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Abstract

Conversational query rewriting (CQR) real-
izes conversational search by reformulating
the search dialogue into a standalone rewrite.
However, existing CQR models either are
not learned toward improving the downstream
search performance or inefficiently generate
the rewrite token-by-token from scratch while
neglecting the fact that the search dialogue of-
ten has a large overlap with the rewrite. In this
paper, we propose EDIRCS, a new text editing-
based CQR model tailored for conversational
search. In EDIRCS, most of the rewrite to-
kens are selected from the dialogue in a non-
autoregressive fashion and only a few new
tokens are generated to supplement the final
rewrite, which makes EDIRCS highly efficient.
In particular, the learning of EDIRCS is aug-
mented with two search-oriented objectives, in-
cluding contrastive ranking augmentation and
contextualization knowledge transfer, which ef-
fectively improve it to select and generate more
useful tokens from the view of retrieval. We
show that EDIRCS outperforms state-of-the-
art CQR models on three conversational search
benchmarks while having low rewriting latency,
and is more robust to out-of-domain search dia-
logues and long dialogue context.

1 Introduction

With the rise of intelligent assistants (e.g., Siri and
Alexa), conversational search is becoming a new
search paradigm of the future (Gao et al., 2022).
As users can interact with the search engine in the
form of natural dialogue, one of the main chal-
lenges of conversational search is to accurately un-
derstand users’ search intents within the dialogue
context (Yu et al., 2020; Wu et al., 2022).

Inspired by the success of dense retrieval in ad-
hoc search (Karpukhin et al., 2020), recent stud-
ies (Lin et al., 2021a; Mao et al., 2022b; Kim and
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Kim, 2022) show that using a similar contrastive
learning approach to train a conversational dense
retriever with a dual encoder architecture can effec-
tively resolve such a complex context understand-
ing problem. However, since the ad-hoc search
systems have been built, deployed, and optimized
for a long time in the industry, replacing the well-
established ad-hoc retriever with a totally new-
trained conversational dense retriever would be too
expensive and even not realistic in the current early
days of conversational search.

As such, another type of method, i.e., Conversa-
tional Query Rewriting (Vakulenko et al., 2021b;
Tredici et al., 2021), which explicitly reformu-
lates the whole search dialogue into a context-
independent query rewrite and thus can be seam-
lessly incorporated into any existing ad-hoc search
pipelines to realize conversational search, shows
greater practical value. Currently, a typical CQR
model is built by fine-tuning an autoregressive pre-
trained language model (PLM) using search dia-
logue (input) and manual rewrite (target) text pairs.
Despite the promising results obtained, we argue
that it has the following two significant limitations,
as shown in Figure 1.

First, the single training objective to simply fit
the manual rewrite is not aligned with our ulti-
mate goal, i.e., achieving better performance on
the downstream conversational search task. On one
hand, the quality of manual rewrites is probably not
the best from the view of retrieval, since humans
are only instructed to rewrite queries to be self-
contained outside the dialogue context, but have
no knowledge of the downstream retrieval process.
On the other hand, no ranking signals from the re-
trieval side are taken into account when training
the model (Wu et al., 2022). Second, for conver-
sational query rewriting, many expected rewrite
tokens can be found in the search dialogue in most
cases. However, the autoregressive rewriting model
still generates the rewrite completely from scratch,
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Figure 1: Illustration of the two major limitations of existing autoregressive CQR models. First, the learning of
the rewriter does not consider the downstream retrieval process, which would affect the final conversational search
performance. Second, most of the rewrite tokens can often be found in the current query (q2) and dialogue context
(q1 and r1) while they are still generated from scratch, which is inefficient.

which introduces an over-large search space for
token generation and can be unnecessary.

To overcome these limitations, we propose a text
Editing-based (Malmi et al., 2022) conversational
query Rewriting model tailored for Conversational
Search, called EDIRCS. Instead of autoregres-
sively generating the rewrite from scratch, in
EDIRCS, most of the rewrite tokens are selected
from the search dialogue in a non-autoregressive
fashion and only a few new informative tokens are
generated to supplement the final rewrite, which
makes EDIRCS highly efficient. More importantly,
EDIRCS is augmented with two conversational
search-oriented learning objectives. Specifically,
we add a contrastive ranking loss calculated be-
tween the dialogue embedding and passage embed-
dings to improve the model learning toward down-
stream retrieval performance. Considering that the
manual rewrites are not ideal from the view of re-
trieval, we leverage a specific SPLADE-based (Las-
sance and Clinchant, 2022) conversational dense re-
triever, which is fully trained toward conversational
search that shows superior context understanding
ability, to identify the key tokens that have sig-
nificant contributions to the retrieval performance,
and transfer the knowledge about these key tokens
to enhance our rewriting model for both existing
token selection and new token generation.

We conduct extensive experiments on three pub-
lic conversational search datasets and results show
that EDIRCS outperforms state-of-the-art conversa-
tional query rewriting models when evaluating with
both BM25 and a dense retriever ANCE (Xiong
et al., 2021) while having low query rewriting la-
tency, and is more robust to out-of-domain search
dialogues and long dialogue context.

2 Related Work

Conversational Search. Currently, there are
mainly two types of methods to solve the diffi-
cult context understanding problem to achieve
conversational search, including conversational
dense retrieval and conversational query rewrit-
ing. Specifically, conversational dense retrieval
methods (Yu et al., 2021; Lin et al., 2021a; Mao
et al., 2022a,b; Kim and Kim, 2022) encode
both the whole search dialogue and passages
into embeddings to perform dense retrieval in
an end-to-end way, which generally achieve
stronger performance but are unfriendly for real
deployment. In contrast, conversational query
rewriting converts the conversational search
problem into an ad-hoc search problem by
reformulating the search dialogue into a standalone
query rewrite, which is the focus of this work.
Existing conversational query rewriting methods
include only selecting relevant tokens from the
dialogue context (Voskarides et al., 2020; Lin et al.,
2021b) and using (dialogue, manual rewrite) text
pairs to fine-tune PLMs to be the rewriter (Yu
et al., 2020; Lin et al., 2020; Vakulenko et al.,
2021a). A significant drawback of these methods is
that they focus solely on fitting the manual rewrites
but are not trained toward search performance.
To tackle it, recent studies (Wu et al., 2022;
Chen et al., 2022) have investigated leveraging
reinforcement learning for model optimization
with retrieval-related rewards. Unlike the existing
work, we internalize retrieval information into
the learning of our rewriting model through two
search-oriented objectives to help it achieve better
performance toward conversational search.

Text Editing. Text editing (Malmi et al., 2022)
is an effective technique to solve text generation
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tasks (Reid and Zhong, 2021; Mallinson et al.,
2022), where the source and target texts have a
large amount of overlap, by predicting efficient
edit operations applied to the source sequence, thus
often showing lower inference latency and better
control over the outputs. In particular, it has been
successfully applied in utterance rewriting for dia-
logue systems (Huang et al., 2021; Hao et al., 2021;
Jin et al., 2022), which is very similar to conver-
sational query rewriting. Their major distinction
is that the former’s utterances usually do not have
specific search intents while the latter’s user utter-
ances are queries and the latter focuses on improv-
ing the downstream search performance. Different
from previous work for utterance rewriting, our
EDIRCS is particularly improved toward conver-
sational search with simple editing operations and
search-oriented learning objectives.

3 Preliminaries

3.1 Task Definition

In this work, we focus on the task of the first-stage
passage retrieval of conversational search. Given a
search dialogue sk = (qk, rk−1, qk−1, rk−2, ..., q1)
(we call it a session), our target is to retrieve the
relevant passage p for this session, where qi and ri
denote the query and the system response of the
i-th turn, respectively, qk is the current query, and
other turns are the dialogue context. For simplicity,
we omit the subscript k in the rest of the paper if
not specified.

3.2 Existing Two Types of Methods

Conversational Query Rewriting (CQR) transforms
the session s into a de-contextualized query rewrite
q̂. Then we can feed q̂ into any off-the-shelf ad-hoc
retriever to realize conversational search.

In contrast, Conversational Dense Retrieval
(CDR) uses dual encoders fS and fP to map the
session and passages to latent vectors, and perform
dense retrieval to achieve conversational search.
The training usually adopts the ranking loss based
on contrastive learning with N negative samples:

Lrank = −log
efS(s)·fP(p+)

efS(s)·fP(p+) +
∑N

i=1 e
fS(s)·fP(p

−
i )

, (1)

where p+ and p− are the relevant and irrelevant
passages for the current turn. It is worth noting
that, as the passage information has no change in
conversational search compared with that in ad-hoc

search, it is common to start with a well-trained ad-
hoc dense retriever and only fine-tune the session
encoder while freezing the passage encoder (Yu
et al., 2021; Lin et al., 2021a).

4 Our Model: EDIRCS

We present EDIRCS, a CQR model that aims to
achieve more effective and efficient conversational
search based on text editing and augmentation from
search-oriented objectives. On the whole, as shown
in Figure 2, EDIRCS follows a selecting-then-
generating text editing architecture, which first
selects a few necessary tokens from the session
and then generates more useful new tokens to sup-
plement the rewrite. In particular, both the session
token selection and new token generation processes
benefit from the proposed search-oriented learning
to help the generated rewrite achieve better conver-
sational search performance. We finally summarize
the whole training and inference processes.

4.1 Conversational Query Editing
In this section, we elaborate on our efficient con-
versational query editing architecture, including
session token selection and new token generation.

Session Token Selection. Since most expected
rewrite tokens can be found in the session (Dalton
et al., 2020; Voskarides et al., 2020; Anantha et al.,
2021), we employ a non-autoregressive selector
to directly select those necessary tokens from the
session instead of autoregressively generating them
from scratch. Specifically, given the input session s,
we concatenate all of its tokens and feed them into
a 12-layer transformer encoder to obtain the con-
textualized token embeddings (h1, ...,hn), where
n is the number of tokens of the session. Then, we
feed the embeddings into a classification layer to
predict the probability ŷrt

i of retaining each token:

ri = Whi + b, (2)

ŷrt
i = sigmoid(ri), (3)

where W ∈ R1×d and b are trainable parameters
of the classification layer, d is the embedding size,
and ri is the retaining logit. Basically, the selector
is trained using the binary cross-entropy loss:

Lrt = −
n∑

i=1

yrt
i logŷrt

i + (1− yrt
i )log(1− ŷrt

i ), (4)

where yrt is the binary gold label annotated based
on the alignment between the session and the
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Figure 2: Overview of EDIRCS. It consists of a selector, which selects existing tokens from the input session, and a
lightweight generator, which generates new informative tokens. The final rewrite is obtained by merging these two
sets of tokens in the original order. Both the training of selector and generator of EDIRCS are enhanced by our
proposed search-oriented learning to retain and generate tokens that are important for conversational search.

manual rewrite. For the detailed label annotation
process, we refer the readers to Appendix A.

New Token Generation. Although the session of-
ten contains most of the rewrite tokens, there are
still some important tokens that are not in the ses-
sion and can only be generated from scratch. Mao
et al. (2021) also showed that combining some in-
formative generated text snippets with the original
query can improve retrieval performance. There-
fore, we incorporate a generator, which will attend
to all the token embeddings to generate additional
useful tokens for supplementing the rewrite. Con-
sidering that the generation difficulty is alleviated
in our task since most of the rewrite tokens have
been selected before and only a few new tokens are
needed to be generated, we employ a lightweight
four-layer transformer decoder as the generator and
we empirically find that using four layers can al-
ready perform well (see § 5.3). The generator is
also trained with the standard cross-entropy loss:

Lgen = − 1

|ygen|

|ygen|∑

j

logP (y
gen
j |ygen

<j , {hi}ni=1), (5)

where j is the index of token generation and ygen

denotes gold labels for all the generated tokens.
Label annotation is also introduced in Appendix A.

4.2 Search-Oriented Learning

Considering that simply fitting the manual rewrites
is not aligned with our real goal (i.e., passage re-
trieval), we exploit two search-oriented objectives,
including contrastive ranking augmentation and
contextualization knowledge transfer, to enhance
the training of our text editing-based rewriting

toward better retrieval performance.

Contrastive Ranking Augmentation. Borrowing
from the conversational dense retrieval, we incor-
porate a similar contrastive ranking loss (i.e., Eq. 1)
upon the selector to reduce the distance between
the session and its relevant passage and increase
the distances between the session and the irrelevant
passages. Specifically, we first update the token
embeddings of the session with their predicted tags
(retain if yrt

i > 0.5, otherwise delete):

h′
i = hi + TE(I(yrt

i > 0.5)), (6)

where TE is a trainable tag embedding layer
containing two tag embeddings. Then, the session
embedding is obtained by performing the mean
pooling over all the token embeddings. Similarly,
to obtain the passage embedding, we feed the
passage into the selector to get its token embed-
dings, uniformly update them with retain tags,
and perform the mean pooling. Finally, we use
the session and passage embeddings to calculate
the ranking loss (Eq. 1) for model optimization.
Intuitively, using these diverse ranking signals (i.e.,
session-passage pairs) to implicitly enhance the
tokens embeddings can not only help the selector
find tokens in the context that are important for
search but also encourage the subsequent generator
to generate more useful new tokens.

Contextualization Knowledge Transfer. As exist-
ing studies (Lin et al., 2021a; Kim and Kim, 2022)
show that CDR models, which are trained directly
toward retrieval performance, generally show much
better performance, it would be desirable to transfer
their strong context understanding abilities into our
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rewriting model. To this end, in addition to implic-
itly enhancing the token embeddings with ranking
signals, we also help our rewriting model retain
and generate tokens that are helpful to retrieval in
an explicit knowledge transfer manner.

Specifically, we leverage a high-performing
teacher CDR model to explicitly identify those
key tokens that have large contributions to the re-
trieval performance and train our rewriting model
to learn this contextualization knowledge. This
teacher CDR model is obtained by fine-tuning a
lexical ad-hoc retriever SPLADE (Lassance and
Clinchant, 2022) using the common ranking loss
(Eq. 1). SPLADE can encode a l-length text se-
quence into a sparse lexical embedding v ∈ R|V |,
where |V | is the vocabulary size, by predicting
token importance in the whole vocabulary space
based on the latent token embeddings (z1, ..., zl)
generated by its underlying contextualized encoder:

wi = EQzi + b, i ∈ [1, l], (7)

vi = log(1 + ReLU(wi)), i ∈ [1, l], (8)

v = MaxPool(v1, ...,vl), (9)

where Q ∈ Rd×d and b ∈ R|V | are trainable pa-
rameters, d is the embedding size, and E ∈ R|V |×d

is the input embedding matrix. Note that the out-
put lexical embedding v is trained to be sparse,
i.e., only a few important tokens can be activated
with non-zero weights. We feed the session and
its gold relevant passage into the SPLADE-based
teacher CDR model to get their lexical embed-
dings vs and vp. The retrieval score is computed
as

∑|V |
i=1 v

s[i] × vp[i], where v[i] is the predicted
weight of the i-th token. Therefore, the product
term ci = vs[i]× vp[i] can represent the contribu-
tion of the i-th token to the retrieval. We leverage
this knowledge of token retrieval contributions to
enhance both our selector and generator toward
better search effectiveness.

For the selector, we first pick out a subset
S from the vocabulary that contains the session
tokens which have contributions to retrieve the
gold passage (i.e., c > 0). We can obtain
the teacher token importance distribution p =
softmax([c1, ..., cm]) for these tokens based on
their retrieval contributions, where m is the number
of tokens in S. Then, we obtain the student token
importance distribution q = softmax([r1, ..., rm])
based on the retaining logits (Eq. 2) predicted by
the selector1. To enhance our selector to be aware

1Note that a token may appear multiple times in the session

that these m important session tokens should be
properly selected from the retrieval perspective, we
incorporate the following transfer loss:

Lckt =
1

m

m∑

i=1

p[i]log
p[i]

q[i]︸ ︷︷ ︸
term1

− logσ(ri)
︸ ︷︷ ︸

term2

(10)

where the first term is to minimize the KL diver-
gence between the teacher and student importance
distributions and the second term is to encourage
the token i to be selected. σ is sigmoid function.

For the generator, we pick out the tokens that
have the Top-K largest contributions to the re-
trieval while not in the session and simply label
these tokens as needing to be generated.

4.3 Training and Inference
EDIRCS is trained in a multi-task learning manner:

L = Lrt + Lgen + λLrank + βLckt, (11)

where λ and β are hyper-parameters to balance two
search-oriented losses. When inference, we only
retain the session tokens selected by the selector
in their original order and append the new tokens
generated by the generator to form the final rewrite.

5 Experiments

5.1 Experimental Settings
Datasets and Evaluation Metrics. We conduct
experiments on three widely used conversational
search datasets, including QReCC (Anantha et al.,
2021) and CAsT-19,20 (Dalton et al., 2020, 2021).
QReCC is a large-scale dataset of 14K open-
domain search dialogues containing 80K turns with
provided training-test split. We randomly select a
development set containing 1000 dialogue turns
from the training set for parameter tuning. The two
CAsT datasets only have no more than 50 search
dialogues. Therefore, we use the training set of
QReCC to train models and perform in-domain
evaluations on the test set of QReCC and per-
form out-of-domain evaluations on the two CAsT
datasets. More dataset details are in Appendix B.

We report the official metrics MRR, Recall@10,
and Recall@100 for QReCC, and NDCG@3 and
Recall@100 for CAsT datasets.

Compared Systems. We compare our model
with three groups of conversational query

and we sum the logits of all positions for the token in this case.
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Method #Params QR Latency
BM25 Dense Retrieval

MRR R@10 R@100 MRR R@10 R@100

GPT-2+WS 355M 601ms 0.305 0.489 0.836 0.319 0.510 0.703
T5QR 223M 593ms 0.334 0.538 0.861 0.345 0.531 0.728

QuReTeC 340M 34ms 0.345 0.556 0.863 0.353 0.547 0.733
CQE-sparse 110M 16ms 0.318 0.529 0.834 0.320 0.513 0.709
CONQRR 223M - 0.383‡ 0.601‡ 0.889‡ 0.418‡ 0.651‡ 0.847‡

EDIRCS 157M 59ms 0.412† 0.627† 0.902† 0.421† 0.656† 0.853†

For Reference
Conv-ANCE 125M N/A N/A N/A N/A 0.471 0.715 0.872

Conv-SPLADE 67M N/A N/A N/A N/A 0.512 0.709 0.888
Human N/A N/A 0.397 0.626 0.985 0.384 0.586 0.781

Table 1: In-domain results on the QReCC test set. The two conversational dense retrieval models are not applicable
to use BM25. The QR latency is the average time cost of rewriting per session, which is measured on one RTX
3080 GPU with batch size 1. ‡ denotes the results are replicated from their original paper. † denotes significant
improvements of EDIRCS over the other QR baselines expect CONQRR using paired t-test with p < 0.05.

rewriting methods. The first group performs
text (rewrite) generation from scratch based on
fine-tuned PLMs, including T5QR (Lin et al.,
2020) and GPT2+WS (Yu et al., 2020). The
second group reformulates the current query by
selecting important tokens only from the context,
including QuReTeC (Voskarides et al., 2020)
and CQE-sparse (Lin et al., 2021a). The third
group is directly trained towards retrieval perfor-
mance using reinforcement learning, including
CONQRR (Wu et al., 2022). Besides, we report
the performances of Human (i.e., using the
manual rewrites) and two conversational dense
retrievers, Conv-SPLADE (i.e., the teacher model)
and Conv-ANCE, which are fine-tuned from
SPLADE (Lassance and Clinchant, 2022) and
ANCE (Xiong et al., 2021) with the standard
ranking loss (Eq. 1), respectively, for reference.
After getting the rewrites, we feed them into
an ad-hoc retriever (either BM25 or ANCE) to
evaluate the effectiveness of rewriting models for
conversational search.

Implementation Details. Experiments are con-
ducted on four NVIDIA GeForce RTX 3080 GPUs.
We use the whole encoder and the first four layers
of the decoder of t5-base to initialize EDIRCS. We
train EDIRCS for 5K iterations using the Adam
optimizer with a 1e-5 learning rate and 64 batch
size. The parameters λ, β, and K are tuned on
the development set and finally set to 0.5, 0.2, and
4, respectively. For the ranking loss, we adopt
the widely-used in-batch negative sampling plus
one hard negative sample randomly selected from

1 2 4 8 12
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0.42

0.44

#Layer

M
R
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ANCE

Figure 3: Impact of the number of generator layers
evaluated on QReCC.

Top-50 retrieved passages by BM25. The max-
imum generated sequence length of EDIRCS is
set to 10. For the BM25 retriever, we set its
k1 = 0.82 and b = 0.68. For the ANCE re-
triever, we use its checkpoint pre-trained on the
MSMARCO dataset at the 600th step. We per-
form dense retrieval using Faiss (Johnson et al.,
2021) with brute force. Code is to be released at
https://github.com/kyriemao/EdiRCS.

5.2 Main Results and Analysis

In-Domain Evaluation Results. Evaluation re-
sults on the test set of QReCC are shown in Table 1,
where we have the following observations:

(1) EDIRCS outperforms all the other QR base-
lines when evaluated with both BM25 and ANCE.
Compared with the second-best model (i.e., CON-
QRR), the average relative gain of EDIRCS over all
the three metrics is +4.5% with BM25 and +1.0%
with ANCE, demonstrating the effectiveness of
EDIRCS for conversational search. We find that
the improvement with ANCE are less than that
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with BM25. This may be due to the less coher-
ence of the rewrite generated by EDIRCS than that
of CONQRR, since the former is the concatena-
tion of the selected session tokens and new tokens
while the latter is autoregressively generated from
the T5-based language model. The reduction of
coherence may affect the semantic understanding
of the ANCE dense retriever to the rewrites, thus
affecting its retrieval performance.

(2) EDIRCS and CONQRR, which learn from
the downstream retrieval information, can even sig-
nificantly outperform using manual rewrites (i.e.,
Human) when evaluating with ANCE. This demon-
strates that manual rewrites are not the best from
the view of retrieval and the downstream retrieval
information is very valuable for improving query
rewriting toward conversational search. Compared
with CONQRR which is optimized toward rank-
ing metrics through reinforcement learning, our
EDIRCS can not only benefit from ranking sig-
nals but also enjoy guidance from a very high-
performing CDR teacher (i.e., Conv-SPLADE) to
achieve better search effectiveness.

(3) Compared with the other two text editing-
based QR models (i.e., QuReTeC and CQE-sparse)
which can only select tokens from the dialogue con-
text, EDIRCS supports generating new informative
tokens and is augmented with search-oriented
learning, thus leading to substantial improvements.

Out-Of-Domain Evaluation Results. We per-
form out-of-domain evaluations on the two CAsT
datasets based on the models trained on QReCC.
Results are reported in Table 2. We find that
EDIRCS still outperforms the other compared
QR models in the zero-shot evaluation with at
least +3.5% and +4.4% average relative gains on
NDCG@3 and R@100, respectively. This demon-
strates the better robustness of EDIRCS to out-of-
domain search dialogues. But we also notice that
the performance of all QR models still lags behind
that of using manual rewrites in most cases, indi-
cating that there still have considerable room for
improving the zero-shot capabilities of QR models.

5.3 Efficiency Comparisons

Table 1 also shows the number of parameters and
the query rewriting latency. We find that QuReTeC,
CQE-sparse, and our EdiRCS have more than 10x
speedup than the purely autoregressive QR models

Search Method
CAsT-19 CAsT-20

NDCG@3 R@100 NDCG@3 R@100

B
M

25

T5QR 0.258 0.373 0.141 0.225
QuReTeC 0.334 0.390 0.173 0.236

CQE-sparse 0.236 0.358 0.133 0.200
EdiRCS 0.345† 0.402† 0.183† 0.244†
Human 0.309 0.448 0.240 0.395

A
N

C
E

T5QR 0.417 0.332 0.299 0.353
QuReTeC 0.430 0.337 0.287 0.346

CQE-sparse 0.399 0.310 0.271 0.336
EdiRCS 0.440† 0.353† 0.308† 0.375†
Human 0.461 0.381 0.422 0.465

Table 2: Out-of-domain evaluation results on the two
CAsT datasets. † denotes significant improvements of
EDIRCS over the other QR baselines using paired t-test
with p < 0.05.

BM25 ANCE
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Figure 4: Results of ablation studies on QReCC.

(i.e., GPT2+WS, T5QR, and CONQRR2). Com-
pared with QuReTeC and CQE-sparse which only
have non-autoregressive operations, EDIRCS just
has one more lightweight autoregressive generator
and is trained to generate only a few tokens (≤
10), so it is only a little bit slower than these two
models and is still quite efficient. Moreover, we
find that EDIRCS achieves the best retrieval perfor-
mance with the second-fewest number of parame-
ters, which verifies the superiority of our proposed
learning method.

Besides, we present the impact of the number
of generator layers on the retrieval performance
in Figure 3. It shows that the marginal benefit of
increasing the layer numbers decreases seriously,
so we just use four layers to benefit the efficiency.

5.4 Ablation Studies
In this section, we investigate the effects of our
proposed search-oriented learning. Specifically, we
test four variants of EDIRCS, including: (1) w/o
CRA: EDIRCS without contrastive ranking aug-
mentation. (2) w/o CKT-S: EDIRCS without using
contextualization knowledge transfer to enhance
the selector (i.e., Lckt). (3) w/o CKT-G: EDIRCS
without learning to generate the key tokens that are

2The QR latency of CONQRR would be similar to T5QR
since they are all based on t5-base.
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Search
Dialogue

Q: What is a normal blood sugar level?
R: Normal blood sugar levels are less than 100 mg/dL after ...
And they are less than 140 mg/dL two hours ...
Q: What does it mean if it’s higher than this?

Q: Where are The Roots from?
...
Q: Who started it
R: Tariq Black Thought Trotter and Ahmir Questlove Thompson
started The Roots.
Q: Where did these two meet?

Gold
Passage

Hyperglycemia is ... diabetes when the blood glucose level is
too high because the body isn’t ... hormone insulin. Eating too
many ... cause your blood sugar to rise.

Tariq Black Thought Trotter and Ahmir ... were both attending the
Philadelphia High School for the Creative and Performing Arts...

T5QR What does it mean if blood sugar higher than this? Where did Tariq Black and Ahmir Questlove Thompson two meet?
QuReTeC What does it mean if it’s higher than this? normal blood sugar level Where did these two meet? Tariq Trotter Ahmir Thompson started Roots

EdiRCS
What does mean higher than normal blood sugar level?
Hyperglycemia not make insulin.

Where these two meet? Tariq Black Thought and Ahmir Thompson
attend Philadelphia School

Human What does it mean if blood sugar level is higher than normal?
Where did Tariq Black Thought Trotter and Ahmir Questlove
Thompson meet?

Table 3: Examples of rewrites generated by Human, T5QR, QuReTeC, and EDIRCS. The current queries are shown
in italics. Some important tokens for retrieval in the context and in the gold passages are in bold.
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Figure 5: Turn-level performance comparisons using
ANCE as the retriever.

not in the original session. (4) w/o SOL: EDIRCS
without the proposed search-oriented learning. Re-
sults are shown in Figure 4.

We find that removing any of the search-oriented
objectives results in performance degradation. By
contrast, the contextualization knowledge transfer
shows to be a little bit more effective than the con-
trastive ranking augmentation. But the model en-
hanced with any of the two search-oriented ob-
jectives can substantially outperform using noth-
ing (i.e., w/o SOL), suggesting that the proposed
search-oriented learning facilitates EDIRCS to
achieve better conversational search.

5.5 Multi-turn Analysis
To investigate the long context understanding abil-
ity of EDIRCS, we show the fine-grained turn-
level model performance in Figure 5. As the dia-
logue goes on, the context becomes longer and the
context understanding problem generally becomes
more difficult. We observe that EDIRCS main-
tains the performance superiority across different
turns. Overall, the performance of EDIRCS fluctu-
ates less in deep turns (e.g, from turn No.7 to turn
No.11) compared with T5QR and QuReTeC. These

observations demonstrate the decent robustness of
our EDIRCS to the difficult long context.

5.6 Qualititve Analysis

To further gain qualitative insights, we show and
analyze some concrete rewriting examples in Ta-
ble 3, where EDIRCS achieves better MRR with
BM25 than T5QR, QuReTeC, and Human. We
find that the rewrite generated by T5QR is coherent
while some important information may miss (e.g.,
“this → normal” for the left example). By contrast,
EDIRCS accurately select those important tokens
from the session to complement the missing se-
mantics of the current query. Moreover, compared
with T5QR, QuReTeC, and Human, a notable ad-
vantage of EDIRCS is that some new tokens that
are not in the session but are helpful to retrieve the
gold passages can be incorporated into the rewrite
(e.g., Hyperglycemia and Philadelphia) thanks to
the proposed search-oriented learning.

6 Conclusion

In this paper, we present a CQR model EDIRCS
based on the text editing paradigm for efficient and
effective conversational search. EDIRCS is aug-
mented with two novel search-oriented objectives
that can leverage the downstream retrieval informa-
tion to improve the learning of query rewriting to-
ward conversational search. Experiments on three
conversational search datasets demonstrate the su-
perior effectiveness and efficiency of EDIRCS over
existing CQR models. We also show that EDIRCS
has decent robustness to out-of-domain search dia-
logues and difficult long context. Future directions
include exploring more search-oriented objectives
and simultaneously improving the coherence and
retrieval performance of the rewrites.

4167



Limitations

This section does not count toward the page limit.
As illustrated in § 5.2 and shown in Table 3, the

coherence of the rewrite generated by EDIRCS
is not as good as that generated by purely autore-
gressive rewriters (e.g, T5QR). This may affect the
performance of EDIRCS when using dense retriev-
ers. Possible solutions include using an additional
token reordering model (Chowdhury et al., 2021)
to improve the rewrite coherence or injecting the
coherence signals (Hao et al., 2021) or token posi-
tions information (Mallinson et al., 2022) into the
learning of EDIRCS in an end-to-end way. Another
concern is that the effect of our text editing-based
model may be limited for a few long-tail cases
where many expected rewrite tokens are not in the
input session. How to better deal with the search
dialogues whose search intents are too implicit or
vague to be accurately expressed by inferring from
the dialogue context alone is a valuable direction
for further improvements of our model.
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A Gold Label Annotation

In this section, we introduce the gold label annota-
tion for our conversational query editing.

For the session token selection, we wish to an-
notate the session tokens which also appear in
the manual rewrite as Retain and annotate the
other tokens as Delete. Considering that a token
may occur multiple times in the session, we itera-
tively adopt a Greedy Longest Common Substring
(GLCS) algorithm for label annotation. Specif-
ically, given the input session s and its manual
rewrite t, we first find their longest common sub-
string (lcs) s[a : b] == t[c : d], where a, b, c, d are
the start and end positions. If there are multiple
lcs, we greedily choose the one with the smallest
a, which is closest to the current query since the
current query is at the beginning of s. We anno-
tate all the tokens of s[a : b] as Retain. Then,
we remove this lcs to update both s and t to be
s = s[: a] + s[b :] and t = t[: c] + t[d :], and
iteratively perform the above annotating process
until the length of lcs is zero. Finally, we annotate
all the remaining tokens in s as Delete.

For the new token generation, we sequentially
extract the unique tokens which do not in the input
session from the manual rewrite to form the gold
sequence of generation.

The pseudo-code of the whole annotation pro-
cess is shown in Algorithm 1.

B Dataset Details

In this section, we provide more detailed descrip-
tion about the three used conversational search
datasets.

QReCC: It is a large-scale dataset for conversa-
tional question answering, which contains 14K
information-seeking conversations with 80K
query-answer pairs originated from the training
set of CAsT-19 (Dalton et al., 2020), QuAC (Choi
et al., 2018), and NQ (Choi et al., 2018) with
manually generated follow-up queries. Each
query has a response answer and a corresponding
human rewrite. The entire text corpus for retrieval
includes 54M passages and the query-passage
relevance is labeled through a heuristic span
matching method based on the answer.

CAsT-19 and CAsT-20: They are two widely
used conversational search evaluation datasets re-
leased by TREC Conversational Assistance Track

Algorithm 1 Gold Label Annotation
Require: The input session graph s and its manual

rewrite t.
1:

2: # Annotation for the session token selection.
3: while True do
4: a, b, c, d = GLCS(s, t) # get the greedy

longest common substring.
5: if a == b then

break
6: end if
7: Annotating the tokens in s[a : b] as Retain.
8: s = s[: a] + s[b :]

9: t = t[: c] + t[d :]

10: end while
11: Annotating all the tokens of s as Delete.
12:

13: # Annotation for the new token generation.
14: seq = ""
15: for i in range(0, len(t)) do
16: if t[i] not in s and t[i] not in seq then

seq = seq + t[i]

17: end if
18: end for
19: return seq # the gold sequence of generation.

(CAsT). There are only 50 and 25 human-written
information-seeking conversations in CAsT-19 and
CAsT-20, respectively, so they are hard to support
training and are suitable to be used as the evalu-
ation datasets. The query turns in CAsT-19 can
only depend on previous query turns. While in
CAsT-20, query turns may also depend on the pre-
vious system response. Each query turn in both
CAsT-19 and CAsT-20 has a corresponding hu-
man rewrite and CAsT-20 additionally provides
a canonical response passage for each query turn.
The text corpus consists of 38M passages from MS
MARCO (Nguyen et al., 2016) and TREC Com-
plex Answer Retrieval (Dietz et al., 2017). More
fine-grained query-passage relevance labels is gen-
erated by the experts of TREC.
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