
Findings of the Association for Computational Linguistics: ACL 2023, pages 4244–4264
July 9-14, 2023 ©2023 Association for Computational Linguistics

Understanding the Cooking Process with English Recipe Text

Yi Fan
Heidelberg Institute for Theoretical Studies

Heidelberg, Germany
yi.fan@h-its.org

Anthony Hunter
Department of Computer Science

University London College
London, United Kingdom
anthony.hunter@ucl.ac.uk

Abstract

Translating procedural text, like recipes, into a
graphical representation can be important for
visualizing the text, and can offer a machine-
readable formalism for use in software. There
are proposals for translating recipes into a flow
graph representation, where each node repre-
sents an ingredient, action, location, or equip-
ment, and each arc between the nodes denotes
the steps of the recipe. However, these pro-
posals have had performance problems with
both named entity recognition and relationship
extraction. To address these problems, we pro-
pose a novel framework comprising two mod-
ules to construct a flow graph from the input
recipe. The first module identifies the named
entities in the input recipe text using BERT, Bi-
LSTM and CRF, and the second module uses
BERT to predict the relationships between the
entities. We evaluate our framework on the En-
glish recipe flow graph corpus. Our framework
can predict the edge label and achieve the over-
all F1 score of 92.2, while the baseline F1 score
is 43.3 without the edge label predicted.

1 Introduction

Recipes, one of everyday life’s most common pro-
cedural texts, explain how to cook a dish using clear
step-by-step instructions. With many global chal-
lenges directly related to food, nutrition and health-
care (Schulze et al., 2018; Branca et al., 2019),
analysing recipe texts is now attracting attention
in the field of natural language processing(NLP)
and artificial intelligence as a cross-disciplinary
research focus (van Erp et al., 2021).

Having demonstrated that flowcharts are reason-
able representations of procedural texts like recipes
due to their ability to clearly and concisely present
workflows or processes (Maeta et al., 2015), much
research has focused on how they can be obtained
from text (Papadopoulos et al., 2022; Yamakata
et al., 2020; Donatelli et al., 2021). Each flowchart
node represents a single word or a sequence of

words in the input text, and reflecting basic con-
cepts such as tools, actions and materials, and the
edges state the relationship between two nodes. An
example of a flowchart with its original recipe text
is shown in Figure 1, and we refer the reader to
see more examples in Appendix D. Generally, the
frameworks for this task includes two parts, named
entity recognition (NER) and relationship extrac-
tion (RE). However, the previous frameworks for
English recipes can only detect which nodes are
interconnected without identifying the label of the
edges in the flowchart, and the overall F1 score for
the whole framework is only 43.3 (Yamakata et al.,
2020). Although a subsequent proposal by Do-
natelli et al. (2021) improves the overall F1 score
to 72.3, it still does not solve the edge label recog-
nition problem, and there is room for performance
improvement. Thus, this research aims to address
these issues by proposing a better framework for
understanding English recipe texts that can produce
a complete flow graph based on the input recipe.

In our framework, we use BERT (Devlin et al.,
2018), Bi-LSTM (Huang et al., 2015) and CRF
(Lafferty et al., 2001) to recognise the named en-
tities as the nodes of the output flow graph and
then extract their relationship by applying BERT
to construct the edges. Unlike the previous work,
which employed a dependency parser or used man-
ually selected features to produce a spanning ar-
borescence to generate a flowchart, we treat the
edge prediction task as a classification problem that
can directly predict the relationship of any pair of
nodes by taking advantage of the large pre-trained
model. We evaluated our framework on the English
recipe flow graph corpus (Yamakata et al., 2020),
and our framework surpasses the existing methods’
performance in this task when the edges’ label is
predicted. This implies that our framework has
potential to provide guidance to cooking robots, de-
tect allergic food sources in recipes, convert recipes
into low-calorie versions, etc.
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Figure 1: The visualisation of the output flow graph for the recipe “Easy rocket, cherry tomato and
pine nut salad.”

2 Related work

There has been a growing interest in the analysis
of recipes by scholars in NLP and deep learning,
for example, studying of recipes from a linguistic
perspective (Jurafsky, 2014), detecting allergens in
recipes for users to improve recipe recommenda-
tion systems (Alemany et al., 2016), finding pat-
terns of spice and food combinations in recipes
(Jain et al., 2015), exploring food and recipes to
help meet the challenges of sustainable and healthy
eating (Willett et al., 2019) and making a robot that
can cook (Bollini et al., 2013).

Meanwhile, much research has focused on how
to represent the semantics of the input text. Mo-
mouchi (1980) proposes using flowcharts to repre-
sent recipes, which was the first proposal for pro-
cedural text understanding. Representing recipes
as graphs allows for analysis, such as measuring
the similarity between recipes (Maeta et al., 2015).,
which indicates that graph structure can usefully

reflect the semantic information in a recipe. Mori
et al. (2012) proposes a machine learning approach
for processing Japanese recipe texts. The limita-
tion of their study is that it only focuses on entity
relations within the same sentence, which means
that their work is insufficient to convert recipes into
flowcharts. The manually annotated results of Mori
et al. (2014) show that directed acyclic graphs are
a suitable representation for natural language un-
derstanding of the procedural cooking text. Maeta
et al. (2015) proposes a framework composed of
NER and maximum spanning tree estimation for
procedural text understanding. Although the results
of their framework tests on the Japanese recipe cor-
pus Mori et al. (2014) are not very encouraging, the
design of the whole framework is inspiring for the
follow-up work. Yamakata et al. (2017) annotates
a corpus of English recipes containing 100 recipes
using the method of Mori et al. (2014). They aim to
analyse the structural differences between Japanese
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recipes and English recipes. They compare the an-
notated named entities in the Japanese and English
corpora, identify lexical, semantic and underlying
structural differences between the Japanese and En-
glish recipes, and analyse their reasons. One of
their most important results is the demonstration
that it is feasible to annotate English recipe texts
using the Mori et al. (2014) guide, as most previous
work has focused on Japanese recipe texts.

Building on the work of Yamakata et al. (2017),
Yamakata et al. (2020) add 200 recipe texts in En-
glish annotated with named entities and flowchart
representations to the original corpus of 100 recipes
to produce a new English flow graph corpus (300-
r). The label of the named entities is shown in
Table 1, and the label for the edges is shown in
Table 2. They propose a framework (Y’20) for
this corpus to output flowcharts. Firstly, they train
BERT-NER for the NER task. Secondly, they treat
all entities in a recipe as a sequence and extract
the flowchart using a dependency-style maximum
spanning tree parser. The result of edge construc-
tion for the flow graph is acceptable when the cor-
rectly labelled sequences are entered. However,
the model’s performance drops dramatically when
the input is a sequence of named entities extracted
from the previous model. Moreover, the edges of
the flowchart in their output are unlabelled. Do-
natelli et al. (2021) applies a two-layered BiLSTM
encoder generating predictions in a CRF output
layer with ELMo embeddings (Peters et al., 2018)
for the NER task. For predicting edges, they use
the biaffine dependency parser by Dozat and Man-
ning (2016), implemented by Gardner et al. (2018).
Although they achieve state-of-art performance on
the 300-r corpus, the labelling of the edges remains
unaddressed. To the best of our knowledge, we are
the first to design a framework to produce a com-
plete flow graph for understanding English recipes.

3 The whole framework

To convert the input recipe text into flowchart out-
put, we need two steps to process it, namely recog-
nising named entities and identifying relationships
between named entities. Therefore, in our com-
plete framework, we have two main modules to
deal with those two tasks. The following subsec-
tions will introduce why we choose such models
and how we use them in detail.

Tag Meaning

F Food
T Tool
D Duration
Q Quantity
Ac Actions by the chef

Ac2 discontinuous action

Af Action by foods

At Action by tool

Sf food state

St tool state

Table 1: The named entities tags table

Label Meaning

Agent Subject
Targ Direct object
Dest Indirect object

T-comp tool complement
F-comp Food complement

F-eq Food equality
F-part-of Food part-of

F-set Food set
T-eq Tool equality

T-part-of Tool parf-of
A-eq Action equality
V-tm Head verb for timing, etc.

other-mod Other relationships

Table 2: The edge label table

3.1 Named entities

In this task, we use a combination of three models,
which are Bidirectional Encoder Representations
from Transformers (BERT), Bi-directional Long
Short-Term Memory (BiLSTM) and Conditional
Random Fields (CRF). We will describe why we
have chosen these three models.

First, given BERT’s powerful information mem-
ory and extraction capabilities, we chose to use
BERT at the bottom level for extracting textual in-
formation considering the context to produce the
embeddings. Next, we use the model BiLSTM,
which captures semantic dependencies in both di-
rections. In our module, the role of the BiLSTM is
to extract useful information from the BERT out-
put and integrate it in both directions. The last
model we use is the CRF. After abstracting entity
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Figure 2: The architecture of the whole module for named entity recognition

recognition into a sequence labelling problem, one
problem is that the predictions of labels are inde-
pendent. Still, the accuracy of entity recognition
is calculated by considering the span level rather
than the single token level because, in the BIO tag-
ging format, some entities are bound to each other.
Therefore, it is necessary to compute the global
optimum of the whole labelled sequence, taking
into account the consistency of the label predictions
within the entity, that is, to transform the problem
of solving a classification problem for T number
of words with N number of labels into finding the
most appropriate prediction sequence from NT se-
quences. For example, when we are predicting the
entity labels of two words, the first word can not
be labelled O (Other), with the second word being
labelled Ac-I (Action Inside). This is because if
the second word is labelled AC-I, the first must be
Ac-B (Action Begin) in the context of only two
words. So if the module predicts that the label of
the first word is O, the probability that the label
of the second word is any label with an -I suffix
should be 0. We can see the whole module for
named entity recognition in Figure 2.

When we input the entire recipe text into our
NER module, it automatically tags each word.
Therefore, for the NER task, our module exploits
the idea of transfer learning, taking advantage of
the pre-trained model, i.e. BERT, which is very
capable of acquiring dynamic word embeddings. It
also uses BiLSTM for more adequate and accurate
extraction of word representations. Finally, CRF
solves the consistency problem of intra-entity label
prediction.

3.2 Relation extraction

In this task, the model we use is BERT. Unlike
the previous works using spanning tree estimation
(Yamakata et al., 2020) or the dependency parser
to generate the edges for the flow graph (Donatelli
et al., 2021), we treat the edge prediction task as
a classification problem. Our model inputs are
two named entities and the sentences that these
two entities are in. Thus we will have two cases
where two named entities are in the same sentence
and two named entities in different sentences. For
convenience, we specify that when predicting the
relationship between two named entities, the first
occurrence of the named entity in the input text is
e1, and the second occurrence of the named entity
is e2.

In order to have the appropriate input, we need
to re-label the data once more for our classification
task, which is done automatically by our written
script on the training set. The data format in the
original corpus is shown in Figure 3. The first three
numbers and the last three numbers of each line are
used to identify the nodes in the flowchart, which
represent the number of the step in which the entity
appears, the number of the sentence in the step and
the number of the word in the sentence, respec-
tively in the input recipe text. For example, 2 3
1 means that the entity begins in the first word of
the third sentence in the second step of the input
recipe. The fourth label indicates the label of the
edge between the two nodes. Thus, each row repre-
sents a departure node pointing to an arrival node
via an edge with a label. We specify that l(e1, e2)
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represents the label of the edge pointed to e2 by
node e1 as l and l(e2, e1) means the label of the
edge pointed to e1 by node e2 as l. And we need
to add two new labels as not_relate(e1, e2) and
not_relate(e2, e1), because as we explore the re-
lationships of named entities in the text, we need
to explore the relationships between all named en-
tities. When the relationship between two named
entities is not_relate, it means there is no rela-
tionship between them. Doing this allows us to
use all the information in the input text more ef-
fectively. The essential point is that our model
can predict whether two entities are connected and
their relationship type. We implemented a method
to identify the first entity in a pair that appears in
the recipe as e1 and the second entity as e2 and
extract the sentence they are in. If they are related,
we will re-label them. Otherwise, their relationship
will be not_related. The new label for the edge
prediction task is shown in Appendix A.

Figure 3: A part of the flow graph data for the
recipe “Best Chocolate Chip Cookies”.

Our model is BertForSequenceClassification, a
pre-trained model of BERT provided by Hugging
Face1. For the input to the model, we first add
the [CLS] token to the input, meaning classifica-
tion. We then concatenate the words in the named
entities e1 and e2 with a space to separate them.
This is then followed by the [SEP] token, meaning
separation. If e1 and e2 are in the same sentence,
we add the sentence directly after it and then add
[SEP] at the end, as shown in Figure 4. If e1 and
e2 are not in the same sentence, then we first add
the [SEP] tag between the sentence where e1 is and
the sentence where e2 is and then add the [SEP]
tag at the end. This is concatenated after the [SEP]
following the two words, as shown in Figure 5.

3.3 The framework
First, we construct the flowchart nodes for the in-
put recipe by identifying all the named entities in
our input recipe text by our named entity recogni-
tion module. The next step is to use our classifica-
tion model to extract the relationships between all

1https://huggingface.co/docs/
transformers/model_doc/bert

Figure 4: Two named entities in the same sen-
tence

Figure 5: Two named entities not in the same
sentence

named entities by combining the output of the first
module with the input text to construct the labelled
edges of the flowchart. Finally, we ignore the en-
tities with not_relate labels from the output of the
second model, and we build a complete flowchart
directly.

3.4 Other experiment settings

We conducted our experiments on the 300-r corpus.
By applying 10-fold cross-validation, we randomly
split the data into 270 recipes for training and 30
for testing. The optimiser for both tasks is Adam
(Kingma and Ba, 2014). We evaluate and compare
the results by choosing precision, recall, and F1
score. Also, we will consider the accuracy result in
the test set.

4 Results

4.1 The named entity recognition task

We first look at the performance of our module in
the named entity recognition task, as illustrated in
Table 3. Since Y’20 and D’21 show results for the
model on all data; for comparison purposes, we
also show results for our module run on all data.
We can observe from the table that our module
is overall superior to theirs. This is a satisfactory
result since our dataset contains only 300 recipe
texts. The accuracy of our module on the test set
was 98.5%. Y’20 and D’21 do not disclose the per-
formance of their model on the test set. The most
crucial point is that our high accuracy results on
the named entity task can help tremendously with
the next step of the relationship extraction task in
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the overall framework since an entity relationship
extraction can only perform well when the input is
correct. Otherwise, the wrong input entities will
propagate the error to influence the building of the
whole graph.

Model Precision Recall F1
Y’20 86.5 88.8 87.6
D’21 89.9± 0.5 89.2± 0.4 89.6± 0.3

Ours 94.4 93.9 94.1

Table 3: The comparison of the result for the named
entity recognition task between three frameworks on the
corpus 300-r.

4.2 The relationship extraction task

In this section, we present the performance of our
module when the input is the correct entity and then
when the input is the result of our named entity
recognition. And we will compare our results with
the previous works, shown in Table 4.

Because their work predicts edges without labels,
we conducted two experiments to compare, one
predicting edges without labels and one predicting
edges with labels. From Table 4, we can observe
that our module performs much better, regardless of
whether our module predicts edges with or without
labels for flowcharts. Although the performance
drops slightly when the module tries to predict the
edges’ labels, we can still have a reasonably good
overall result.

On the other hand, our module obtained an F1
score of 98.1 for the entire data input without pre-
dicting the labels of the edges. In addition, our
module obtained an F1 score of 84.3 on the test
set when no edge labels were predicted. When
predicting the edges with labels, our edge predic-
tion module has an F1 score of 92.9 with all data
input. According to Yamakata et al. (2020), this
level of accuracy is sufficient to enable tasks in-
cluding information retrieval of recipes and symbol
grounding for cross-modal cooking applications.

When our module does not predict edge labels,
the accuracy is 84.2% on the test set. And when our
module predicts edge labels, the accuracy on the
test set is 73.0%. This result shows that although
we compare favourably with the results of previ-
ous works in general, the module performs slightly
worse on the test set when predicting edge labels.
The reason may be that there are still too few recipe
texts to train, so the module does not generalise

well enough and overfits the data. When predicting
the edge labels, the module achieves an accuracy of
98.8% on the training set but still does not perform
as well on the test set. Another reason could be
the imbalance in the type of recipe text between
the training and test sets. Our recipe data includes
various recipes such as main courses, appetisers,
bread and desserts, salads, etc. If, when splitting
the training and test sets, most of the recipe types
in the training set are main courses and most of the
recipe types in the test set are desserts, the module
can not predict the labels of the relationships very
well. Still, it can determine whether there is a re-
lationship between the named entities from their
types and the rest of the information. This situa-
tion can be further explored in future work, where
we can label and add more recipes of various cate-
gories to the data. We could then pay attention to
the balance of classes when dividing the training
and test sets to see if the module would perform
better. Alternatively, we could focus the module on
a single type of recipe, such as main dishes, to see
if the module has a better text understanding for a
particular kind of recipe.

4.3 The result of the overall framework

As seen from Table 4, when we take the output of
our named entity recognition module as the input
to the relationship extraction module, the frame-
work achieves an overall F1 score of 90.3, which
is when the framework outputs the labels for the
edges. Without predicting the labels of edges, our
F1 score for the entire framework is 94.5.

In Yamakata et al. (2020)’s study, they achieved
an F1 score of 43.3 when they used the output of
their named entity recognition module as input to
the relationship extraction module, and this score
was when the framework did not output the labels
of the edges. There is a massive drop in the per-
formance of their framework when compared to
when they use the correct named entities as inputs.
Our framework performed satisfactorily overall, al-
though there was a slight drop compared to when
the correctly named entities were used as input.
The results of the whole framework are mainly
credited to the high accuracy of our module in the
NER task. Because during the subsequent extrac-
tion of relationships between named entities, if the
identified entity is incorrect, then our relationship
extraction module will not extract the correct re-
lationship for that entity, no matter how well it is
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Model Input Precision Recall F1
Y’20 gold tags 73.7 68.6 71.1
D’21 gold tags 80.4 76.1 78.2

Ours without edge label gold tags 99.9 96.3 98.1
Ours with edge label gold tags 94.7 91.1 92.9

Y’20 Y’20 tagger 51.1 37.7 43.3
D’21 ELMo tagger 74.4± 0.5 70.4± 1.0 72.3± 0.8

Ours without edge label our tagger 98.2 91.0 94.5
Ours with edge label our tagger 92.1 88.6 90.3

Table 4: The comparison of the result for the edge prediction task between three frameworks on the corpus 300-r.
We show our framework’s performance in the case of predicting the edge label and not predicting the edge label.

trained. Secondly, in Y’20, if there is an incorrect
entity or an edge in the middle of the flowchart
that is incorrectly predicted, then their framework’s
prediction of the edges in the rest of the flowchart
will be affected. The novelty of our framework
is that even if there is a named entity in the mid-
dle of the flowchart that is inherently incorrect or
an edge that is incorrectly predicted does not af-
fect our framework’s predictions for the rest of the
flowchart at all. In terms of results, not only do we
have a better result than previous works when we
do not predict the edge labels, but our framework
also performs well when predicting the edge labels.
Also, when comparing the relationship extraction
module tested separately, there is a slight drop in
the framework’s performance. Still, because of our
framework design ideas and the high accuracy of
the named entity recognition module, there is not a
massive drop in the performance of our framework.

5 Discussion

While our framework addresses the remaining is-
sues of low accuracy in identifying named entities
and the inability to predict edge labels, we still
have some problems. The flowchart we get when
we enter “Cook the rest of the pancakes, one at
a time but remember to melt a small knob of but-
ter before adding the batter” in the framework is
shown in Figure 7, and the correct flowchart is
shown in Figure 6. We can observe that our frame-
work identifies the rest of the flowchart correctly,
except for the relationship between the named en-
tity “Cook” and the named entity “Melt”. In the
sentence, “Melt” is the action on the butter and
“Cook” is the action on the whole pancake. So the
butter should be melted before the pancakes can
be cooked, while our framework thinks the pan-
cakes should be cooked before the butter is melted.

However, surprisingly, if we change the input to
“Remember to melt a small piece of butter before
adding the batter to cook the pancakes.” Our frame-
work can correctly predict all the relationships. We
can see those two inputs express the same mean-
ing, but we obtained a different result. Because
of the flexibility of the language, the same recipe
may be written in several ways. In this example,
organising the input sentence with a clear order and
purpose is an improvement for the learning process
of the framework. Hence, it illustrates getting the
framework to learn the expression of the same sen-
tence in different writing styles is also a key point
in natural language understanding. Using data aug-
mentation to change the same sentence into diverse
representations with the same named entity infor-
mation inside would give our framework a more
robust text understanding capability.

Besides, we can see that one of the weaknesses
of our framework is that we do not have a specific
strategy for choosing the root node. We should se-
lect “Cook” as the root node in this case. Although
our framework’s accuracy is reasonable, it could be
further improved if there was a suitable way to de-
termine the root node. Maeta et al. (2015) suggests
choosing the Ac labelled named entity that was
last entered into the framework as the root node.
However, in this example, we can observe that due
to the language’s flexibility, the last Ac labelled
named entity could be “adding” or “cook”. So this
approach does not always work. This study can
be further investigated in future work. In addition,
as our framework focuses on learning the relation-
ships between individual nodes, not much attention
is paid to the completeness of the flowchart. This
is the main drawback of our framework. Although
a few incomplete graphs were observed during the
test, it is still the prior issue we need to address in
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Figure 6: The gold standard from the dataset

Figure 7: The flowchart produced by our framework

the future.

6 Conclusion

This paper proposes a framework for English recipe
understanding by constructing flowcharts. This in-
cludes identifying the edge’s label, indicating that
we can efficiently output a complete flow graph.
The overall framework performance achieves a sat-
isfactory result and exceeds all previous work on
the r-300 corpus, so it has the potential to be de-
ployed in intelligent software kitchen assistants,
cooking robots and diet management, etc.

Despite the good results of our framework, it
still has some problems and some improvements
that could be made in future work. Firstly, our
framework performs better when predicting labels
with more significant amounts of data. Therefore,
adding more labelled recipes in the future would
benefit the training. The second is that the frame-

work can perform better by selecting a root node
and forcing all nodes to be linked together. Choos-
ing a root node is a difficult task, and a suitable
root node can facilitate the learning process of the
framework. However, if the correct root node is
not chosen, this can have a significant negative
impact. In the future, we could also try to use
data augmentation to allow the framework to learn
different sentences with the same semantic mean-
ing, giving it a more vital generalisation ability.
Also, we would like to investigate if the framework
could understand recipe text better by focusing on
only one type of recipe, such as dessert or main
course. Moreover, exploring other more powerful
pre-trained models and combining some linguistic
features would be a good direction.
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A comparison of cooking recipe named entities be-
tween japanese and english. In Proceedings of the
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Activities in Conjunction with The 2017 International
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Computing Machinery.

Yoko Yamakata, Shinsuke Mori, and John Carroll. 2020.
English recipe flow graph corpus. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 5187–5194, Marseille, France. European
Language Resources Association.

A Datasets

The English recipes consist of the 100 recipes an-
notated by Yamakata et al. (2017) and 200 recipes
annotated in the same manner by Yamakata et al.
(2020). All the recipes are sampled from the All-
recipes UK/Ireland website. The named entities
have eight types proposed in Mori et al. (2014) and
two additional types—namely discontinuous ac-
tion and action by a tool. For more precise details,
please see Yamakata et al. (2020).

The new labels for the edge relationship extrac-
tion are shown in Table 5.

B Some other results

Since Y’20 released their result in detail as the base-
line for the following research, we list the precise
comparison of the result with them. The specific
comparison of the result for the NER task between
our work and Y’20 is shown in Table 6. The spe-
cific comparison of the result for the edge predic-
tion task and the whole framework between our
work and Y’20 is shown in Table 7. The compar-
ison of the F1 score for a different type of output
when the input is all data is shown in Table 8.

C Code

Our code is available on Github.

D Some visualisation of flow graph

In this section, we will present several flow graph
visualisations, some of which are the output of our
framework to give the reader a clear understanding
of what it means.
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Old label New label

Agent
a(e1,e2)
a(e2,e1)

A-eq
a-eq(e1,e2)
a-eq(e2,e1)

Dest
d(e1,e2)
d(e2,e1)

F-comp
f-comp(e1,e2)
f-comp(e2,e1)

F-eq
f-eq(e1,e2)
f-eq(e2,e1)

F-part-of
f-part-of(e1,e2)
f-part-of(e2,e1)

F-set
f-set(e1,e2)
f-set(e2,e1)

other-mod
o(e1,e2)
o(e1,e2)

Targ
t(e1,e2)
t(e2,e1)

t-comp
t-comp(e1,e2)
t-comp(e2,e1)

T-eq
t-eq(e1,e2)
t-eq(e2,e1)

T-part-of
t-part-of(e1,e2)
t-part-of(e2,e1)

V-tm
v-tm(e1,e2)
v-tm(e2,e1)

not-relate(e1, e2)
not-relate(e2, e1)

Table 5: The comparison of the old labels and new labels for the arc.
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Tag Precision∗ Recall∗ F ∗
1 Precision Recall F1 Total Number of Entities

F 90.5% 93.9% 92.1 96.4% 97.3% 96.9 5007
T 87.7% 90.1% 88.9 96.3% 95.8% 96.0 1904
D 87.4% 90.2% 88.8 98.4% 98.2% 98.3 589
Q 70.9% 76.8% 73.7 91.7% 95.1% 93.3 529
Ac 92.3% 93.1% 92.7 95.5% 94.0% 94.5 4977

Ac2 43.8% 46.8% 45.3 90.8% 91.0% 90.8 178

Af 51.4% 50.4% 50.9 95.3% 89% 92.0 255

At 60.0% 10.0% 17.1 91.8% 88.7% 90.2 15

Sf 66.1% 71.4% 68.6 91.6% 93.1% 92.3 1105

St 81.6% 82.5% 82.0 96.3% 97.1% 96.7 876

Total 86.5% 88.8% 87.6 94.4% 93.9% 94.1 15435

Table 6: The result for the named entity recognition task. The results marked with an asterisk belong to (Yamakata
et al., 2020).

Label Recall∗ Recall⋆ Recall• Recall⋄ Precision⋄ F1⋄ Total number of data

Agent 55.1% 96.1% 93.3% 91.0% 92.5% 91.7 674
Targ 82.3% 98.3% 96.9% 94.4% 93.9% 94.1 6210
Dest 79.5% 98.0% 93.4% 90.8% 92.4% 91.6 1983

T-comp 83.0% 97.6% 86.6% 84.0% 91.4% 87.5 650
F-comp 88.2% 97.5% 90.5% 88.9% 90.5% 89.7 286

F-eq 19.9% 94.7% 92.9% 90.3% 91.4% 90.9 1139
F-part-of 12.3% 90.0% 85.8% 83.5% 88.9% 86.1 737

F-set 8.7% 100% 86.9% 84.6% 97.3% 90.5 23
T-eq 13.0% 95.8% 87.3% 84.7% 93.8% 89.0 316

T-part-of 37.5% 92.6% 87.3% 84.5% 84.0% 84.3 190
A-eq 35.7% 97.4% 92.8% 90.0% 94.6% 92.2 237
V-tm 74.1% 97.3% 94.0% 91.2% 96.9% 94.0 640

other-mod 73.2% 96.5% 96.9% 94.3% 90.0% 92.1 2776
Total 68.6% 96.3% 91.1% 88.6% 92.1% 90.3 15861

Table 7: The result of the edge prediction task. The results marked with ∗ belong to Yamakata et al. (2020). For our
model in edge prediction task, the results marked with ⋆ are Recall without label, the results marked with • are
Recall with label. The result marked with ⋄ is the result of our whole framework.
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Label F1 without label F1 with label Total number of data

Agent 98.0 94.1 674
Targ 99.1 96.7 6210
Dest 99.0 94.1 1983

T-comp 98.8 90.2 650
F-comp 98.7 91.8 286

F-eq 97.2 93.5 1139
F-part-of 94.7 88.6 737

F-set 100 93.0 23
T-eq 97.8 91.6 316

T-part-of 96.1 87.1 190
A-eq 98.7 95.0 237
V-tm 98.6 96.7 640

other-mod 98.2 94.7 2776
Total 98.1 92.9 15861

Table 8: The comparison of the F1 score for the relationship extraction task between predicting edges’ labels and
not predicting labels of edges.
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Figure 8: The visualisation of the output flow graph for the recipe “Baked Potato”
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Figure 9: The visualisation of the output flow graph for the recipe “Ginger Champagne Cocktail”
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Figure 10: The visualisation of the output flow graph for the recipe “German potato salad”
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Figure 11: The visualisation of the output flow graph for the recipe “Groovy green smoothie”
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Figure 12: The visualisation of the output flow graph for the recipe “Thai green prawn curry”
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Figure 13: The visualisation of the output flow graph for the recipe “Sardine spread”
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