
Findings of the Association for Computational Linguistics: ACL 2023, pages 4420–4432
July 9-14, 2023 ©2023 Association for Computational Linguistics

Towards Alleviating the Object Bias in Prompt Tuning-based Factual
Knowledge Extraction

Yuhang Wang†, Dongyuan Lu‡, Chao Kong† and Jitao Sang†∗

†Beijing Key Lab of Traffic Data Analysis and Mining
Beijing Jiaotong University, Beijing, China

{yhangwang, kongchao, jtsang}@bjtu.edu.cn
‡School of Information Technology and Management

University of International Business and Economics, Beijing, China
ludy@uibe.edu.cn

Abstract

Many works employed prompt tuning meth-
ods to automatically optimize prompt queries
and extract the factual knowledge stored in Pre-
trained Language Models. In this paper, we
observe that the optimized prompts, including
discrete prompts and continuous prompts, ex-
hibit undesirable object bias. To handle this
problem, we propose a novel prompt tuning
method called MeCoD consisting of three mod-
ules: Prompt Encoder, Object Equalization and
Biased Object Obstruction. Experimental re-
sults show that MeCoD can significantly reduce
the object bias and at the same time improve
accuracy of factual knowledge extraction.

1 Introduction

Pretrained language models (PLMs) have become
a standard practice in NLP and achieved strong per-
formance on many downstream tasks (Qiu et al.,
2020; Liu et al., 2021a). A recognized reason why
PLMs are so powerful is the knowledge learned
from a large amount of public corpus (Liu et al.,
2019a). Recently, researchers have taken interest
in measuring and extracting the factual knowledge
in PLMs. Petroni et al. (2019) first formally pro-
posed the LAMA benchmark, which employs hand-
crafted prompts to retrieve factual knowledge in the
form of < subject, relation, object > triples. For ex-
ample, regarding a factual knowledge triple < Dou-
glas Adams, native language, English >, LAMA
can query PLMs with “The native language of Dou-
glas Adams is [MASK]” to extract the native lan-
guage of Douglas Adams, where “The native lan-
guage of [X] is [MASK]” is a manual prompt for
the relation “native language” and “[MASK]” is a
placeholder for the object to predict.

In order to extract factual knowledge more effec-
tively, many works take a step toward automatically
tuning prompts with additional training set. Shin
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Figure 1: Object bias in different prompt-based knowl-
edge extraction methods: LAMA, AutoPrompt, Prefix-
tuning and P-tuning. (a) demonstrates how to construct
subject-masked prompts. (b), (c) show the derived logits
of top-retrieved objects for original and our proposed
prompt-tuning methods, respectively

et al. (2020) proposed AutoPrompt to generate dis-
crete prompts automatically based on gradient op-
timization by maximizing the expected likelihood
of the ground truth object. Instead of searching
discrete prompts, a more flexible research line is
tuning continuous prompts directly in the input
embedding space. For example, Liu et al. (2021b)
proposed P-tuning to optimize a continuous prompt
for each factual relation, and achieved SOTA per-
formance. Li and Liang (2021) proposed a semi-
automatic method called Prefix-tuning to learn a
prefix to add to manual prompts. Newman et al.
(2022) applied Prefix-tuning to improve the robust-
ness of factual knowledge extraction.

Although the above prompt tuning methods
achieve good performance, we discuss in this paper
that they suffer from severe object bias problem.
As illustrated in Figure 1(a), we construct subject-
masked prompts for different prompt-based knowl-
edge extraction methods. Example prompts for
relation P103 are illustrated in Table 1. We con-
duct experiments on LAMA benchmark (Petroni
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Extraction Method Prompt Template

LAMA
Original The native language of Pierre Messmer is [MASK] .
Subject-masked The native language of [MASK] is [MASK] .

AutoPrompt
Original Pierre Messmer [T] [MASK] .
Subject-masked [MASK] [T] [MASK]

Prefix-tuning
Original [P] The native language of Pierre Messmer is [MASK] .
Subject-masked [P] The native language of MASK is [MASK] .

P-tuning
Original [P] [MASK] [P] Pierre Messmer [P]
Subject-masked [P] [MASK] [P] [MASK] [P]

Table 1: Example of original and subject-masked prompt templates for relation P103. “[T]”,“[P]” indicate discrete
and continuous optimizable prompt token, respectively. The number of [P] and [T] can be customized. “[MASK]”
in bold is the placeholder for the object to predict.

et al., 2019) which consists of 41 fact relations. Fig-
ure 1(b) shows the derived logits of top-k retrieved
objects in descending order. Since the subject is
masked in the issued prompt template, no context
is provided and an even logit distribution for dif-
ferent object candidates is expected. Taking the
fact < Douglas Adams, native language, English >
for example, objects like “French”, “English” and
“Russian” should be treated equally when Douglas
Adams is masked. However, we observe non-trivial
slopes (|w| in Figure 1 (b)) of the regression lines
in the 4 examined knowledge extraction methods,
i.e., they all exhibit bias towards specific objects.
Notably, the 3 prompt-tuning methods of Auto-
Prompt, P-tuning and Prefix-tuning, have more
inclined slopes and thus exhibit more severe ob-
ject bias. More object bias measurement results
are available at Section 2.1. Given the observed
object bias in prompt tuning methods, we further
design analysis experiments and find the negative
influence of object bias on knowledge extraction
accuracy (detailed in Section 2.2). This motivates
us to develop solutions to both alleviate the ob-
ject bias problem and contribute to more accurate
factual knowledge extraction.

In this paper, to address the object bias prob-
lem in prompt-tuning stage, we propose MeCoD
(Maximum entropy and Contrastive learning for
object Debiasing) towards unbiased factual knowl-
edge extraction 1. The basic idea is deriving
equalized object predictions with subject-masked
prompt, and at the same time disencouraging the
biased objects with original prompt. These goals

1 Since continuous prompts are more effective and widely
adopted, MeCoD is designed to improve continuous prompt
tuning methods, e.g., P-tuning, Prefix-tuning.

are realized by a maximum entropy-based Ob-
ject Equalization module and contrastive learning-
based Biased Object Obstruction module, respec-
tively. Figure 1 (c) illustrates the intuitive effect of
object bias alleviation.
Contributions. We summarize the main contribu-
tions of this paper as follows:

• We position the object bias problem in prompt
tuning-based factual knowledge extraction.
The influence of object bias on knowledge
extraction accuracy is also discussed.

• We propose an object debiasing method at the
prompt tuning stage to alleviate the object bias
and improve accuracy of factual knowledge
extraction.

• The effectiveness of the proposed method is
validated with sufficient qualitative and quan-
titative experiments.

2 Data Analysis

Object Bias Definition. Factual knowledge can be
represented in form of <subject, relation, object>
triples. Object bias in factual knowledge extrac-
tion refers to the phenomenon that the pretrained
language model with prompts retrieves object can-
didates unequally when subject is not assigned, e.g.,
prefering “French” to “English” in the prediction
of person’s native language when the person is not
specified.

2.1 Object Bias Measurement.
Object bias inherently considers the uncertainty
of retrieved objects with subject-masked prompt
queries. We thus employ entropy (Shannon, 1948)
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Method Entropy Comparison with 2.305

LAMA 2.077 -9%
AutoPrompt 1.901 -17%
P-tuning 1.754 -23%
Prefix-tuning 2.002 -13%

Table 2: The averaged object bias entropy over 41 re-
lations of different knowledge extraction methods on
LAMA benchmark.

in this work to measure object bias. Specifically,
we define object bias entropy in terms of the rela-
tion R as:

entropy(R) = −
k∑

i=1

pR(i)log2(pR(i)), (1)

where pR is obtained by selecting top-k subject-
masked logit values and normalizing with softmax
function, k denotes the number of logit values used
to calculate entropy. In our subsequent analysis,
we set k to 10, and entropy(R) will achieve a max-
imum value of about 2.305 when the object logits
are equal. The smaller the value, the more signifi-
cant the object bias.

We measure the 4 typical factual knowledge ex-
traction methods on the LAMA benchmark ac-
cording to Eqn.1. The averaged result over 41
relations is shown in Table 2. It is easy to find
that the observation in the form of object bias en-
tropy is consistent with that of slope in Figure 1:
(1) The 4 methods all exhibit object bias, the en-
tropy values noticeable decrease from 2.305 by 9%,
17%, 23% and 13%, respectively. (2) The object
bias entropy of prompt tuning methods, including
AutoPrompt, Prefix-tuning and P-tuning, is more
smaller than that of manual prompts, LAMA. This
observation further demonstrates that prompt tun-
ing methods suffer more serious object bias than
manual prompts. Note that the object bias entropy
of Prefix tuning falls in between that of manual
prompts, LAMA and full-automatic prompts, Au-
toPrompt and P-tuning. A possible reason is that
the manual template in the Prefix-tuning limits the
learning of object bias.

2.2 Influence on Knowledge Extraction
In order to investigate the influence of object
bias on knowledge extraction, we compare the re-
trieved object candidates from original prompts and
subject-masked prompts. Specifically, we exam-
ine the rank of ground-truth object in the retrieved

Method All Incorrectly predicted

LAMA 0.260 0.258
AutoPrompt 0.380 0.416
P-tuning 0.432 0.479
Prefix-tuning 0.374 0.394

Table 3: The Pearson correlation coefficient between
the rank corresponding to original prompt and subject-
masked prompt.

Dateset P@1 Entropy

Original 49.413 1.754
Undersampled 48.776 1.924

Table 4: Results for P-tuning fit to original dataset and
undersampled dataset.

object lists and calculate Pearson correlation co-
efficient between the rank corresponding to the
original prompt and the subject-masked prompt.

According to the result on all testing samples,
we find that the correlations of prompt tuning meth-
ods are higher than that of LAMA (Table 3). This
illustrates the prediction results of prompt tuning
methods are influenced more significantly by ob-
ject bias than that of manual prompts. Furthermore,
comparing between the results of all testing sam-
ples and incorrectly predicted samples, it is easy
to observe that correlation coefficient of LAMA
remains almost unchanged, while those of the 3
prompt tuning methods increase obviously in incor-
rectly predicted samples. This suggests that some
of the incorrect predictions can be attributed to the
bias towards specific objects, and motivates us to
address the object bias problem to further improve
knowledge extraction accuracy.

2.3 Undersampling-based Preliminary
Attempts on Object Debiasing.

The above observations demonstrate the necessity
for object debiasing. Object bias is attributed to
both the pretraining stage of PLMs and prompt
tuning stage. The observed object bias of LAMA
mainly origins from the pre-training stage. While
some pilot studies (Guo et al., 2022) are devoted to
reducing bias in the pre-trained language models,
we found in the above analysis that the object bias
at prompt-tuning stage is more severe than that
at the pre-training stage, and thus focus on object
debiasing at the prompt tuning stage in this paper.
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Figure 2: Overall architechture of the proposed MeCoD.

The straightfoward cause of object bias at the
prompt tuning stage is imbalanced training data for
optimizing prompts. Take P-tuning as an example,
we make a preliminary attempt by retraining it with
undersampled balanced training set. In order not to
excessively reduce the number of samples, we first
group the training samples according to objects,
and then randomly undersample the two groups
with the largest number of samples. In this case,
their numbers are consistent with the number of the
third largest group. Table 4 summarizes the perfor-
mance of P-tuning trained with different training
sets.

We observe that object bias is alleviated on un-
dersampled training set, and this validates the attri-
bution of imbalanced tuning set in deriving object
bias. However, we find that the P@1 drops clearly
due to insufficient use of data, that is, accuracy is
sacrificed for debiasing. This inspires us to design
an effective prompt tuning method, instead of sim-
ply balancing training data, to alleviate object bias
as well as improve accuracy performence.

3 Methodology

We present the overall framework, MeCoD, as il-
lustrated in Figure 2. The basic idea is to improve
prompt encoder so that issuing the resultant embed-
dings to popular PLMs no longer exhibits object
bias. The goals are two-fold: (1) Objects should
have equal opportunities to be extracted from PLMs
by subject-masked prompt; (2) The biased objects
should be prevented from being extracted by the
original prompt with specified subject. Correspond-
ingly, MeCoD includes three modules. The first
module is Prompt Encoder to be optimized, which
takes original and subject-masked prompts as in-

puts and issues the resultant embeddings to PLMs
to obtain mask hidden state ho and subject-masked
logits pm respectively (see Section 3.1). The sec-
ond module is Object Equalization, which takes
subject-masked logits pm as input and forces model
to treat objects equally, when the subject is masked
(see Section 3.2). The third module is Biased Ob-
ject Obstruction which further prevents the biased
objects from being extracted by forcing the mask
hidden state ho away from biased object embed-
dings and close to ground-truth object embedding
(see Section 3.3). We will take P-tuning as an exam-
ple to elaborate the details of each module below.

3.1 Prompt Encoder
In this module, we first construct subject-masked
input by replacing “[X]” with “[MASK]” , as shown
in Table 1. The number of “[MASK]” is set as the
number of tokenized subject. As shown in Figure 2
(left), given original prompt Io and subject-masked
prompt Im, we use Prompt Encoder to get input
embeddings eo and em for PLMs. Then, mask
hidden state ho, subject-masked logits pm and the
MLM (Masked Language Modeling) loss Lmlm,
can be obtained from PLMs as follows:

ho = PLMs(eo), hm = PLMs(em),

po = MLM-head(ho),

pm = MLM-head(hm),

Lmlm = − 1

N

N∑

i=1

yi log2(poi),

(2)

where yi denotes the ground truth. pm will be
used to equalize the objects with respect to subject-
masked prompt in Section 3.2. Both ho and pm
will be employed to obstruct the influence of biased
objects in Section 3.3.
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3.2 Object Equalization
According to data analysis in Section 2, we con-
sider that the probabilities of object candidates
should be equalized when issuing the subject-
masked prompt to PLMs. In this subsection, we
will introduce a method based on maximum en-
tropy to force objects to be treated equally when
subject is not given. Note that only the fact-related
objects need to be considered, e.g., regarding re-
lation P103 (native language), objects with risk
to bias the prediction results are like “English”,
“French” instead of “apple”. To filter out the un-
related objects, we first sort subject-masked logits
pm with descending order to get pd, and empir-
ically reserve the top-300 objects co. Then, we
further employ a linear layer as a binary classifier
named Object Selector to identify the objects to be
equalized. Specifically, the object selector takes
the object embeddings as input and returns a binary
vector v ∈ {0, 1}300 with gumbel softmax (Jang
et al., 2017) as follows:

v = gumbel-softmax(Linear(E(co))), (3)

where E denotes embedding layer of PLMs. The
object sets corresponding to v(i) = 1, i =
1, 2, ..., 300 are selected to be equalized. Finally,
we construct the loss Lme based on Maximum En-
tropy:

Lme = −
300∑

i=1

pd(i)log2(pd(i))v(i). (4)

3.3 Biased Object Obstruction
This module further reduce the probability of re-
trieving biased objects when issuing prompt with
specified subjects, and we introduce a module
based on contrastive learning. The key idea is to
simultaneously minimize the representation gap
between “[MASK]” and ground-truth object and
maximize that between “[MASK]” and irrelevant
biased objects. Specifically, we regard the objects
corresponding to v(i) = 1, i = 1, 2, ..., 300 as bi-
ased objects except for the ground-truth object. We
formalize it as a contrastive learning problem and
propose to minimize the following loss (van den
Oord et al., 2018):

Lcl = −log esim(ho,eg)/τ

∑
eb

esim(ho,eb)/τ + esim(ho,eg)/τ
, (5)

where sim(·) calculates the consine similarity of dif-
ferent representations, eg and eb denote the word

embeddings of ground-truth object and biased ob-
jects, respectively. τ is the temperature, controlling
the difficulty of distinguishing between positive
and negative samples. Intuitively, the contrastive
loss forces the model to push the mask hidden state
away from the embeddings of biased objects, and
pull it to the ground-truth object embedding.

During training, the model is optimized by
jointly minimizing loss L as follows:

L = Lmlm − λ1Lme + λ2Lcl, (6)

where λ1 and λ2 are the coefficients to balance the
three training losses.

4 Experiments

4.1 Experimental Settings

Datasets. We adopt the LAMA-TREx (Petroni
et al., 2019) as the main testing set which consists
of 41 Wikidata relations and altogether 29,500 test-
ing triples. Besides, we also evaluate our method
on WIKI-UNI (Cao et al., 2021) which is con-
structed to ensure each object to appear the same
times for each relation. As for training, we use the
data collected by Shin et al. (2020) which contains
800 training samples and 200 developing samples
for each fact relation.
Evaluation metrics and baselines. In addition
to object bias entropy, we also evaluate the per-
formance on knowledge extraction with metrics
of precision-at-1 (P@1) and mean reciprocal rank
(MRR). We report average performance over 41
relations. In order to evaluate the effectiveness of
the proposed MeCoD, we implement the LAMA,
Prefix-tuning, P-tuning and Undersampling-based
solutions (see Section 2) as baselines. Specifi-
cally, LAMA provides hand-crafted prompts that
are less object-biased than prompt tuning methods.
P-tuning and Prefix-tuning are the representatives
of continuous prompt, which are more effective
and widely used.
Implementation details. For PLMs in our experi-
ments, we investigate BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019b) 2. The prompt
encoder is initialized by standard training prompt
encoder, e.g.,P-tuning based on LSTM (Shi et al.,
2015). We use the Adam optimizer (Kingma and
Ba, 2014) with its default configuration. For gra-
dient training, we fix parameters of PLMs, and set

2We use the the implementations of huggingface.
https://huggingface.co
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Method
BERT-base RoBERTa-base

P@1 MRR Entropy P@1 MRR Entropy

LAMA 29.641 39.312 2.077 15.206 22.791 1.972

Prefix-tuning 47.472 57.522 2.002 45.828 56.473 1.904
+ Undersampling 42.254 52.914 2.159 40.742 52.086 2.100
+ MeCoD 48.329(2% ↑) 58.553 2.145(7% ↑) 46.281(1% ↑) 57.072 2.298(16% ↑)
P-tuning 49.413 59.419 1.754 44.828 54.955 1.655
+ Undersampling 48.776 58.696 1.926 42.498 53.203 2.020
+ MeCoD 50.438(2% ↑) 60.335 2.141(22% ↑) 46.813(4% ↑) 57.474 2.109(27% ↑)

Table 5: Results on the LAMA benchmark using the BERT-base-cased and RoBERTa-base model.

Method
BERT-base RoBERTa-base

P@1 Entropy P@1 Entropy

P-tuning + MeCoD 50.438 2.141 46.813 2.109
w/o Object Equalization 50.301 1.808 46.471 1.661
w/o Biased Object Obstruction 50.317 2.212 46.625 1.984

Table 6: Ablation study.

the learning rate to 1e-5 to jointly optimize Prompt
Encoder and Object Selector. We set λ1 and λ2
to 0.2, 0.1 respectively. As for training time, take
MeCoD on P-tuning as an example, it spends about
40 minutes for each relation on 1 GPU device of
RTX A4000.

4.2 Quantitative Results
Table 5 shows the performance of each method on
the two selected PLMs. Briefly, MeCoD outper-
forms the baselines on both object bias and knowl-
edge extraction performance. Take P-tuning as
an example, enhanced with MeCoD, object bias
entropy increases by 22% and 27%, and P@1 in-
creases by 2% and 4% for BERT and RoBERTa,
respectively. This demonstrates that alleviating bias
contributes to improving the accuracy performance.
Similar results are observed in Prefix-tuning. This
demonstrates the generality and effectiveness of
our method. The results of Undersampling-based
methods illustrate that accuracy is sacrificed for
debiasing. The improvement is also reflected in the
evaluation results on WIKI-UNI dataset, as shown
in Table 9 and Table 10 in AppendixA.1.

4.3 Ablation Study
In order to clarify the source of performance im-
provement in MeCoD, we take P-tuning as an exam-
ple and conduct ablations by removing particular

modules from MeCoD. The ablation study results
are shown in Table 6. We can conclude that (1) Ob-
ject Equalization plays a crucial role in alleviating
bias, as removing the module causes object bias
entropy to decrease. The decreased accuracy shows
that Object Equalization module is helpful to im-
prove the accuracy by alleviating the object bias.
(2) Biased Object Obstruction is useful for ensuring
accuracy, because the contrastive loss forces model
not to be affected by biased objects. But it does not
alleviate object bias clearly, which may cause other
unexpected problems, so it’s not recommended to
be used alone.

4.4 Case Study
In order to better understand how MeCoD con-
tributes to alleviating object bias, as shown in Fig-
ure 3, we visualize the regression lines of subject-
masked logits of P-tuning and Prefix-tuning on
relation P178 (developer) and relation P103 (native
language), respectively. The lines corresponding
to MeCoD are relatively flatter, that is, the object
bias is alleviated clearly by our method, which is
consistent with quantitative results in Table 5. Fur-
thermore, we investigate the influence of alleviating
object bias on knowledge extraction by observing
the top-k candidates extracted by original prompt
and subject-masked prompt respectively on two
fact samples, as shown in Table 7. Take P-tuning
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Method
Top-k Candidates

original prompt subject-masked prompt

P-tuning
Atari(1) Boeing(2) IBM(4) IBM(1) Atari(2) Boeing(22)

13.789 12.980 12.662 11.851 11.846 7.071

P-tuning + MeCoD
Boeing(1) Atari(3) IBM(4) Atari(21) IBM(27) Boeing(53)

13.501 11.720 11.124 8.510 8.396 7.717

Prefix-tuning
French(1) English(2) Russian(3) French(1) Russian(2) English(5)

19.316 18.383 18.036 16.584 16.067 14.894

Prefix-tuning + MeCoD
English(1) French(2) Russia(3) Russian(213) French(257) English(279)

20.834 20.532 19.242 7.013 6.526 6.269

Table 7: Case Study: Top-k object candidates extracted by original prompt and subject-masked prompt about two
fact samples. The first (middle row) is the result about “the developer of B-17 Flying Fortress”. The second (bottom
row) is the result about “the native language of Douglas Adams”. The bold fonts indicate ground truth, the numbers
in parentheses are ranks of object candidates and the numbers below objects are the corresponding logit values.

Figure 3: Case Study: The regression lines of subject-
masked logits. (a) shows the result predicted by P-
tuning and MeCoD on relation P178. (b) shows the
result predicted by Prefix-tuning and MeCoD on relation
P103.

for example, by observing the results extracted by
subject-masked prompt, we find that the candidates’
logits of MeCoD are more even, which means less
object bias. However, P-tuning shows obvious bias
on some objects like “Atari”, “IBM”. Correspond-
ingly, as for the results extracted by original prompt,
MeCoD correctly predicts “Boeing”, but P-tuning
predicts incorrectly on biased object “Atari”, and
ranks the correct object at the second place. Simi-
lar results are observed in Prefix-tuning. Therefore,
we conclude that object bias is responsible to such
incorrect predictions.

4.5 Discussions

Our experiments show that object bias of prompt
tuning methods is undesirable. This inspires us
to investigate how prompt tuning methods extract
factual knowledge, and explore the potential cause
of object bias. Specifically, we take P-tuning for
example and illustrate in the following discussions
on relation P19 (place-of-birth).

Finding Nearest Neighbors. In order to figure out
the implication of the prompt token embeddings,
we follow (Lester et al., 2021) and find their nearest
neighbors from the frozen model’s vocabulary. As
shown in Table 11 3, we observe that the prompt to-
kens in close position exhibit similar patterns. This
indicates the tokens in different positions probably
play different roles, but we can not understand the
concrete meaning by the observation of their near-
est neighbors. Therefore, we further analyze the
the candidate words about prompt tokens, which is
returned by masked language modeling (MLM) of
PLMs.
Checking MLM Candidate Words. Table 8 il-
lustrates the MLM candidate words of prompt to-
kens. Specifically, the subject is set to “Claude
Arrieu” who was a prolific French composer born
in “Paris”. Two interesting observations include:
(1) The MLM candidate words of front and back
prompt tokens are mostly punctuations, while the
front also include articles. This indicates that
prompt tuning methods mimic human linguistic
expression to some extent. For example, we often
start a sentence with the article “the” and end it
with the punctuation “.”. (2) The results of mid-
dle prompt tokens exhibit literal correlations be-
tween “subject” and “[MASK]”. Specifically, it is
easy to find that the candidate words of Middle-
1 are related to the object, for example “London”
and even the ground-truth object “Paris”. Note
that the Middle-1 is the closest to “[MASK]”. As
for Middle-3, some candidate words can form the
names of famous people with the first token of

3We show Table 11 in Appendix A.2.
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Prompt token MLM candidate words

Front-1 . \ , the ) ; of and ?
Front-2 . , of \ - ) ; the ?
Front-3 . of , the in ; The \ a

Middle-1 . London : ##ville Amsterdam , ##s Paris -
Middle-2 Albert Victor Max Paris . Robert Amsterdam ##s ?
Middle-3 Albert Max Victor Robert . Eric Ann Raymond and

Back-1 , : ##il - . ; ##l ##el ##lyn
Back-2 : ##il - , . July August operator ;
Back-3 . ; ? ! | ... 0̆964 c -

Table 8: MLM candidate words of prompt tokens. Prompt template used in this case is “[P][P][P] [MASK] [P][P][P]
Claude Arrieu [P][P][P]”. [P] indicates prompt token, and we use “Front”, “Middle”, “Back” to represent their
positions. The words in bold indicate ground-truth object.

the subject, e.g., “Albert Claude”, “Victor Claude”,
“Robert Claude”. Note that the Middle-3 is the clos-
est to “subject”. The candidate words of Middle-2
can be seen as a mixture of the above two type
words. By combining the above two observations,
we conclude that prompt tuning methods extract
factual knowledge by depending on shallow literal
correlations rather than factual relations. Further-
more, we consider that the shallow correlations is
one of the potential cause of object bias. This needs
to be demonstrated by rigorous experiments and
analysis in the further works, and we just conjec-
ture it intuitively here.

5 Related work

Language Models as Knowledge Base. Since the
birth of Pretrained Language Models (PLMs), re-
searchers have observed that there are much knowl-
edge in PLMs. A typical research line is to ex-
plore whether the pre-training model can serve as
a knowledge base. Petroni et al. (2019) demon-
strated the existence of factual knowledge in PLMs
and probed the factual knowledge with cloze-style
prompts. Recently, Dai et al. (2021) proposed a
knowledge attribution method to identify the fac-
tual knowledge neurons that store facts in PLMs.
However, Cao et al. (2021) and Li et al. (2022)
questioned the previous conclusion by investigat-
ing the behaviors of MLMs, that current MLMs
can potentially serve as reliable factual knowledge
bases. In this paper, instead of knowledge storage
mechanism of the PLMs, we mainly investigate the
object bias problem in factual knowledge extrac-
tion during prompt tuning stage.
Factual Knowledge Extraction. In addition to

manual prompts, many researchers explored more
effective methods for factual knowledge extraction.
Jiang et al. (2020) mined prompts through text min-
ing and paraphrasing. Recently, researchers engage
in prompt tuning methods (Haviv et al., 2021) (Qin
and Eisner, 2021). For example, Shin et al. (2020)
trained a model to generate prompts automatically
based on gradient optimization. Liu et al. (2021b)
proposed P-tuning which completely abandoned
natural language forms and optimized a continu-
ous prompt for each factual relation. Li and Liang
(2021) proposed a semi-automatic method called
Prefix-tuning to learn a prefix to add to manual
prompts. Newman et al. (2022) applied Prefix-
tuning to improve the robustness of factual knowl-
edge extraction. In this paper, we observe that
prompt tuning methods suffer serious object bias,
and propose a framework MeCoD to alleviate it.

6 Conclusion

In this work, we position the object bias problem in
prompt tuning-based factual knowledge extraction,
and propose MeCoD, a framework for alleviating
the object bias and improving accuracy of factual
knowledge extraction. Experimental results demon-
strate the usefulness and generality of MeCoD. Be-
sides, we argue that the shallow association learned
by prompt tuning is one potential cause of object
bias. In the future, we are working towards ex-
ploring the mechanism behind deriving object bias,
designing more reliable prompt tuning methods for
factual knowledge extraction and investigating the
problems on generative pre-trained models, e.g.,
GPT2 (Radford et al., 2019), GPT3 (Brown et al.,
2020).
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Limitations

In this paper, we focus on masked language mod-
els, which have been shown very effective and are
widely used. One limitation of the present study is
not investigating another representative category of
language models, the generative pre-trained mod-
els (e.g., GPT2/3 ( Radford et al. (2019); Brown
et al. (2020))), We leave it for future work.
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A Appendix

A.1 Quantitative Results on WIKI-UNI
Datasets

Method P@1 MRR Entropy

LAMA 14.785 21.178 2.083

Prefix-tuning 21.806 28.342 2.000
+ Undersampling 21.427 27.846 2.150
+ MeCoD 22.745 29.479 2.283

P-tuning 22.310 29.251 1.776
+ Undersampling 22.467 28.982 1.964
+ MeCoD 22.935 29.971 2.092

Table 9: Results on the WIKI-UNI dataset using the
BERT-base-cased model, averaged over relations.

Method P@1 MRR Entropy

LAMA 8.411 12.920 1.960

Prefix-tuning 20.536 27.485 1.908
+ Undersampling 21.379 28.163 2.118
+ MeCoD 22.199 29.0.53 2.298

P-tuning 19.240 25.934 1.675
+ Undersampling 19.351 25.782 2.020
+ MeCoD 20.521 27.813 2.044

Table 10: Results on the WIKI-UNI dataset using the
RoBERTa-base model, averaged over relations.

A.2 Nearest Neighbors Case

Prompt token Nearest words

Front-1 Discovery ##cam ##final Kathy
Front-2 Kathy ##cam = ##cam
Front-3 = : ##cam com

Middle-1 = : Kathy based
Middle-2 = Kathy : actress
Middle-3 = actress suitcase divorced

Back-1 divorced Buildings tells suitcase
Back-2 divorced suitcase Shannon psychiatrist
Back-3 Shannon Cheryl divorced interception

Table 11: Top-4 nearest words of prompt tokens.
Prompt template used in this case is “[P][P][P] [MASK]
[P][P][P] Claude Arrieu [P][P][P]”. [P] indicates prompt
token, and we use “Front”, “Middle”, “Back” to repre-
sent their positions.
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