 2020; Elazar et al., 2021)
and empirically show that PLMs are insufficient
to transfer self-consistency to downstream tasks.
Some works in question answering (QA) prompt
large PLMs (e.g., GPT-3 (Brown et al., 2020)) to
improve QA accuracy by strengthening the consis-
tency of predicted answers. Wang et al. (2022)
prompts PLM to generate multiple explanations
and candidate answers and choose the answer that
consistently occurs as the prediction. The Maieutic
prompting (Jung et al., 2022) designed for True-or-
False commonsense QA, and ConCoRD (Mitchell
et al., 2022) designed specifically based on self-
consistency benchmarks, both of which elicit PLMs
to generate distributions for possible candidate an-

swers, followed by a MaxSAT solver (Battiti, 2009)
to infer the most probable answer by eliminating
contradictory candidates. Both methods are based
on different consistency definitions from ours and
may not be suitable for the fact verification task.

3 Problem Definition

Let C = {(zi,y;)} be a fact verification
dataset, containing training set Cy.q;, and test
set Cyest, Where each instance consists of the
input z; and ground-truth label y; € ) and
Y = {Support, NEI, Refute}. Letx; =
(ci,ei), and the task aims to predict if the given
pieces of evidence e; supports, refutes or has not
enough information to validate the claim c;. In
the few-shot setting, we randomly sample K in-
stances per class from Cy,.q;, for training as the
class distribution is unknown. As a result, the to-
tal number of instances is 3K and the few-shot
training set is denoted as C{fam = {(xs, ) K.
The zero-shot setting is similar but only uses x;
for each instance and the unlabeled training set
is given as Cz5,, = {(z;)}3¥. Note that the
absence of ground-truth label makes the setting
zero-shot (Wright et al., 2022; Zhou et al., 2022).
Similar to previous works (Lee et al., 2021; Liu
et al., 2022a), we do not assume the availability
of development set as it is more realistic in a limit
data scenario. Our goal is to generalise a PLM My
to the unseen test set Cy4, fine-tuned only using
C/ . or C#5 . where 0 denotes language model

train train’
parameters.

4 Methodology

4.1 Prompt Construction

Given a labelled instance (x;, y;), the input z; (i.e.,
¢; and e;) and the label y; are firstly reformatted
as a natural language input and response using a
prompt template 7, which consists of an input tem-
plate 7, and a target template 7,,. For example, as
shown in Figure 2, the reformatted input 7, (z;) is
obtained by filling the evidence and claim in their
corresponding fields:

Suppose {e;}. Can we infer {¢}?

and the reformatted label can be 7,(y;) =
Choices[y;]. Here Choices is a prompt-
specific target words mapping containing re-
sponse keys {Yes, Maybe, No}, where Yes
is mapped to Support, Maybe to NEI, and No
to Refute.
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Evidence:

Coronavirus disease 2019 is a
zoonotic infectious disease caused
by severe acute respiratory
syndrome coronavirus 2.

Claim:

The Coronavirus disease 2019 has a

zoonotic origin.

M Learned

Prompt l Vectors
Construction
Original Input: Added by PEFT Method —
Suppose {Evidence}. Can we infer Yes
@l — Consistency Mechanism
ORG CON UNC NEG
Confirmation Variant: P T
Suppose {Evidence}. Can we infer |.| __ Prompt-Enabled -1 Yes 1 Yes Yes No No
it is true that {Claim}? PR “'|Impose
. PLM A Maybe | Maybe Yes Maybe
Modify \ Constraint
Uncertainty Variant: R o
Prompt Suppose {Evidence}. Can we infer |-~ < No No No No Yes
Template||it is unclear that {CLaim}? )
Negation Variant: . . . . |
Suppose {Evidence}. Can we infer |~ Parameter Efficient Fine-Tuning . No
it is false that {ClLaim}?

Figure 2: The architecture of our ProToCo model. Given a claim-evidence pair, confirmation variant (CON),
uncertainty variant (UNC) and negation variant (NEG) are created by modifying the prompt template. The original
input (ORG) and its variants are used to train the PLM. We use a PEFT method (i.e., (IA)3) to train the PLM, which
only updates the parameters of additionally learned vectors while other parameters are frozen. Consistency will be
imposed as the constraints on PLM’s predictions over the claim and its variants.

4.2 Inference

We take the text-to-text PLM (e.g., T5 (Raffel
et al., 2020)) as M since the prompted input and
output are text sequences. Let ) be the vocabu-
lary of Mjy. We denote each 7, (z;) as an input
sequence of tokens x; and 7T,(y;) as a target se-
quence of tokens y; = {t; € V,j € [1,yi|]} to

be generated. Then, the probability of the target

sequence is py(y; | x;) = H‘]y:|1 po(ts | xist<j),

where pg(t; | x;,t<;) is the probability of each
token t; assigned by the model My during autore-
gressive generation given the input sequence x; and
the tokens generated prior to ¢;. Since the sequence
y; corresponds to the class y;, the predicted score
for class y; given by My can be defined as the
log-probability normalized by the length of output
sequence to avoid possible bias towards length (Liu
et al., 2022a):
1

Bz yi, T) = vl logpe(yi [ x;) (1)

K3
In this way, we obtain the predicted scores of all
classes using Equation 1 and use rank classification
for inference by following (Liu et al., 2022a). All
classes are ranked by the predicted scores and the
top-ranked class is taken as the prediction.

4.3 The Consistency Mechanism

In this section, we describe how to establish the
consistency for fact verification task. Our goal is
two-fold: 1) construct a set of variants for a claim

corresponding to three basic logical relations be-
tween the claim and a variant, i.e, confirmation, un-
certainty, and negation; 2) the labels of variants can
be unambiguously derived based on the relations
above once the label of original claim-evidence
pair is known. To this end, we construct the logical
variants by modifying the prompt input template
T+, as shown in Figure 2.

E3]

Specifically, we prepend “it is {w} that
before c; to get a claim’s logical variants, where
w € V can be an affirmative word (e.g., true), an
uncertain word (e.g., unclear), or a negative word
(e.g., false), corresponding to the aforementioned
relations. Figure 2 shows the consistency con-
straints that the model should strive to satisfy based
on the set of labels assigned to the original claim
and its variants given 7,(y;). For example, when
Ty(y;) is Yes or No, the label of the confirmation
variant should be same as that of the original claim
since they entail each other, while the negation
variant should have the opposite label because of
their contradiction, and the uncertainty variant is
assigned as No since the evidence indicates it is
sufficient to draw a certain conclusion. Situation
is slightly different when 7, (y;) is Maybe since
there is not enough evidence to support or refute
the confirmation and negation variants, and as a
result, both confirmation and negation variants are
designated as Maybe while the uncertainty variant
is assigned as Yes. With these consistency con-
straints, we could label the claim variants for each
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training instance and utilize them for fine-tuning
the model.

4.4 Training Strategy

It is challenging for few-shot fine-tuning of PLMs
as updating a large number of parameters with a
few instances may result in unstable performance.
Also, there are no labeled instances available for
zero-shot fine-tuning. We will introduce how to
bring our consistency mechanism into the training
of PLMs in both settings.

4.4.1 Parameter Efficient Fine-Tuning (PEFT)

The traditional fine-tuning methods updating all
parameters of PLMs are found unstable in the few-
shot setting (Zhang et al., 2021; Mosbach et al.,
2021; Dodge et al., 2020), and could be computa-
tionally expensive. We thus employ PEFT meth-
ods (Houlsby et al., 2019; Mahabadi et al., 2021;
Lester et al., 2021; Hu et al., 2022; Ben Zaken
et al., 2022; Liu et al., 2022a) for more efficient
fine-tuning.

We exploit the T-Few recipe which applies a PEFT
method called (IA)? (Liu et al., 2022a) on a
zero-shot learner TO (Sanh et al., 2022) to enable
its few-shot ability. The (IA)? modifies Trans-
former (Vaswani et al., 2017) via multiplying the
keys and values in attention and the intermediate
activations of position-wise feed-forward networks
by the learned vectors, so that a small number of
parameters are introduced for fine-tuning. And TO
has been endowed with a strong zero-shot general-
izability by training a LM-adapted TS (Lester et al.,
2021) on a set of datasets covering numerous NLP
tasks, where each training instance is reformatted
as a natural language input and response using a
prompt template.

4.4.2 Loss Functions

With a few training instances, we follow Liu et al.
(2022a) by combining several different loss func-
tions to update the new parameters.

» Standard cross-entropy loss encourages My to
assign higher probability py(y; | x;) to the cor-
rect target sequence y; given the input sequence
X

1

L™ = ——logpy(yi | xi) )
lyil
¢ (Classification task loss is based on cross-
entropy. Given the predicted scores 8(x;, yi, T)

assigned by PLM, the probability of predicting
class y; can be calculated as:

exp (B(xi, yi, T))

Qo\Yi | Ti) = 3)
( ' ‘ Z) Zy’g)} €xp (6($17y/7T))
and the loss for the task is:

L = —log qo(yi | ;) )

* Unlikelihood loss forces incorrect target se-
quences to be assigned with lower probabili-
ties (Welleck et al., 2020):

o D X Tog(1 — po(ty | xit<y))
SR ki 94
)
The total loss for fine-tuning our backbone model

T-Few is a sum of the above three losses: £ =
ST L+ L+ Ly

4.4.3 Few-Shot and Zero-Shot Training

In the few-shot setting, we first fine-tune the model
with the original labeled instances as a warm-up,
and then continue the fine-tuning with the created
variants and the logically consistent labels which
are derived from the claim following the proposed
consistency mechanism (see Section 4.3).

Given no labeled instance in the zero-shot setting,
we directly fine-tune the model with the variants
using the following strategy: at each training step,
the prediction of the original instance by the PLM
is used to assign pseudo labels to its variants based
on the proposed consistency mechanism. To some
extent, this training strategy provides a regulation
to PLM and guide it to update the prediction on
the original instance. Note that such method is still
zero-shot since what is considered in training is
only the determined logical relations between the
claim and its variants and no ground-truth informa-
tion is exploited.

5 Experiments and Results

5.1 Experimental Setup
5.1.1 Datasets

We use three public fact verification datasets from
different domains. Their statistics are shown in
Table 1. FEVER (Thorne et al., 2018) provides
manually crafted claims by altering factual sen-
tences from Wikipedia. The claims are classi-
fied as Support, Refute or NEI by annota-
tors. This dataset only provides gold evidence for
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Dataset  label Supports Refutes  NEI

Train 80,035 29775 35.639
FEVER  rest 3333 3333 3333
. Train 332 173 304
SCIFACT 1t 124 64 112
Viamipe TN 124864 71108 52,981
tammt - rest 17306 9.907  7.268

Table 1: Statistics of three datasets used for evaluation.

the Support and Refute classes. To provide
evidence for instances in the NEI class, we ran-
domly sample a sentence from Wikipedia for each
claim using uniform sampling method by follow-
ing Thorne et al. (2018). SciFACT (Wadden et al.,
2020) is a fact verification dataset which consists
of expert-written scientific claims by re-writing ci-
tation sentences occurring in biomedical literature.
We choose the sentence from the cited abstract with
the highest TF-IDF similarity to the claim for the
NET class following Wadden et al. (2020). Vitam-
inC (Schuster et al., 2021) is a challenging dataset
with cases requiring models to identify subtle fac-
tual changes. It is created by utilizing Wikipedia
revisions that alter a factual statement to create
claim-evidence pairs, where the instances for each
revision are made contrastive, i.e., they contain evi-
dence pairs that are nearly identical in content, but
one supports the claim while the other contradicts
it. VitaminC has three classes similar to FEVER
and provides real or synthetic revisions. We only
use instances from real revisions as the synthetic
does not include the NET class.

5.1.2 Baselines

We compare ProToCo to the following few-shot
baselines: Majority simply assigns the most fre-
quent class of the training set to all instances;
RoBERTa-L (Liu et al., 2019) is a pre-trained
RoBERTa-large model with a feed-forward clas-
sifier fine-tuned on top of it; GPT2-PPL (Lee
etal., 2021) uses a few labeled instances to find the
threshold of perplexity scores based on the GPT-2
language model (Radford et al., 2019) for determin-
ing claim class labels; SEED (Zeng and Zubiaga,
2022) utilizes PLMs to obtain semantic difference
vectors between claims and their evidence and av-
erage them to create representative vectors for each
class, which are used to label instances based on
Euclidean distance during inference.

We also compare ProToCo to zero-shot base-
lines: TO (Sanh et al., 2022) is a strong zero-shot
learner which is created by training LM-adapted
T5 (Lester et al., 2021) on datasets covering multi-
ple tasks, where each training instance is converted
as prompted input and output; T-Few (Liu et al.,
2022a) additionally pre-trains the new parameters
introduced by (IA)? based on TO.

5.1.3 Experimental Settings

For few-shot fact verification, we report 4-shot ex-
periments as the main result. We also conduct K-
shot experiments for K = {1,2,4,8, 16} reported
as supplementary results. For zero-shot experi-
ments, we randomly sample 30 instances per class
from each training set for fine-tuning. Note that
no labels are used in this setting. For fair and ro-
bust comparison, we sample the training instances
based on four random seeds and report the mean
performance of macro-F1 and standard deviation
over these four splits in all experiments. The seeds
and data splits are kept the same across different
models.

We use the original source code® of T-Few (Liu
et al., 2022a) with its released pre-trained check-
point of 3B parameters as our backbone model.
Following the T-Few paper, we randomly sample a
prompt template from the Public Pool of Prompts
(P3) (Bach et al., 2022) for each instance at each
training and inference step to increase the diversity
and variability of prompts used. We set training
steps as 1,500, batch size as 4, and learning rate as
1 x 10~ for both few-shot and zero-shot settings>.

For fine-tuning the RoBERTa-L. model, we fol-
low Lee et al. (2021) using 2 x 1075 as learn-
ing rate and 32 as batch size, and train it for 10
epochs. We use the original code of GPT2-PPL*
and conduct experiments using GPT2-base as the
backbone following the original setting. Addition-
ally, we also present the results of GPT2-PPL with
a larger backbone GPT2-x1°. We reproduce SEED
following the original implementation details in the

https://github.com/r-three/t-few

3For all methods, we use the number of shots as batch size
if the training size is less than the batch size.

*https://github.com/HLTCHKUST/
Perplexity—-FactChecking

5To deal with 3-way classification, we separate support and
unsupported classes first, and then separate NEI and refutes
classes from the predicted unsupported class, following the
assumption that misinformation has higher perplexity (Lee
etal., 2021)
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Datasets

Few-shot Methods

Zero-shot Methods

Majority ROBERTa-L  GPT2-PPLy GPT2-PPLy SEEDy; SEEDum« T-Few ProToCo | T0-3B  T-Few ProToCo
jority P
] 0.210 0.326 0.348 0.355 0.273 0382 0498 | 0315 0305  0.331
SCiFACT  0.195 (0.09) (0.04) (0.06) (0.05) 0.07)  (0.05)  (0.03) | (0.05) (0.03)  (0.02)
0.169 0.293 0.329 0.501 0.352 0.851  0.891 | 0446 0433 0479
FEVER  0.167 0.01) 0.04) (0.10) 0.07) 0.02)  (0.06) (0.03) | (0.03) (0.01)  (0.00)
o 0.146 0.303 0.327 0.313 0.306 0489 0520 | 0373 0400  0.386
VitaminC ~ 0.223 0.02) 0.04) (0.04) (0.05) 004 (009  (0.05 | 0.02) (0.00)  (0.00)

Table 2: Results of different few-/zero-shot fact verification methods in 4-shot and O-shot settings on three datasets.
We report the macro-F1 averaged over 4 trials with randomly selected training samples from the datasets using
different seeds. The best results are in bold while the second results are underlined. The standard deviation is in (.).

paper (Zeng and Zubiaga, 2022) with BERT;;® as
its base model which was fine-tuned on NLI tasks.
Furthermore, we report the results of SEED using
the pre-trained model all-mpnet-base-v2’ as back-
bone since it provides the best quality of sentence
embeddings in all pre-trained models of sentence
transformers (Reimers and Gurevych, 2019) 8. We
use the code and pre-trained checkponit with 3B pa-
rameters of TO from Hugging Face Transformers®.
All the experiments use a server with 4 NVIDIA
Tesla-V100 32GB GPUs.

5.2 Few-Shot Result

The results of few-shot fact verification are reported
in Table 2. We have the following observations.

Firstly, given very few labeled instances,
RoBERTa-L does not always improve few-shot per-
formance, which is consistent with the empirical
finding that traditional fine-tuning of PLMs is un-
stable in the few-shot setting (Zhang et al., 2021;
Mosbach et al., 2021; Dodge et al., 2020).

Secondly, with the designs for few-shot learning
on PLMs, both versions of GPT2-PPL and SEED
achieve much better performance than the majority
class and RoBERTa-L, without any gradient update.
With different backbone models, GPT2-PPL,; out-
performs GPT2-PPLy,s due to its larger model
size, while SEED ypneq lags far behind SEED,; pos-
sibly because the base model BERTY; fine-tuned
on NLI task can be more readily adapted to the
fact verification task compared to the base model
all-mpnet-base-v2, which was fine-tuned on the

*https://huggingface.
co/sentence-transformers/
bert-base-nli-mean-tokens

"https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

$https://www.sbert .net/docs/
pretrained_models.html#model-overview

‘https://huggingface.co/bigscience/T0

sentence matching task. On SciFACT and FEVER
datasets, SEED,; with the semantic difference vec-
tor outperforms GPT2-PPL; that predicts labels
based on a perplexity score. However, SEEDy;
is less advantageous on VitaminC as the semantic
vector becomes less likely to identify the subtle
factual differences in the contrastive instances.

Thirdly, our backbone model T-Few clearly out-
performs both versions of GPT2-PPL and SEED,
which indicates that only relying on the implicit
knowledge of PLMs without parameter update is
insufficient for few-shot fact verification. Also,
compared to RoBERTa-L, the obtained improve-
ments on all datasets shows the PEFT method
(IA)? helps address the instability issue of tradi-
tional fine-tuning methods on PLMs under few-
shot setting.

Lastly, ProToCo with consistency training leads
to consistent gains on all datasets, considerably
improving T-Few by 30.4%, 6.3% and 4.7% on Sci-
FACT, VitaminC and FEVER, respectively, which
demonstrates the effectiveness of imposing the con-
sistency constraints on model training.

5.3 Zero-Shot Result

We examine the effectiveness of ProToCo in zero-
shot setting, where it only uses a small number of
unlabelled instances for training. The zero-shot
result is also given in Table 2.

We can see that ProToCo performs better than TO-
3B on all the datasets, achieving improvements by
7.4%, 5.1% and 3.5% F1 on FEVER, SciFACT
and VitaminC, respectively. And our consistency
training also improves T-Few by 10.6% and 8.5%
in FEVER and SciFACT, respectively. However,
ProToCo performs slightly worse than T-Few on
VitaminC. Given the contrastive construction ap-
proach of VitaminC dataset, we conjecture that
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SciFACT FEVER

VitaminC

macro-F1

—=- fully-supervised

—A— ROBERTa-L

—#— GPT2-PPL-base
GPT2-PPL-xI

—#— SEED-nli
SEED-mpnet
T-Few

—#— ProToCo

Figure 3: The performance comparison under different the number of shot K. For all K tested, ProToCo consistently
outperforms all the baselines. We report the results of fully-supervised models using oracle evidence as a reference:
the results of RoBERTa-large model from Pradeep et al. (2021) and Pan et al. (2021) on SciFACT and FEVER,
respectively; the result of ALBERT-xlarge model (Lan et al., 2020) on VitaminC is obtained by evaluating test set
using the provided checkpoint and original code from Schuster et al. (2021).

this is might be because consistency training alone
may not be able to effectively enhance the base
model’s ability to distinguish the contrastive in-
stances without any supervision signals or prior
adversarial training for the base model. One possi-
ble solution to address the issue is to use a stronger
base model, which is pre-trained with adversarial
data, to better capture the subtle differences in the
contrastive instances. We will leave this to future
work.

5.4 TImpact of Shots Number

Figure 3 illustrates the comparison between few-
shot baselines and ProToCo as the number of shots
K increases. ProToCo consistently outperforms the
few-shot baselines at all K on the three datasets.
The curves of both versions of SEED and GPT2-
PPL models quickly saturate compared to ProToCo
and changing to a larger backbone cannot bring
much improvements in GPT2-PPL method as K
increases, suggesting that fine-tuning PLMs is nec-
essary for improving few-shot performance for new
knowledge to be learnt.

Interestingly, the improvement of ProToCo over
T-Few becomes clearly smaller as K increases on
FEVER and VitaminC that are based on Wikipedia
data (as Wikipedia-like data might be seen during
PLM pre-training), but on the scientific domain
dataset SciFACT, consistency training still can lead
to a modest improvement even when K reaches 16
shots and is inclined to grow continuously. This
indicates the consistency training is especially help-
ful when the PLMs knows little about the type of
data in Scientific domain.

As K increases, ProToCo continues to narrow the
gap with the fully-supervised model that was fine-

| ICL(OPT-30B) | ProToCo (T-Few)

Dataset | zero-shot 1-shot | zero-shot  1-shot
. 0332 0324 | 0331 0342
SciFACT - 0.08) | (0.02)  (0.05)
0347 0442 | 0479  0.774

FEVER - 0.03) | (0.00)  (0.04)
o 0340 0284 | 038 0439
VitaminC - 0.08) | (0.00)  (0.04)

Table 3: Comparison between ProToCo (T-Few) and
ICL (OPT-30B). Only an instruction is provided to OPT-
30B in zero-shot setting. In few-shot setting, both task
instruction and 3 training instances (1 shot) are pro-
vided.

tuned on the full training set. On FEVER, only
using 4 labeled instances per class, it already out-
performs the fully-supervised model. On Vitam-
inC, however, the trend suggests that its perfor-
mance is not likely to catch up with the fully-
supervised model. Our analysis shows that the
chance is low to be able to sample contrastive in-
stances into such limited number of shots of train-
ing data. As a consequence, the contrastive nature
of this dataset might be underrepresented by the
sampled instances, potentially limiting the model
from effectively learning such features. We be-
lieve that using more training instances or a base
model pre-trained on contrastive data might boost
ProToCo’s performance on VitaminC, but we will
leave this to future work.

5.5 Comparison to ICL of Large PLMs

We compare ProToCo to ICL of relatively large
PLMs in both few-shot and zero-shot settings.
Specifically, we compare to OPT (Zhang et al.,
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Method Datasets
SciFACT FEVER  VitaminC
SelfconCoT 0.289 0.358 0.258
(OPT-30B) (0.04) (0.07) (0.06)
ProToCo 0.342 0.774 0.439
(T-Few) (0.05) 0.04) (0.04)

Table 4: Comparison with Self-Consistency Chain-of-
Thought (Wang et al., 2022) using 3 training instances.
The evaluation of FEVER and VitaminC are based on a
random subset of test set given limited resources.

2022) with 30B parameters'® — 10 times larger
than ProToCo, which is an open-source large causal
language model with similar performance as GPT-
3 (Brown et al., 2020). Results in Table 3 show
that ProToCo achieves much higher F1 score com-
pared to the few-shot ICL with OPT-30B. Com-
pared to the zero-shot ICL with OPT-30B, Pro-
ToCo clearly outperforms ICL on FEVER and Vi-
taminC datasets and performs equally well on Sci-
FACT. This confirms the effectiveness of ProToCo
in both settings and demonstrates how the consis-
tency training method enables a smaller PLM to
compete with the ICL method using a much larger
PLM on fact verification task.

5.6 Comparison to Self-Consistency Models

We compare ProToCo with the Self-Consistency
Chain-of-Thought (SelfconCoT) method (Wang
et al., 2022), which samples multiple outputs from
a language model and returns the most consistent
answer in the set. We implement the SelfconCoT
method following the details described in (Wang
et al., 2022) and use OPT with 6.7B parameters
as its base model and sample 20 outputs for each
instance!!. Experiments are conducted with 3 train-
ing instances (1-shot) and evaluated on the full test
set of SciFACT, and a random subset of the test
set in FEVER and VitaminC given the limited re-
sources we have.

Results in Table 4 show that ProToCo significantly
outperforms SelfconCoT on all datasets, despite
the fact that the latter has 2 times more parameters,
suggesting that PLM with our consistency training

Yhttps://huggingface.co/docs/
transformers/model_doc/opt

"'Given the high cost of GPT-3.5 API and unavailability
of checkpoints of PaLM (Chowdhery et al., 2022), we have
opted to utilize OPT as the base model and chosen the largest
checkpoint OPT-6.7B that can be accommodated with our
compute resources.

is more suitable for fact verification task. Addition-
ally, using the same hardware, ProToCo is consider-
ably more efficient than SelfconCoT, taking around
6 hours to finish 4 runs of experiments thanks to
the PEFT method, while SelfconCoT needs around
14 hours.

6 Conclusion and Future Work

We propose a model called ProToCo to improve
few- and zero-shot fact verification based on con-
sistency training of PLMs. Experiments on three
public datasets show that ProToCo achieves promis-
ing fact verification performance by outperform-
ing the existing few- and zero-shot baselines,
the in-context learning on large PLMs, and the
self-consistency chain-of-thought method. Our
method also outperforms fully-supervised model
on FEVER dataset.

In the future, we will explore few- and zero-shot
solutions for other stages of fact-checking, e.g., ev-
idence retrieval and justification generation, and
combine them with ProToCo. We also plan to con-
duct experiments to evaluate the performance and
level of consistency of larger language models (e.g.,
GPT-3 (Brown et al., 2020), InstructGPT (Ouyang
et al., 2022) and LLaMA (Touvron et al., 2023))
on the fact verification task, when the computing
resources are available.

7 Limitations

While ProToCo works well with our consistency
training for improving fact verification under few-
shot and zero-shot settings, our work has some limi-
tations. Due to limited resources, currently we were
unable to conduct comparison with larger PLMs
and examine if extremely large models have already
developed the similar or better level of consistency
for fact verification on their own. In addition, our
experiments show that consistency training brings
improvements in both settings using only gold ev-
idence. However, the retrieved evidence in real-
world setting can be noisy and incomplete. That
said, the performance of ProToCo on non-oracle
evidence requires further study. To utilize consis-
tency constraints, ProToCo still needs to fine-tune
the PLMs. Also, in zero-shot setting, the labels of
logical variants are assigned with the predictions
of the original claim by the base model, which
could be inaccurate and thus affect the consistency
training.

4563


https://huggingface.co/docs/transformers/model_doc/opt
https://huggingface.co/docs/transformers/model_doc/opt

References

Stephen Bach, Victor Sanh, Zheng Xin Yong, Al-
bert Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry,
Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiqing
Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani,
Han Wang, Jason Fries, Maged Al-shaibani, Shanya
Sharma, Urmish Thakker, Khalid Almubarak, Xian-
gru Tang, Dragomir Radev, Mike Tian-jian Jiang, and
Alexander Rush. 2022. PromptSource: An integrated
development environment and repository for natural
language prompts. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics: System Demonstrations, pages 93—104, Dublin,
Ireland. Association for Computational Linguistics.

Roberto Battiti. 2009. Maximum satisfiability problem,
pages 2035-2041. Springer US, Boston, MA.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers),
pages 1-9, Dublin, Ireland. Association for Computa-
tional Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models are few-
shot learners. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard,
Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexan-
der Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022.

Palm: Scaling language modeling with pathways.
CoRR, abs/2204.02311.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah A. Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. CoRR,
abs/2002.06305.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, Eduard Hovy, Hinrich Schiitze, and Yoav
Goldberg. 2021. Measuring and improving consistency
in pretrained language models. Transactions of the As-
sociation for Computational Linguistics, 9:1012-1031.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for
Computational Linguistics, 8:34—48.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021. Mak-
ing pre-trained language models better few-shot learners.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 3816-3830,
Online. Association for Computational Linguistics.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational Lin-
guistics, 10:178-206.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning. In
The Tenth International Conference on Learning Rep-
resentations, ICLR 2022, Virtual Event, April 25-29,
2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 2790-2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of large
language models. In The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brah-
man, Chandra Bhagavatula, Ronan Le Bras, and Yejin
Choi. 2022. Maieutic prompting: Logically consistent
reasoning with recursive explanations. In Proceedings
of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1266—1279, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics.

Nora Kassner and Hinrich Schiitze. 2020. Negated
and misprimed probes for pretrained language models:

4564


https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.1007/978-0-387-74759-0_364
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1162/tacl_a_00454
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2022.emnlp-main.82
https://aclanthology.org/2022.emnlp-main.82
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698

Birds can talk, but cannot fly. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7811-7818, Online. Association for
Computational Linguistics.

Nora Kassner, Oyvind Tafjord, Hinrich Schiitze, and
Peter Clark. 2021. BeliefBank: Adding memory to
a pre-trained language model for a systematic notion
of belief. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8849-8861, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Ouyu Lan, Xiao Huang, Bill Yuchen Lin, He Jiang,
Liyuan Liu, and Xiang Ren. 2020. Learning to contex-
tually aggregate multi-source supervision for sequence
labeling. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages
2134-2146, Online. Association for Computational Lin-
guistics.

Nayeon Lee, Yejin Bang, Andrea Madotto, and Pascale
Fung. 2021. Towards few-shot fact-checking via per-
plexity. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 1971-1981, Online. Association for Computa-
tional Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt tun-
ing. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
3045-3059, Online and Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is bet-
ter and cheaper than in-context learning. In Advances
in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems
2022, NeurlIPS 2022, New Orleans and virtual.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022b. What makes
good in-context examples for GPT-3? In Proceedings
of Deep Learning Inside Out (DeeLIO 2022): The 3rd
Workshop on Knowledge Extraction and Integration for
Deep Learning Architectures, pages 100—114, Dublin,
Ireland and Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-shot
prompt order sensitivity. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8086—8098,

Dublin, Ireland. Association for Computational Linguis-
tics.

Jing Ma, Wei Gao, Shafiq Joty, and Kam-Fai Wong.
2019. Sentence-level evidence embedding for claim
verification with hierarchical attention networks. In
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 2561-2571,
Florence, Italy. Association for Computational Linguis-
tics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
1022-1035.

Eric Mitchell, Joseph Noh, Siyan Li, Will Armstrong,
Ananth Agarwal, Patrick Liu, Chelsea Finn, and Christo-
pher Manning. 2022. Enhancing self-consistency and
performance of pre-trained language models through
natural language inference. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language
Processing, pages 1754-1768, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning BERT:
misconceptions, explanations, and strong baselines. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pages 6859-6866.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul F.
Christiano, Jan Leike, and Ryan Lowe. 2022. Train-
ing language models to follow instructions with human
feedback. In NeurIPS.

Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen
Kan, and William Yang Wang. 2021. Zero-shot fact
verification by claim generation. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume
2: Short Papers), pages 476—483, Online. Association
for Computational Linguistics.

Ronak Pradeep, Xueguang Ma, Rodrigo Nogueira, and
Jimmy Lin. 2021. Scientific claim verification with
VerT5Serini. In Proceedings of the 12th International

4565


https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2021.emnlp-main.697
https://doi.org/10.18653/v1/2021.emnlp-main.697
https://doi.org/10.18653/v1/2021.emnlp-main.697
https://doi.org/10.18653/v1/2020.acl-main.193
https://doi.org/10.18653/v1/2020.acl-main.193
https://doi.org/10.18653/v1/2020.acl-main.193
https://doi.org/10.18653/v1/2021.naacl-main.158
https://doi.org/10.18653/v1/2021.naacl-main.158
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/P19-1244
https://doi.org/10.18653/v1/P19-1244
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://aclanthology.org/2022.emnlp-main.115
https://aclanthology.org/2022.emnlp-main.115
https://aclanthology.org/2022.emnlp-main.115
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://doi.org/10.1609/aaai.v33i01.33016859
https://doi.org/10.1609/aaai.v33i01.33016859
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.acl-short.61
https://doi.org/10.18653/v1/2021.acl-short.61
https://aclanthology.org/2021.louhi-1.11
https://aclanthology.org/2021.louhi-1.11

Workshop on Health Text Mining and Information Anal-
ysis, pages 94-103, online. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:140:1-140:67.

Abhilasha Ravichander, Eduard Hovy, Kaheer Suleman,
Adam Trischler, and Jackie Chi Kit Cheung. 2020. On
the systematicity of probing contextualized word repre-
sentations: The case of hypernymy in BERT. In Pro-
ceedings of the Ninth Joint Conference on Lexical and
Computational Semantics, pages 88—102, Barcelona,
Spain (Online). Association for Computational Linguis-
tics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982-3992,
Hong Kong, China. Association for Computational Lin-
guistics.

Arkadiy Saakyan, Tuhin Chakrabarty, and Smaranda
Muresan. 2021. COVID-fact: Fact extraction and veri-
fication of real-world claims on COVID-19 pandemic.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2116-2129,
Online. Association for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaf-
fin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful
Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chh-
ablani, Nihal V. Nayak, Debajyoti Datta, Jonathan
Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Man-
ica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos
Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Févry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,
Stella Biderman, Leo Gao, Thomas Wolf, and Alexan-
der M. Rush. 2022. Multitask prompted training enables
zero-shot task generalization. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with con-
trastive evidence. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 624—643, Online. Association for
Computational Linguistics.

James Thorne, Andreas  Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a
large-scale dataset for fact extraction and VERification.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 809-819, New Orleans, Louisiana.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5998-6008.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and Han-
naneh Hajishirzi. 2020. Fact or fiction: Verifying sci-
entific claims. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 7534-7550, Online. Association for
Computational Linguistics.

David Wadden, Kyle Lo, Lucy Lu Wang, Arman Cohan,
Iz Beltagy, and Hannaneh Hajishirzi. 2022. MultiVerS:
Improving scientific claim verification with weak su-
pervision and full-document context. In Findings of
the Association for Computational Linguistics: NAACL
2022, pages 61-76, Seattle, United States. Association
for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, and Denny Zhou. 2022. Self-consistency
improves chain of thought reasoning in language models.
CoRR, abs/2203.11171.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2022. Finetuned language mod-
els are zero-shot learners. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neural
text generation with unlikelihood training. In 8th In-

ternational Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Dustin Wright, David Wadden, Kyle Lo, Bailey Kuehl,
Arman Cohan, Isabelle Augenstein, and Lucy Lu Wang.
2022. Generating scientific claims for zero-shot scien-
tific fact checking. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 2448-2460, Dublin,
Ireland. Association for Computational Linguistics.

4566


https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.acl-long.165
https://doi.org/10.18653/v1/2021.acl-long.165
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.18653/v1/2022.findings-naacl.6
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://doi.org/10.18653/v1/2022.acl-long.175
https://doi.org/10.18653/v1/2022.acl-long.175

Xia Zeng and Arkaitz Zubiaga. 2022. Aggregating pair-
wise semantic differences for few-shot claim verifica-
tion. PeerJ Comput Sci, 8:e1137.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. 2022. OPT: open pre-trained
transformer language models. CoRR, abs/2205.01068.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
BERT fine-tuning. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Prompt consis-
tency for zero-shot task generalization. In Findings of
the Association for Computational Linguistics: EMNLP
2022, pages 2613-2626, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

4567


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680879/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680879/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680879/
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://aclanthology.org/2022.findings-emnlp.192
https://aclanthology.org/2022.findings-emnlp.192

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section 7

X A2. Did you discuss any potential risks of your work?
No risk.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 5.1

¥/ B1. Did you cite the creators of artifacts you used?
Section 5.1 and References

B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The artifacts used in this paper are publicly available and free.

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Section 5.1

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 5.1

C ¥ Did you run computational experiments?
Section 5
¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?

Section 5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

4568


https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5.1.3

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 5.2, 5.3, 5.4, 5.5 and 5.6

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 5.1.3, 5.6

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Not applicable. Left blank.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

Not applicable. Left blank.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

4569



