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Abstract

Dialogue participants may have varying levels
of knowledge about the topic under discussion.
In such cases, it is essential for speakers to
adapt their utterances by taking their audience
into account. Yet, it is an open question how
such adaptation can be modelled in computa-
tional agents. In this paper, we model a visually
grounded referential game between a knowl-
edgeable speaker and a listener with more lim-
ited visual and linguistic experience. Inspired
by psycholinguistic theories, we endow our
speaker with the ability to adapt its referring
expressions via a simulation module that mon-
itors the effectiveness of planned utterances
from the listener’s perspective. We propose an
adaptation mechanism building on plug-and-
play approaches to controlled language genera-
tion, where utterance generation is steered on
the fly by the simulator without finetuning the
speaker’s underlying language model. Our re-
sults and analyses show that our approach is ef-
fective: the speaker’s utterances become closer
to the listener’s domain of expertise, which
leads to higher communicative success.

1 Introduction

Speakers tend to adapt their language use to the
perceived knowledge, information, and linguistic
abilities of their interlocutors (Isaacs and Clark,
1987; Clark, 1996; Pickering and Garrod, 2004).
When adults speak with children, for example, they
use simplified expressions to ensure children are
able to understand (Saxton, 2009); when compu-
tational linguists give a talk at a cognitive science
conference, they (hopefully) avoid making exten-
sive use of NLP jargon, as that would prevent their
audience from following through the presentation.
Successful adaptation to the conceptual knowledge
of conversational partners requires the ability to
represent and reason about others’ mental states

*Shared first authorship.
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Figure 1: An illustration of our knowledge-asymmetric
setup where an expert Speaker interacts with a less
knowledgeable Listener. The Speaker tailors its ut-
terance about an image from the food domain for a
Listener who only knows about the indoor domain. The
speaker’s Simulator module inspired by Theory of Mind

guides this adaptation. The adapted utterance exploits
indoor terms (‘bookshelves’) without referring to food.
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language model to
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(Tomasello, 2005), a socio-cognitive ability typi-
cally referred to as Theory of Mind (ToM; Premack
and Woodruff, 1978). Yet, speakers do not always
resort to explicitly modelling the knowledge of
their dialogue partner: due to different cognitive
costs and pressures, they sometimes plan their utter-
ances egocentrically, i.e., only taking into account
their own knowledge and abilities (Keysar, 2007).

In this paper, we model a communicative situa-
tion where the interlocutors have asymmetric lan-
guage abilities: a proficient speaker interacts with
a listener characterised by limited semantic knowl-
edge to complete a reference game, as illustrated in
Fig. 1. Our goal is to mimic a scenario in which, for
example, a high school physics professor can make
complex atomic models understandable to young
students by using terminology familiar to them,
such as culinary terminology to explain Thomson’s
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‘plum pudding model’. We focus on the speaker’s
Referring Expression Generation (REG; Reiter and
Dale, 1997; Krahmer and van Deemter, 2012) in
a multimodal dialogue setting and use REG mod-
els equipped with visual perception to generate
discriminative image descriptions within a set of
related image candidates. Several psycholinguistic
theories have proposed that language production
is interwoven with comprehension via ‘forward
prediction’—i.e., producing an utterance involves
predicting how a comprehender would understand
it (e.g., Pickering and Garrod, 2013; Roelofs, 2020).
Inspired by this idea, we equip our speaker model
with a simulator, i.e., a module that ‘simulates’
whether a listener would be able to identify the
target referent. Based on this predicted behaviour
(i.e., the expected effect of the planned utterance),
the simulator modifies the generation plan on the
fly to increase communicative success.
These are the main contributions of our study:!

* We model adaptation between agents with asym-
metric knowledge, using a referential task as
case study, where agents communicate in natural
language about realistic images (in contrast to
related work using synthetic data—see §2).

* We propose a novel simulation-based approach
and test it in two settings: (1) a self-aware setting
where the speaker predicts how a generic listener
(with the same knowledge as the speaker) would
resolve a planned utterance, and (2) an audience-
aware setting where the speaker learns—from
the behaviour of a listener with restricted
semantic knowledge—to form representations
of the listeners’ knowledge (Clark, 1985; Isaacs
and Clark, 1987) and predict their responses.

* We exploit the simulator’s representations in an
innovative way: by leveraging a plug-and-play
approach originally introduced for controllable
text generation (Dathathri et al., 2020), which
steers language production at the decoding stage
without altering the underlying language model.

* We show that our approach leads to increased
resolution accuracy; in particular, our audience-
aware speaker is able to adapt its utterances
effectively when referring to a target within a
visual domain unknown to the listener.

* We provide an in-depth analysis of the patterns
present in the adapted utterances and the model’s

!Code and models available at https://github.com/
nicofirsti1/speaker-adaptation

production strategies underpinning our results.

2 Related Work

2.1 Pragmatic Reference Generation

Speakers tend to design their referring expressions
to be pragmatically informative, i.e., discriminative
from the listener’s perspective. Most approaches to
pragmatic reference expression generation (REG)
have considered scenarios where we can assume a
shared set of linguistic conventions between speak-
ers and addressees (common domain and train-
ing data). The Rational Speech Act framework
(RSA; Frank and Goodman, 2012; Goodman and
Stuhlmiiller, 2013; Goodman and Frank, 2016) has
become a popular option for characterising such
settings, with REG models that reason probabilis-
tically about their interlocutors’ interpretation via
recursively defined speaker and listener models
(Andreas and Klein, 2016; Monroe et al., 2017,
Cohn-Gordon et al., 2018; Zarrie3 and Schlangen,
2019; Fried et al., 2021), possibly taking into ac-
count information accumulated during interaction
(Hawkins et al., 2020). There also exist joint
speaker-listener models that are not recursive in
the RSA sense. In these models, speakers can be-
come listener-aware at inference time thanks to
enhanced decoding algorithms (Vedantam et al.,
2017) or they can learn to generate discriminative
utterances at training time, for example via altered
supervised training objectives (Mao et al., 2016) or
auxiliary reinforcement learning (RL) modules (Yu
et al., 2017), including approaches where the RL
rewards are determined by the reference resolution
success of a listener model (Lazaridou et al., 2020).
Our model, too, produces audience-aware dis-
criminative image descriptions through an auxil-
iary module that captures the listener’s perspective.
However, in contrast to the above studies, the set-
ting we investigate has two distinct key features:
(1) we model situations with knowledge asymme-
try between the dialogue participants, and (2) we
experiment with plug-and-play controlled gener-
ation methods that result in temporary updates to
the speaker’s language model—rather than steer-
ing generation via recursive probabilistic reasoning.
We review work related to these two aspects next.

2.2 Knowledge Asymmetry & Referring Tasks

What if the speaker and the listener have access to
differing semantic knowledge? It is well known
that speakers are able to adapt to less proficient
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addressees (Isaacs and Clark, 1987). Janarthanam
and Lemon (2010) were one of the first to address
adaptation in dialogue systems with asymmetric
knowledge. They modelled REG for technical do-
mains where users may not know the jargon, using
RL to learn a REG policy from a user simulation.
More recently, Ohashi and Higashinaka (2022) fo-
cus on generating utterances in task-oriented dia-
logue with users that have limited vocabulary. They
exploit the natural language understanding module
of the system (representing user understanding) to
set up a reward function, which is then used to
finetune the NLG module via RL.

In the context of visually grounded referring
tasks, Bao et al. (2022) focus on a scenario where
the listener has comprehension difficulties and
model adaptation by reweighing the probability of
candidate referring utterances as a function of their
likelihood to be successfully interpreted by the lis-
tener. Similarly, Liu et al. (2016) apply ToM-based
listener modelling, where the speaker generates
multiple candidate utterances and ranks them with
the help of the ToM listener. Generating and rank-
ing multiple utterances, however, is an inefficient
production mechanism. For these reasons, others
have tried to condition the speaker model prior to
utterance generation, mainly with external modules.
Corona Rodriguez et al. (2019) model interactions
where the listener has an impaired perceptual sys-
tem and implement this conditioning through an
external policy network that takes as input listener
embeddings. While Zhu et al. (2021) propose a
ToM module that tracks the listener’s understand-
ing via meta-learning for few-shot coordination in
a setup where listeners understand different lan-
guages. Singh et al. (2023) train an attention-based
adapter layer in a reward-based manner as part of
a multi-agent referential game where the speaker
aims to generate utterances that would be under-
stood by one listener, but not the other. Finally,
Greco et al. (2023) have a setup that is the most
similar to ours, where Expert speakers adapt to
Layman listeners. But unlike our plug-and-play
approach, the authors follow the RSA framework
in developing audience-aware models that are up-
dated through interaction.

2.3 Adaptive Controlled Generation

Most of the approaches to adaptation we have re-
viewed apply RL to the speaker model or finetune
its language model through interaction. As a re-

sult, the speaker is not able to retain its original
knowledge, which might cause catastrophic forget-
ting (McCloskey and Cohen, 1989; French, 1999).
With the advent of large pretrained language mod-
els, a plethora of new methods for controlled text
generation have been proposed, including prefix-
tuning (Li and Liang, 2021; Ben-David et al., 2022),
prompting (Brown et al., 2020), adapters (Houlsby
et al., 2019; Pfeiffer et al., 2020a,b), and energy-
based constraints (Qin et al., 2022). Visual prefixes
and prompts (Alayrac et al., 2022) have also been
used to condition generation, especially without
training the full language model.

We argue that this recent line of research of-
fers promising alternative frameworks for adaptive
REG. In particular, we investigate a solution to
adaptation inspired by the plug-and-play approach
to controlled text generation (PPLM; Dathathri
et al., 2020; Pascual et al., 2021), which has been
used to steer large pretrained language models to-
wards generating texts with certain features (e.g.,
positive/negative sentiment or a given vocabulary
distribution). In Dathathri et al. (2020), latent rep-
resentations are updated at inference time with the
help of a classifier while keeping the model param-
eters unchanged. Building on this idea, we propose
a modular approach to REG adaptation in asym-
metric knowledge settings where a module trained
to predict the listener’s behaviour—similar to the
‘prediction net’ in the machine ToM model by Ra-
binowitz et al. (2018b)—is exploited to control
generation on the fly.

3 Problem Formulation

We provide an abstract overview of the problem we
address and our approach. Details on the data and
the experimental pipeline are given in §4 and §5.

Scenario Our setup is a classic referential game:
two artificial agents, a speaker and a listener, share
a visual context involving multiple images. The
speaker produces an utterance to refer to one of the
images (the target) and the listener attempts to iden-
tify the referent given that utterance. In particular,
we model a scenario with knowledge asymmetry,
where the speaker is more knowledgeable than the
listener. We hypothesise that, in such a setup, for
communication to be successful, the speaker will
need to adapt its utterances to the listener’s rep-
resentational space and language. To make this
possible, we endow the speaker with a simulation
module and an adaptation mechanism.
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Simulation We provide the speaker with a mod-
ule that simulates how a listener would process a
planned utterance. We assume that, by having in-
teracted with listeners in the past, the speaker has
learned a model of certain listener types (e.g., a
prototypical idea of what a 3-year-old would un-
derstand). We operationalise this by pretraining
several instances of the simulator, one per listener
type, to predict how a listener is likely to resolve a
referring utterance. We compare three settings:

* Baseline: No simulation takes place.

* Self-aware: The simulator is trained to predict
how a listener with the same knowledge as the
speaker would resolve an utterance. This is
equivalent to a pragmatic speaker who reasons
about the effect of its utterances on a generic lis-
tener (see §2.1), but in our approach at test time
the listener’s interpretations are predicted rather
than directly observed. Our proposal is also in-
spired by human production models based on
‘self-monitoring” (Levelt, 1993; Roelofs, 2020).

* Audience-aware: The simulator is trained to pre-
dict how a listener with a subset of the speaker’s
knowledge, i.e., a single domain, would resolve
an utterance. Thus, the speaker learns a model—
a theory of mind—of a less knowledgeable lis-
tener type that allows the speaker to make pre-
dictions about the listener’s behaviour. When
performing the referential task, we assume that
the speaker knows the type of the listener before-
hand, i.e., which simulator needs to be engaged
(similarly to knowing that we are addressing a
3-year-old, for example).

Adaptation Rather than finetuning the speaker’s
language model, we exploit the pretrained simula-
tors to control utterance generation on the fly via
a monitoring loop. The simulator checks whether
planned utterances would be effective; if that is not
the case, a loss is backpropagated to update the
initial hidden state of the speaker’s decoder and a
new utterance is generated. Our hypothesis is that
such a mechanism will lead to referring utterances
that are adapted to the listener’s knowledge.

4 Data

As a basis for our experiments, we use the Pho-
toBook dataset (PB; Haber et al., 2019), a collec-
tion of task-oriented visually grounded English di-
alogues between pairs of participants who com-
municate via written chat. In a PhotoBook game,

two participants see their own private sets (‘photo-
books’) of real-life images belonging to the same
visual domain. The goal of the interaction is for
them to find out which images they have in com-
mon. This elicits referring utterances such as “/
have a little boy holding a phone to a teddy bear”,
where participants refer to an image that their dia-
logue partner needs to identify among six similar
images. Our focus is on the generation of such
referring utterances, leaving aside the dialogue con-
text for simplicity. We use the dataset of referring
utterances automatically extracted from the PB di-
alogues by Takmaz et al. (2020), which includes
41,340 utterances paired with their target image
and the other five images in the visual context.

We choose PhotoBook because its visual con-
texts consist of realistic images and feature multiple
challenging distractors, all selected from the visual
domain of the target image. The original images
are taken from the Microsoft COCO dataset (Lin
et al., 2014) and belong to 30 different visual do-
mains (e.g., ‘person-umbrella’, ‘car-motorcycle’).
To model speaker adaptation to different seman-
tic domains, we split the dataset of PB referring
utterances according to the visual domain of each
game. We cluster the image domains as a function
of the similarity between their vocabulary vectors,
constructed by counting word frequencies in the
referring utterances belonging to a given domain.
We obtain a set of 5 macro-domains (appliances,
food, indoor, outdoor, vehicles), selected so that
the domain vocabularies have minimal overlap. For
each cluster of visual domains, we extract the corre-
sponding referring utterance and visual context. We
then randomly split these into training (70%), vali-
dation (15%), and test set (15%). We also merge
the 5 domain-specific datasets into an ‘all-domains’
dataset to be used to train domain-general models
as described in §5. See summary in Table 1.

S Experimental Pipeline

As described in §3, our experimental pipeline
includes two agents—a speaker and a listener—
implemented as a generative language model in-
stantiating the speaker, a discriminative model in-
stantiating the listener, and a third model, a sim-
ulator used by the speaker to assess the forward
effect of its planned utterance on the listener. The
language model and the discriminator model are
adapted from those by Takmaz et al. (2020), and
the simulator model is built on the discriminator’s
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Domain Prop N V| Images Specific Overlap
Appliances | 9.4% 4,310 1,271 36 29.5%  23.2% (Ind)
Food 124% 5,682 1,646 36 433%  22.9% (App)
Indoor 26.4% 12,088 2,477 96 443%  26.0% (Out)
Outdoor | 35.9% 16,427 2,858 108 47.0%  26.2% (Veh)
Vehicles | 15.8% 7,234 1,738 48 36.0%  26.2% (Out)
All 100% 45,741 6,038 324 - -

Table 1: Statistics of the domain-specific datasets: # of
utterances (V) and % within the entire dataset (Prop),
vocabulary size (]V]), # of unique images (Images),
% of domain-specific vocabulary (Specific), and max.
lexical overlap with another domain (Overlap). The
max. overlap is between outdoor and vehicles. Example
shared words are ‘left’, ‘black’, ‘driving’, and ‘glasses’.

architecture with additional components. We train
these models from scratch to have full control over
the linguistic and visual knowledge of the agents
and their degree of asymmetry. We use ResNet-
152 to encode the images (He et al., 2016). See
Appendix A for more information about the train-
ing schemes and hyperparameters.

5.1 Generative Language Model

The speaker is a visually conditioned language
model that generates an utterance describing a tar-
get image within a visual context. The model fol-
lows an encoder-decoder architecture consisting
of a visual encoder that represents the visual con-
text along with the target image, and a decoder for
language generation. The decoder generates a re-
ferring utterance via nucleus sampling (Holtzman
et al., 2020), also paying attention to the encoder
output at every time step. See Appendix A.1 for
more details about the model architecture.

We train the visually conditioned language
model from scratch using the training set including
all domains in PB and optimize the model with re-
spect to Cross Entropy Loss using Adam (Kingma
and Ba, 2015). We select the best model based on
its performance on a set of natural language gen-
eration metrics on the validation set. The weights
of the trained speaker are then frozen and used
as the core language generation model in all our
experiments identically.

Performance The speaker’s language model ob-
tains reasonable scores in terms of classic natu-
ral language generation metrics:’> 23.8 BLEU-2,
32.9 ROUGE, 44.1 CIDEr, and 57.7 BERTScore
F1 (Papineni et al., 2002; Lin, 2004; Vedantam

2Comparable to those obtained by Takmaz et al. (2020)
with their ‘Ref” model.

et al., 2015; Zhang et al., 2020). All scores are
averages across 4 seeds on the test set. For details,
see Appendix B.1.

5.2 Discriminator

Our listener is a discriminator model that receives
six images in the visual context plus an utterance,
and is tasked with identifying the target image that
the utterance refers to. To encode the utterance, we
use word embeddings trained from scratch to make
sure no knowledge leaks from any pretraining. The
model combines the visual context and the utter-
ance to produce a multimodal context vector. The
listener identifies the target image by comparing
this multimodal context vector to the representa-
tions of each candidate image via dot-product and
selecting the image with the highest score. See
Appendix A.2 for the detailed description of the
model architecture.

We train one listener model per domain in Ta-
ble 1.> The models are optimized with Cross En-
tropy loss using the Adam optimizer. The best mod-
els are selected based on resolution accuracy on the
validation set. We keep these domain-specific lis-
tener models frozen in the rest of the study. See
Appendix A.2 for further details.

Performance We distinguish between in-domain
(IND) accuracy—i.e., the resolution accuracy
achieved on the test set of the domain on which
the listener has been trained—and out-of-domain
(00D) accuracy—accuracy on domains the listener
has not been exposed to (e.g., the accuracy on im-
ages from the vehicles domain of a listener ex-
clusively trained on the food domain). Our lis-
teners are truly domain specific: they are able to
identify the target image with an average accuracy
of 83.08% in IND, while their OOD accuracy is
19.05% on average—barely above a random base-
line (16.67%). See Appendix B.2 for the full re-
sults broken down per domain.

5.3 Simulator

As explained in §3, the speaker is endowed with a
simulator module. The simulator receives inputs
in two parallel streams. In one stream, it receives
the visual context v coupled with the speaker’s
planned utterance u;, and in the second stream, the
visual context along with the language model’s ini-
tial hidden state hg. The motivation behind this

3We also train a general listener model on all domains
which is only used to train the self-aware simulator; see §5.3.
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architectural choice is related to the plug-and-play
approach at the core of our proposal. The first
stream is inspired by previous work on ToM (e.g.,
Rabinowitz et al., 2018a): its main input is the
same as what a listener would receive, an utterance.
However, to control generation on the fly, we need
to modify the language model’s internal representa-
tions. Thus, the main reason for the second stream
is technical: the gradients from the simulator’s loss
cannot flow back to the language model’s hidden
states if the input to the simulator is text due to the
non-differentiability of the argmax operation.* The
second stream uses a combination of linear layers
and standardization to compute the dot product be-
tween hg and v. The outcomes of the two streams
are multiplied to obtain the final representation that
is compared to the candidate images.

We train one audience-aware simulator per
domain-specific listener and one self-aware gen-
eral simulator with Cross Entropy loss using the
AdamW optimizer (Loshchilov and Hutter, 2017).
The training set sizes of both types of simulators
are the same, with the target behaviour being dif-
ferent. In the simulation of a general listener, the
simulator predicts the behaviour of a listener that
was exposed to all domains as the speaker, contrary
to one domain in the domain-specific case. We
choose the best simulator per listener type based on
the simulators’ prediction accuracies (more details
in Appendix A.3). The simulators are then frozen
in the rest of the pipeline.

Performance The self-aware simulator achieves
an accuracy of 70% when predicting the behaviour
of a general listener. The audience-aware simula-
tors predict the behaviour of domain-specific lis-
teners with an average accuracy of 78.20% for IND
samples, and 72.78% for 00D samples.’ The drop
in accuracy from IND samples to OOD samples
could be due to difficulties in ascertaining the reac-
tions of a listener on OOD data. See details of the
results in Appendix B.3.

6 Audience-Aware Adaptation

In our framework, adaptation takes place at infer-
ence time building on our pretrained, frozen mod-
els for the language model, the discriminators and

“We observed that using the Gumbel-Softmax trick (Jang
et al., 2017) led to unstable behaviour.

SPossibly because the general knowledge space is bigger,
it could also be more difficult to model a general listener than
a domain-specific listener with a limited knowledge space.

simulators described in §5. We first explain our
adaptation mechanism (§6.1) and then report the
results obtained (§6.2).

6.1 Adaptation Mechanism

Algorithm 1 describes the adaptation mechanism
sketched in §3, which exploits the simulator to it-
eratively monitor the generation outcomes of the
speaker. Given the visual context v, the initial hid-
den state of the speaker’s decoder hg and the cur-
rently planned utterance u;, the simulator makes a
prediction for the listener’s selection.® We calcu-
late the Cross Entropy loss between the simulator’s
prediction and the true target. We use the gradients
flowing back from this loss to update hy with the
Adam optimizer. That is, adaptation is performed
by backpropagating the loss to modify only the ini-
tial hidden state of the speaker’s decoder. Based
on the updated hg, the language model generates
a new utterance to be reviewed by the simulator.
The mechanism stops when: either (1) the simula-
tor predicts that the listener will choose the gold
target image; or (2) when the maximum number of
adaptation steps is reached (st,qp). At each step,
we reset the random seed to ensure that the changes
in the sampling of the words are only attributable
to the updates to hg, showing the effects of adap-
tation directly without being confounded by the
stochastic nature of sampling.

Algorithm 1: Adaptation Mechanism

Input: st,q, : maximum number of adaptation steps
lrqdp : learning rate for adaptation
seed : random seed

Data: ho : speaker’s initial hidden state
v : visual context
ty : true target

140

while ¢ < st,qp do

set_seed(seed)

us = Speaker(v, ho)

0sim = Stmulator (v, ut, ho)

tsim = arg max(0sim)

if tsim == t, then

| break
9 loss = CrossEntropy(0sim,tg)

10 ho = backprop(loss, ho, radp)
11 1+=1

® N AN A W N =

12 t; = Listener(v, uz)

To avoid excessive language drift and help regularize
utterance generation, at inference time we condition ho with
the previous gold utterance referring to the target image in the
current dialogue (if it exists), as done by Takmaz et al. (2020).
This resonates with precautions taken in other plug-and-play
approaches against text degeneration (Dathathri et al., 2020).
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6.2 Results

We evaluate whether our approach leads to in-
creased communicative success, quantified in terms
of listener resolution accuracy. We report the re-
sults for the three settings described in §3. For each
of the three modules involved in these settings, we
provide an evaluation card (Hupkes et al., 2022)
to clarify the nature of our generalisation tests in
Appendix C.

Baseline Table 2 provides a breakdown of resolu-
tion accuracies per type of domain-specific listener
in the setting without simulation; Table 3 shows
the averages. Not surprisingly, the results obtained
with generated utterances are lower than those re-
ported in §5.2. However the patterns are the same:
when the speaker agent refers to an image within
a domain known to the listener (IND), the aver-
age resolution accuracy is 52.30%; communication
however breaks down in out-of-domain instances,
where the average OOD score is 19.06%, close to
random choice.

app food indoor outdoor vehi
appliances 57.61 20.10 19.92 21.27  15.98
food 19.11  54.29 18.60 18.85  18.85
indoor 22.71 19.65 @ 53.62 20.82  16.77
outdoor 15.08 21.46 19.62 52.93 | 17.69
vehicles 16.36  16.17 17.41 20.13  43.08

Table 2: Resolution accuracy in the Baseline setting.
Rows indicate the listener domain and columns the eval-
uation domain. Shaded cells show IND accuracy. Aver-
ages across 5 seeds. Full table with sd’s in App. B.2.

Self-aware adaptation As shown in Table 3,
with the added capability to simulate and adapt
to a generic listener, we observe an increase in
IND resolution accuracy (52.30% vs. 65.09%). Yet,
this setting does not help to bridge the knowledge
gap between speaker and listener: when the input
is 00D for a domain-specific listener, adaptation
with a general simulator does not lead to higher
communicative success (19.06% vs. 19.11%).

Baseline Self-aware  Audience-aware
00D 19.06+£0.47 19.11+1.12 26.74 +1.48
IND 52.30£1.10 65.09+1.98 71.77 £ 2.16

Table 3: Average resolution accuracy for our 3 settings
in 00D and IND. Results on the test set over 5 runs.

Audience-aware adaptation When the speaker
adapts its utterances by predicting the behaviour
of a domain-specific listener, we see a significant
increase in both IND and 00D (Table 3). This
indicates that audience-aware adaptation helps in
knowledge asymmetric scenarios, including in IND
situations where the agents communicate about a
domain known to the listener (65.09% vs. 71.77%).
More importantly, while there is certainly room
for improvement, the speaker is able to generate
utterances that can more often be resolved in 0OD
(19% vs. 26.74%).

7 Analysis

Our experiments show that simulation-based adap-
tation leads to more successful communication. In
this section, we analyse the speaker model and
its generated utterances to understand which neu-
ral processing mechanisms and which production
strategies are behind our main results.

7.1 Probing for Domain Information

We begin with an analysis of the neural representa-
tions of the speaker model in the audience-aware
setting. We focus on hg, the first hidden state of
the LSTM decoder. This is the output of the visual
encoder on which the simulator module intervenes
in order to adapt the speaker’s utterance plan. Be-
cause hg is the result of encoding a target image
(within a visual context), we expect it to carry in-
formation about the semantic domain of the image.
If it was not able to differentiate visual domains,
it would be very unlikely to successfully adapt to
domain-specific listeners. We test this hypothesis
using diagnostic probing (Adi et al., 2017; Con-
neau et al., 2018; Hupkes et al., 2018). We train
a logistic regression classifier on a 70% of hidden
states hg collected from the speaker when at test
time, and then we assess whether it can predict
the image domain corresponding to the remaining
30% of the hidden states. As expected, the probing
classifier is able to do so with perfect precision and
recall (both equal 1.0) across the 5 visual domains.
Using the same approach, we test whether the do-
main of the /istener — rather than the image domain
— is also encoded in hg.” Our hypothesis is that
this should not be the case: before the simulator
kicks in, the speaker model has no information on

"We train a logistic regression classifier on the 70% split
of the hg but this time using as label the domain of the listener.
We then evaluate whether the classifier can predict the listener
domain in the 30% probing test set.
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Figure 2: Probing accuracy for image domain and lis-
tener domain predictions over adaptation steps. The
0-th step corresponds to the non-adapted hy.

the listener’s domain-specific knowledge. Probing
accuracy scores vary between 0.13 and 0.16 across
domains (the random baseline is 0.17), indicating
that indeed the speaker’s hidden state does not carry
listener information before adaptation.

As the simulator activates, the original hg
is updated for a maximum of st,q, adaptation
steps. We now look at the updated hidden states
hg, ..., hgt“dp and test whether their encoding of
the image and the listener domain changes with
adaptation. First, we use the probing classifier pre-
viously trained to predict image domains from hg
to test the adapted hidden states. We find that the
encoding of the image domain deteriorates with
domain-specific adaptation (Figure 2). Then, we
probe h, h3, ... for listener information and we
show that the listener’s domain can be predicted
almost perfectly from the adapted hg after only
three adaptation steps (Figure 2). Taken together,
these observations indicate that the neural process-
ing mechanism that leads to more successful in-
teraction is one by which information about the
semantic domain of the visual context is replaced
by information on the domain of the listener — and
one which only requires a few gradient updates.

7.2 The Speaker’s Adapted Vocabulary

We analyse macro-level properties of the corpus of
adapted utterances as compared to the utterances
generated in the simulator-less baseline setting. We
compute type-utterance ratio and type-token ratio
over adaptation steps to monitor the relative size
and the variety of the vocabulary as the speaker

8For this analysis, we train and test one probing classifier
for each adaptation step. Using the classifier trained on ho
would not make sense as we showed that it is not possible to
extract listener information from non-adapted representations.

o o o o o
S & £ & 5

Type-utterance ratio

o

0.0
ref 0 1 2 3456 7 8 91011 1213 14 1516 17 18 19 20 21 22 23 24

Adaptation step

Figure 3: Type-utterance ratio across adaptation steps
(type-token ratio in Fig. 6, App. E). Human gold utter-
ances (ref) and non-adapted utterances (0) also shown.

uses its simulator module. As Figure 3 shows, af-
ter an initial drop for the first 1-3 adaptation steps,
type-utterance ratio and type-token ratio increase
substantially with respect to the non-adapted utter-
ances (and to the gold referring utterances). The
speaker vocabulary becomes much more diverse.
What remains rather stable throughout adaptation,
instead, is the unigram part-of-speech distribution
(Figure 7 in Appendix E). While, after the first
adaptation step, the difference in POS usage is no-
table (e.g., less punctuation, more nouns), only
proper nouns and determiners show substantial
changes in relative proportions, with proper nouns
increasing and determiners decreasing over time.

7.3 Adaptation Strategies

The trends observed so far characterise the effect
of adaptation across steps but they do not differ-
entiate between successful and unsuccessful adap-
tation. In Figure 4, we split adapted utterances
(the ones actually generated by the speaker when
it believed its utterance would be successful) ac-
cording to whether they lead to a correct listener
guess. We observe that more successful utterances
contain words with lower age of acquisition® (AoA,
t = —28.88, p < 0.001), they show a lower rate
of lexical choice from the target image vocabu-
lary (t = —28.76, p < 0.001), and a higher rate
of words from the listener vocabulary (¢ = 5.88,
p < 0.001). The average AoA in an utterance
increases with adaptation steps (see Fig. 8 in Ap-
pendix E), suggesting that the excessive abstract-
ness of the descriptions may be behind the limited
gains we observe with adaptation.

°Age of Acquisition is a psycholinguistic measure express-
ing the age at which a word is typically learned. We use the
ratings by Kuperman et al. (2012); they range from 0 to 25.
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Figure 4: Factors affecting the success of an adapted
utterance, age of acquisition (left) and % of words in an
utterance belonging to the target image domain (right).

7.4 Qualitative Inspection

In Figure 5, we provide examples of adapted sen-
tences from the test set to demonstrate how the
audience-aware adaptation strategies affect the lex-
ical choices made by the language model. In the top
example, the image domain is ‘food’; however, the
listener was trained on the ‘indoor’ domain. We see
that the speaker moves away from generating de-
tailed mentions of food to including a word related
to the listener’s own domain, bookshelves. In the
bottom example where the listener has only been
exposed to the ‘food” domain and the image do-
main is ‘outdoor’, the model avoids mentioning the
truck. Instead, it produces an utterance containing
a prominent color in the image, i.e., pink, and some
visible entities that belong to the listener’s domain,
namely, donuts. These observations suggest that
the model exploits various adaptation strategies.

In the whole set of adapted utterances, we ob-
serve comprehensible sentences; however, there is
also a large number of less fluent, unnatural ones.
As we do not use pretrained large language models,
sometimes, the speaker’s initial utterances them-
selves are not fluent. The dynamics of adaptation
may further exacerbate this situation and lead the
language model towards generating unnatural ut-
terances. Such utterances may not be understood
by human listeners; yet, they could make sense
to artificial listeners. In order to ensure that the
adapted utterances are comprehensible to humans,
further precautions may be needed, such as incen-
tivizing the generative model to keep the adapted
utterances grammatical and fluent, possibly with
the aid of human feedback.

8 Conclusion

We focused on a standard reference game—a
speaker produces an utterance, and a listener uses it

Gold (not adapted): green salad with a
L way person holding up a portion with fork?
Generated (not adapted): / have one more
maybe round you think that has a lime
green shaped greens, a salad?
Adapted: must bookshelves in the salad?

@ Gold (not adapted): / have the pink food
 truck again ... white shirt lady

» Generated (not adapted): girl at black
phone, red truck, brown hair, pink
Adapted: pink donuts

Figure 5: Examples showing how audience-aware adap-
tation changes the generated utterances. For simplicity,
we only show the target images and not the whole visual
contexts. We report the final adapted utterances when
the adaptation mechanism stops because the simulator
predicts that the listener will select the correct image.

to pick the referent from a visual context. However,
our setup is asymmetric—the speaker has general
semantic knowledge, while the listener has little
knowledge of all domains but one (e.g., food). Such
a setting is a perfect scenario for studying adapta-
tion, i.e., the common process in human commu-
nication by which a speaker tunes its language to
that of a listener to achieve communicative success.
We modeled this mechanism using a plug-and-
play approach to controllable text generation: the
speaker’s output is conditioned on the effect of the
planned utterance on the listener, as predicted by an
internal simulator. Our results show that speaking
the language of a listener increases communica-
tive success. Through adaptation, the speaker’s
language becomes less tied to the input domain and
more tied to the listener’s vocabulary, revealing that
audience-aware adaptation can be realized without
irreversible changes to generation models.

Our approach and findings pave the way for prag-
matic models that can account for different com-
municative scenarios. Future work may study adap-
tation to other dimensions such as age group or
sociocultural background. Moreover, adaptation
could be explored in multiple ‘directions’—in our
setup, only the speaker adapts. We also simplify the
setup by abstracting away the online process that
leads to the simulation of the listeners. It would be
beneficial to allow the simulators to learn to predict
listener behaviour during interaction in an online
manner. Finally, our approach could be applied
to other and possibly more complex communica-
tive tasks, perhaps in conjunction with a mecha-
nism leveraging human feedback via reinforcement
learning.
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Limitations

Although we use data from dialogues, we do not
model collaborative reference, i.e., we do not
model continual mutual adaptation. Instead, we
focus on the speaker’s adaptation to the listener in
a single turn, which is certainly a simplified setup.
Furthermore, our plug-and-play approach still re-
quires the training of simulators per listener type.
However, as we keep the speaker and listener mod-
els frozen and use the output obtained from them
to train the simulators, this allows us to reduce the
required amounts of training. We train the mod-
els from scratch using PhotoBook data and do not
make use of state-of-the-art large pretrained vision-
and-language models that are nowadays commonly
based on Transformers, which could be considered
a limitation. We opted for this setup as it is more
aligned with our research questions, allowing us to
control the domain-specificity of the models. We
also acknowledge the imbalance in the set sizes
of the domains, as well as the possible lexical and
visual overlaps in the samples across domains. The
overlaps may facilitate the adaptation of certain
sentences from one domain to another (asymmetry
is not controlled in a fine-grained manner), and this
is not uncommon in human communication.

Ethics Statement

We are using neither large pretrained language mod-
els that have been found to be prone to bias issues
nor uncurated data scraped from the internet that
would open up myriads of problems. Still, there
could be some bias in the PhotoBook data that
should be investigated: players might have used
offensive or undesirable language in describing im-
ages. Therefore, deploying these speakers and lis-
teners directly is not advisable. Our research focus-
ing on the adaptation of a speaker to their audience
is done with the aim of improving communicative
success within scenarios with knowledge asymme-
try following human capabilities of self-monitoring
and Theory of Mind. It is possible that adaptation
to a specific listener could exacerbate possible bi-
ases if the training set of a given listener happens
to include more bias. However, the reverse is also
the case, where adaptation to underrepresented user
groups could be beneficial.
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Appendix
A Training Details

We provide the details of the setups of the gener-
ative language model in §A.1, the discriminators
in §A.2, the simulators in §A.3 and the adaptation
mechanism in §A.4. We use Python version 3.9.0
and PyTorch version 1.11.0 in the development and
testing of all our models. In Table 4, we report the
hyperparameters used in the training of our final
models.

LM Disc  Simulator
Learning rate | 0.0001 0.0001  0.0004
Batch size 3 64 32
Dropout 0.3 0.2 0
Attention dim 512 512 1024
Embed dim 1024 768 1024
Hidden dim 512 512 1024
Patience 30 30 5

Table 4: Hyperparameters used for training the gen-
erative language model, discriminator and simulator
models.

A.1 Generative Language Model

In addition to the main hyperparameters listed in
Table 4, the language model requires several ad-
ditional parameters. In nucleus sampling, we set
the p value for top-p to 0.9 and sample from a vo-
cabulary that consists of the words in the training
splits of all 5 domains. The maximum length of
the generated utterances is set to 30. The model is
initialized and trained with 4 different seeds, which
yield similar performances. We use an early stop-
ping patience of 30 epochs based on the validation
set scores.'”

Regarding the architectural details of the
visually-conditioned language model, in the visual
encoder we feed both the standardized target image
vector and the concatenation of the six images in
the full visual context into a linear layer followed
by the ReLU non-linearity. We then concatenate
the ensuing representations of the target image with
the visual context and once more apply a linear
layer followed by a ReLU non-linearity to obtain
the final visual context, v. This visual context is
used to initialize a bidirectional LSTM encoder that

'We use the ‘nlg-eval’ library at https://github.com/
Maluuba/nlg-eval to obtain scores for the common NLG

metrics and also use BERTScore version 0.3.11 provided at
https://github.com/Tiiiger/bert_score.

takes as input the previous utterance referring to the
target image in the current dialogue, if exists (see
footnote 6), otherwise a special token indicating
the absence of such an utterance. The final forward
and backward hidden states of this encoder are
concatenated, go through a linear layer and tanh
non-linearity. The output is then set as the initial
hidden state hg of the LSTM decoder (Hochreiter
and Schmidhuber, 1997).

A.2 Discriminators

In these models instantiating the listeners, the word
embeddings go through a dropout layer and a linear
layer followed by the Leaky-ReLU non-linearity,
after which standardization is applied. The visual
context is processed in the same way as in the gen-
erative language model. Each word representation
is concatenated with the representation of the vi-
sual context. The resulting vectors go through a
linear layer and ReLLU. Finally, we apply attention
over these vectors to obtain the attention-weighted
multimodal context vector. It is this context vector
that is compared to the representations of candidate
images via dot product.

We use the same set of hyperparameters for each
domain as shown in Table 4. The domain-specific
listener models were selected based on their accu-
racy on the in-domain validation set. We report
accuracy and MRR on the in-domain and out-of-
domain test sets in Table 6.

00D word masking Our listeners are initialized
with the same vocabulary comprising all the words
in the training data. However, the domain-specific
listeners only learn the words that exist in their own
training sets. Therefore, if the speaker generates an
00D word for a domain-specific listener, in order
not to further confound the effects of adaptation on
the listeners, we mask the word with the <unk>
vector. This vector is the same across all domains.

A.3 Simulator

We select the simulator models based on their accu-
racy in predicting the behaviour of the listener mod-
els on the validation set. The simulator models are
trained using the AdamW optimizer (Loshchilov
and Hutter, 2017) with a weight decay of 0.0001,
and a plateau learning scheduler with a patience of
2, a factor of 0.5, a threshold of 0.5.
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A.4 Adaptation Mechanism

We optimize the values of the number of adaptation
steps and the learning rate for the adaptation mech-
anism. We perform 2 hyperparameter sweeps using
the Weight & Biases (WandB) platform (Biewald,
2020), evaluating a range of values. We find a posi-
tive correlation between both hyperparameters and
adaptation accuracy, with Pearson’s correlation co-
efficients of 0.71 for the learning rate, and 0.66 for
the number of steps.

B Additional Results

Here, we provide additional results yielded by our
models for the speaker in §B.1, the listener in §B.2,
the simulator in §B.3 and for the adaptation mech-
anism in §B.4.

B.1 Speaker Results

We provide the detailed results of the speaker
model on the test set in Table 5 with the averages
and standard deviations over 4 runs.

B.2 Listener Results

Table 6 reports the domain-specific listener perfor-
mances on IND and 0OD gold data. We observe
that the domain-specific listeners perform well in
in-domain settings and perform close to the random
baseline in OOD settings.

Table 7 presents the domain-specific listener ac-
curacies on speaker-generated input. Especially
in IND settings, we see lower scores as compared
to use of the gold data, presumably because the
listener models were trained on gold data.

B.3 Simulator Results

The detailed outcomes of the simulator models are
reported in Table 8. Here, we also report the results
for the subset where the listener made a correct
prediction (Pos) vs. it made an incorrect prediction
(Neg). The simulators are better able to capture the
correct listener behaviour, possibly because during
the training of simulators, in-domain data provides
a clear picture of listener’s correct behaviour.

B.4 Adaptation Results

In Table 9, we provide the test set results of the
adaptation pipeline, broken down into domains and
for IND and OOD inputs separately. The outcomes
show that adaptation has effects in both IND and
00D settings, increasing resolution accuracies over
speaker-generated utterances.

C Evaluation Cards

For each of the three main modules in our
experiments, we provide an evaluation card to
clarify the nature of our generalisation tests.'!
See Table 10 for the generator, Table 11 for the
simulator, and Table 12 for the listener. We also
register our work in the GenBench evolving survey
of generalisation in NLP (Hupkes et al., 2022).!

D Additional Experiments

Here, we provide details on additional experiments
we performed in our adaptation pipeline.

In our adaptation mechanism, one of the stop-
ping conditions is that the simulator predicts that
the listener will be able to guess the referent. We
also explored continuing adaptation until the /is-
tener itself correctly guesses the referent. We re-
port the results in Table 13, which reveal that using
this stopping condition would yield higher results
since the utterances are adapted until the actual lis-
tener makes a correct guess, mimicking an online
interaction setup.

E Additional Analyses

We note that we measure the type-utterance ratio
for each step (i.e., the vocabulary size divided by
the number of utterances available for that step),
rather than the vocabulary size, because different
steps correspond to different numbers of utterances:
adaptation stops when the simulator module pre-
dicts the target image.

Type-token ratio

ref 01 2 345 67 8 9101 1213 14 1516 17 18 19 20 21 22 23 24
Adaptation step

Figure 6: Type-token ratio across adaptation steps. Hu-
man gold utterances (ref) and non-adapted utterances
(0) also shown.

Figure 7 shows unigram part-of-speech distribu-
tion across adaptation steps for the in-domain and
out-of-domain conditions.

We also measure the domain-specificity of ut-
terances over steps, both in terms of the target im-
age domain and of the listener domain, as the per-

11https: //genbench.org/eval_cards
12ht’cps: //genbench.org/references
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge
40.06 £ 1.60 23.81 £1.51 14.09 +1.20 8.46 + 0.89 32.92 +£0.93
CIDEr BertScore - Recall BertScore-Recall - F1 BertScore - Precision
44.07 £ 1.68 58.91 £0.19 57.7+0.12 57.9+0.16

Table 5: Speaker results on the test set as measured by common natural language generation evaluation metrics.

Domain Epoch IND oob

Accuracy MRR Accuracy MRR
Appliances 23 84.12+0.33 90.27 £0.10 | 20.28 £0.23 44.07 +0.11
Food 21 85.40+0.28 91.204+0.20 | 17.72+0.18 42.42+ 0.06
Indoor 14 82.94 £0.13 89.32+0.09 | 19.14+0.09 43.46 £ 0.06
Outdoor 19 83.96 +0.23 90.01 £0.14 | 19.64 £0.07 43.52 + 0.06
Vehicles 17 78.99+0.35 86.81£0.14 | 18.46 £ 0.28 42.36 +0.20

Table 6: Listener performance on gold utterances. Accuracy and MRR for the in-domain (IND) and out-of-domain
(00D) samples given to listeners trained on specific domains (indicated under the ‘Domain’ column).

Listener Data domain

domain appliances food indoor outdoor vehicles
appliances | 57.61 =1.38 20.10+0.63 19.92+0.47 21.274+0.83 15.98+0.82
food 19.11 +£1.70 54.29+1.06 18.604+0.84 18.85+0.49 18.854+0.49
indoor 22.71+£1.30 19.65+1.77 53.62+0.79 20.82+1.05 16.77+0.79
outdoor 15.08+£1.04 21.46+0.70 19.62+0.69 52.93+1.11 17.69=£0.97
vehicles 16.36 = 1.55 16.17+0.81 17.41+0.64 20.13+£0.59 43.08+1.16

Table 7: Listener accuracies on speaker-generated data. Each row indicates the domain a listener was trained on and
the columns indicate the domain of the input samples. Results over 5 seeds.

centage of domain-specific words in an utterance.
We consider as domain-specific the words that ap-
pear only in interactions about a certain domain.
The speaker, throughout adaptation, produces more
words belonging to both the image and the listener
domain (Figure 9) and thus less domain-agnostic
words. We saw that, over adaptation steps, the
decoder hidden state forgets image domain infor-
mation in favour of the listener domain. This does
not translate into no longer producing words from
the image domain, suggesting that the speaker may
be focusing more on the specific image than on its
semantic domain.

Figure 8 shows mean utterance age of acquisition
rating (Kuperman et al., 2012) over steps.
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Simulator Setting Avg Pos Neg

all domains - 69.97 £0.79 85.15+1.39 54.73+0.76
IND 78.20£1.26 88.09£1.98 67.36+2.96
ooD | 7278 £0.56 73.67+1.69 72.58+0.71

domain specific

Table 8: Simulator’s accuracy in predicting the behaviour of a listener knowledgeable about all domains (as the
speaker) and a listener with domain-specific knowledge for IND and OOD samples. ‘Avg’ is the overall accuracy,
‘Pos’ and ‘Neg’ are the percentages of correct predictions for the samples where the listener picked the correct (Pos)
and the incorrect image (Neg).

00D IND
Golden Speaker Adapted | Golden Speaker Adapted
appliances | 20.21 19.30 27.74 84.21 57.21 74.28

indoor 18.50 19.53 28.34 83.22 52.94 69.62
food 17.06 18.31 26.26 85.61 55.54 78.15
outdoor 18.89 18.54 26.21 84.38 52.83 73.04
vehicles 18.25 17.35 25.16 78.67 42.09 63.75

Table 9: Test results for the audience-aware adaptation pipeline, 5 seeds for each domain.

Motivation Motiyation
Practical Cognitive Intrinsic Fairness P'ZC?DC“[ Coingve Inirinsic Fairness
oAa0O oAaQO —
Generalisation type Generalisation type
Compo- Cross  Cross Cross  Robust-
Compo- Cross  Cross Cross  Robust- .. Structural .
. Structural . sitional Task Language Domain  ness
sitional Task Language Domain  ness A
040 : ©
Shift type Shift type
Covariate Label Full No shift Covariate LaAbel Full No shift
0AQ O

Shift source

Naturally Fartitioned Generated shift Fully
occurring natural generated

Shift source
Naturally Fartitioned Generated shift Fully

occurrin natural enerated
0AQ 8 ¢
AQ
hift 1 i
- . Shift ;)cus‘ o Shift locus
rain—test tnetune retrain—trainFretrain-test Train—test Finetune  Pretrain—train Pretrain—test
train—test train—test
EYNGQ) NGO

Table 10: Generator’s evaluation card for the three
main setups: baseline [J, self-aware adaptation A, and
audience-aware adaptation ()

Table 11: Simulator’s evaluation card for the two setups
in which it is used (i.e., baseline setup excluded): self-
aware adaptation A, and audience-aware adaptation ().
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in domain

out of domain

Figure 7: Unigram POS distribution across adaptation steps.

Motivation
Practical Cognitive Intrinsic Fairness
oAQO oA QO
Generalisation type
Qompo- Structural Cross  Cross Cross. Robust-
sitional Task Language Domain  ness
EYAN@)
Shift type
Covariate Label Full No shift
mYANG) RYANG)
Shift source
Naturally Partitioned Generated shift Fully
occurring natural generated
oA QO oAQO
Shift locus
Train—test Finetune  Pretrain—train Pretrain—test
train—test
oAO

Table 12: Listener’s evaluation card for the three
main setups: baseline [J, self-aware adaptation A, and
audience-aware adaptation (). In out-of-domain set-
tings (OOD), the type of shift is covariate. In in-domain
settings (IND), there is no shift between the training and
test.

Target domain | Golden Speaker Adapted
appliances 16.85 20.04  38.89
food 85.57 5526 91.74
indoor 18.69 1847  39.49
outdoor 19.03 18.33  37.96
vehicles 13.75 16.63  35.43

Table 13: Listener accuracy using the listener stopping
condition in the adaptation mechanism.

Mean AocA
o PN w
[s2] [s2] (=]

I
=

0 5 10 15 20 25
Adaptation step

Figure 8: Mean utterance Age of Acquisition over adap-
tation steps. Step 0 corresponds to the non-adapted

utterance.

0.25
8 0.20
‘©
iy
[5]
8 015 = |mage domain
B — Listener domain
B 010
5
[1v]
& 005

0 5 10 15 20 25

Adaptation step

Figure 9: Rate of lexical choice from image and listener
domain-specific vocabularies.
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