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Abstract
Zero-shot transfer learning for document un-
derstanding is a crucial yet under-investigated
scenario to help reduce the high cost involved
in annotating document entities. We present
a novel query-based framework, QueryForm,
that extracts entity values from form-like docu-
ments in a zero-shot fashion. QueryForm con-
tains a dual prompting mechanism that com-
poses both the document schema and a spe-
cific entity type into a query, which is used
to prompt a Transformer model to perform
a single entity extraction task. Furthermore,
we propose to leverage large-scale query-entity
pairs generated from form-like webpages with
weak HTML annotations to pre-train Query-
Form. By unifying pre-training and fine-tuning
into the same query-based framework, Query-
Form enables models to learn from structured
documents containing various entities and lay-
outs, leading to better generalization to target
document types without the need for target-
specific training data. QueryForm sets new
state-of-the-art average F1 score on both the
XFUND (+4.6%∼10.1%) and the Payment
(+3.2%∼9.5%) zero-shot benchmark, with a
smaller model size and no additional image
input.

1 Introduction

Form-like document understanding has become a
booming research topic recently thanks to its many
real-world applications in industry. Form-like doc-
uments refer to documents with rich typesetting
formats, such as invoices and receipts in everyday
inventory workflow. Automatically extracting and
organizing structured information from form-like
documents is a valuable yet challenging problem.

Recent methods (Xu et al., 2020b; Garncarek
et al., 2021; Lee et al., 2022) often discuss the prob-
lem of form-like document understanding, e.g. doc-
ument entity extraction (DEE), in the supervised
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Figure 1: Illustration of the zero-shot transfer learning
stages of QueryForm. In the pre-training stage, we
extract millions of schemas and entity-value pairs from
publicly available webpages to generate a large amount
of query-value pairs to teach the backbone model to
make query-conditional prediction. During fine-tuning,
we extract more accurate entity-value pairs from the
available annotated document and directly learn schema
information from data. Finally, we evaluate the pre-
trained model on a different target document without
training data.

setting, assuming the training and test sets are of
the same document type. However, in real-world
scenarios, there is often the need for generalizing
models from seen document types to new unseen
document types. Beyond annotation costs, end-
lessly training specialized models on new types of
documents is not scalable in many practical sce-
narios. Moreover, the methods in the supervised
setting pre-define the document schema, i.e.the set
of entities contained in the document, following the
sequence-to-sequence tagging framework via the
BOISE labeling format (Ratinov and Roth, 2009).
Consequently, the models lack the ability to learn
from different documents with diverse schemas.

Thus, it is desirable to have a systematic way
to learn knowledge from existing annotated docu-
ments of different types to an un-annotated target
document type (e.g. invoice in Figure 2, right).
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This learning paradigm is usually defined as zero-
shot transfer learning in literature (Xu et al., 2021).
Beyond this, it is even more desirable to leverage
highly-structured form-like documents with rich
schema, such as form-like webpages in Figure 2,
left. Although webpages do not have explicit hu-
man annotations, we believe the diverse schemas
and natural “entities”, such as headers and text
paragraphs, that exist in webpages can be valuable
for document understanding. However, how to
effectively utilize these webpages with a high dis-
crepancy from documents like invoice and receipt
is an unknown yet challenging problem.

In this work, we propose a novel query-based
framework, QueryForm, to learn transferable
knowledge from different types of documents for
zero-shot entity extraction on the target docu-
ment type. The workflow of QueryForm is il-
lustrated in Figure 1. Ideally, we would like to
prompt the model: This document has the follow-
ing [SCHEMA], please extract its [ENTITY] value,
and model is able to accurately predict the corre-
sponding word tokens belong to the queried entity.
To this end, we encode both schema and entity
information in our query, so that the model is no
longer limited by a certain document type and a
fixed set of entity types (or classes). Moreover, our
query-based design can even benefit further from
large-scale datasets with diverse schemas and entity
types.

In order to feed this kind of composite query, we
propose a dual prompting strategy to effectively
prompt the backbone model, e.g., a pre-trained
Transformer, to make conditional prediction. As
its name suggests, the dual prompting strategy con-
sists of an E(ntity)-Prompt and a S(chema)-Prompt.
Depending on the annotations we have, we can
either generate the prompts from semantic labels,
or learn them directly from data. Although simi-
lar concepts to dual prompting exist in the vision
field (Wang et al., 2022a,b) to solve different prob-
lems, the main design in QueryForm is original in
DEE. We also propose a query-based pre-training
method, QueryWeb, which leverages the highly-
accessible and inexhaustible resource - publicly
available webpages. During the pre-training stage,
the model learns to quickly adapt to various queries
composed of different S-Prompts and E-Prompts
generated from HTML source of webpages. Af-
ter the decoupling of entity and schema that are
tied to document types, the model can learn more

Webpage Invoice document

Figure 2: Form-like examples of Webpage and Invoice
documents. Webpage appears to have distinct layouts
and contents from invoice documents, but they both con-
tain rich entity-value pairs, such as “page title-The 61st
Annual Meeting of the Association for Computational
Linguistics” in Webpage and “total amount - $755” in
Invoice.

transferable knowledge - leveraging the rich layout,
scale and content information in webpages to make
query-conditional predictions.

In summary, our work makes the following con-
tributions:

• We propose QueryForm, a novel yet simple
query-based framework for zero-shot docu-
ment entity extraction. QueryForm provides
a new dual prompting mechanism to encode
both document schema and entity information
to learn transferrable knowledge from source
to target document types.

• We demonstrate an effective pre-training ap-
proach, QueryWeb, that collects publicly
available webpages with various layouts and
HTML sources, and pre-trains QueryForm via
the dual prompting mechanism. Although
webpages show high discrepancy from the
target documents, we show this approach con-
sistently improves the zero-shot performance.

• With extensive empirical evaluation, Query-
Form sets new state-of-the-art F1 score
on both Inventory-Payment and FUNSD-
XFUND zero-shot transfer learning bench-
marks.

2 Related Work

Document entity extraction (DEE). Researchers
started to study extracting information from docu-
ments using rule-based models (Lebourgeois et al.,
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1992; O’Gorman, 1993; Simon et al., 1997), or
learning-based approaches with hand-engineered
features (Marinai et al., 2005; Wei et al., 2013;
Schuster et al., 2013). These methods have limited
representation power and generalization ability.

More recently, neural models have been the main-
stream solution for document entity extraction
(DEE). Both RNN-based (Palm et al., 2017; Ag-
garwal et al., 2021) and CNN-based models (Katti
et al., 2018; Zhao et al., 2019; Denk and Reisswig,
2019) have been adopted for DEE task. Never-
theless, motivated by the superior performance of
the Transformers (Vaswani et al., 2017) in various
NLU tasks (Devlin et al., 2018; Raffel et al., 2020),
recent work develops multiple Transformer-based
models for DEE. Majumder et al. (2020) extended
BERT (Devlin et al., 2018) to learn representations
for form-like documents; (Kim et al., 2022) pro-
pose a encoder-decoder structure that directly ex-
tracts document information from image input; Xu
et al. (2020b, 2021) leverage both image and text
inputs to capture cross-modality information. Lee
et al. (2021, 2022) further introduced GCN (Kipf
and Welling, 2016) to encode spatial relationships
in addition to the Transformer backbone. How-
ever, these methods only consider the usual super-
vised learning setting, i.e., training and test sets
are from the same document type. On the contrary,
our work proposes a novel query-based framework
and tackle the challenging yet under-investigated
zero-shot transfer learning (Xu et al., 2021) setting.

Pre-training for DEE. Existing large-scale pre-
training techniques in NLP (Devlin et al., 2018;
Conneau et al., 2019; Liu et al., 2019) are readily
available for serialized document tokens. Multi-
modal pre-training (Xu et al., 2020a,b, 2021; Ap-
palaraju et al., 2021) achieves better performance
than text-modality alone by incorporating visual
information at the cost of more expensive data col-
lection and computation costs. Our work presents
a novel pre-training method using text modality
alone, which is complementary to models that re-
lies on image modality (Kim et al., 2022) or multi-
ple modalities (Xu et al., 2020b, 2021). Moreover,
we leverage publicly available webpages, which
contain rich structured information and are much
more accessible than documents. Different from
the common Mask Language Model (MLM) ob-
jective used in pre-training, QueryForm has the
same query-conditional objective during both pre-
training and fine-tuning, which intuitively strength-

ens the transferability of pre-trained knowledge.
To the best of our knowledge, DQN (Gao et al.,

2022) and Donut (Kim et al., 2022) are the closest
work to ours in the DEE domain. However, our
work is still very different from them from multi-
ple perspectives, including problem setting, query
design, and pre-training technique. On the other
hand, leveraging webpages to pre-train language
models has been explored in prior work. Liu et al.
(2019); Brown et al. (2020) extract text corpora
from webpages and (Aghajanyan et al., 2021) use
HTML source for pre-training. However, to the
best of our knowledge, we are the first to lever-
age both webpages and the corresponding HTML
source in a novel query-based pre-training frame-
work to address the challenging zero-shot DEE task.
Our framework fully takes advantage of the rich
schema and layout information from webpages and
utilizes HTML tags as weak entity annotation to
align pre-training with the downstream DEE task.

3 Preliminaries

3.1 Problem Formulation

Given serialized words from a form-like document,
we formulate the DEE problem as sequence tagging
for tokenized words, i.e., for each word, we predict
its corresponding entity class. Recent methods (Xu
et al., 2020b; Garncarek et al., 2021; Lee et al.,
2022) use the BOISE labeling format (Ratinov and
Roth, 2009) - classifying the token as {e-Begin,
Outside, e-Inside, e-Single, e-End} of a certain
entity e ∈ E to mark the entity span, where E is
the set of entities of interest. Thus the cardinal-
ity of the label space will be (4 × |E| + 1). In
our formulation, we explicitly encode entity in the
E-Prompt. Therefore, we are able to use a more
succinct and generalizable BOISE labeling with
only 5 labels, {Begin, Outside, Inside, Single, End}
to mark the span. Our approach decouples the la-
bel space with entity types. Following Lee et al.
(2022), we then apply the Viterbi algorithm to get
the final prediction.

In our work, we focus on the zero-shot DEE set-
ting proposed by Xu et al. (2021), where 1) the
training source documents have significant domain
gap from the target test documents (e.g. languages
or document types), 2) there is no training docu-
ments available from the target documents, and 3)
source documents include entities contained in the
target documents.
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Figure 3: Overview of QueryForm. Our dual prompting design yields a consistent objective in both pre-training and
fine-tuning stages. Note that the schema query in pre-training comes from website domains while it is a learnable
parameter in fine-tuning. See Section 4 for more details.

3.2 Architecture design

Following the setting in earlier work (Majumder
et al., 2020; Lee et al., 2022), our method takes
the WordPiece (Wu et al., 2016) tokenized outputs
from the Optical Character Recognition (OCR) en-
gine in reading order (left-right and top-bottom).
By design, our method is compatible with any
sequence encoder model as the backbone. We
adopt the long-sequence transformer extension,
ETC (Ainslie et al., 2020) as our backbone, fol-
lowing the adoption of Lee et al. (2022), which
contains Rich Attention as an enhancement of self-
attention layers to encode 2D spatial layout infor-
mation. We find this method (used as our baseline)
performs fairly strong in the usual supervised learn-
ing setup, however, its performance drops signifi-
cantly in the zero-shot learning setting.

Note that in practice, one can use QueryForm
with OCR engines with different heuristics or other
model backbones (Zaheer et al., 2020). The work
focuses on how to enrich entity query abilities from
forms via our proposed QueryForm.

4 Methodology

We propose QueryForm as a general query-based
framework for solving the zero-shot DEE prob-
lem. QueryForm consists of a novel dual prompt-
ing strategy and a specially-designed pre-training
approach called QueryWeb. In Figure 3, the model
is first pre-trained on a large-scale webpage dataset
to learn to make conditional prediction under rela-

tively noisy queries generated from combination of
webpage domains (proxy of schema) and HTML
tags (proxy of entity). Then, the model is fine-tuned
on form-like documents with a unified schema
to learn more specialized knowledge, by learning
schema information in S-Prompt and further en-
code more accurate entity-level knowledge in E-
Prompt. Finally, we test the model on the target
document type in a zero-shot fashion (Figure 1).

4.1 Dual Prompting
Given a serialized document represented as a se-
quence of tokens x from the set of all documents X,
and a set of entities of interest E = {e1, · · · , em},
the goal is to let the model predict the correspond-
ing label sequence y. In our query-based frame-
work, we additionally define Q = {q1, · · · , qm}
as the set of queries, where there is a bijection be-
tween Q and E. The model takes an input tuple
(qi,x) and predicts the conditional output yqi (see
BOISE prediction in Figure 3 for example). yqi

defines the token spans of the given query q with 5
classes (i.e., BOISE).

To encode entity information into the query, we
can use the entity name as query, i.e., qi = ei. We
denote by t the tokenizer, fθ the input embedding
layer and pϕ the rest of the language model. Then
we can get the token-wise BOISE prediction:

ŷqi = pϕ(fθ([t(ei); t(x)])), (1)

where “[· ; ·]” is the concatenation operation along
the token length dimension. Note that although e
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itself is not learnable, we can still learn its embed-
ding fθ(t(e)) by optimizing θ.

We name the query directly generated from the
entity name as E-Prompt. However, in QueryForm,
our novel pre-training stage requires learning from
large amount of webpages, which contain diverse
categories of schema. Therefore, the model natu-
rally requires more informative queries that also
encodes the schema information. To this end, we
propose the S-Prompt to capture schema informa-
tion. In pre-training, we can generate S-Prompt in
a similar way as we do for E-Prompt, please see
Section 4.2 for more details. During fine-tuning,
the schema for form-like documents is often very
different from that of webpages. Thus, we let
the model learn the schema representation directly
from the data, so that it can align well to the S-
Prompts used in pre-training. We denote S-Prompt
by s, learnable vectors in the token embedding
space during fine-tuning to capture schema infor-
mation implicitly from the data. According to the
assumption in Section 3.1, the documents we used
in fine-tuning includes the target entities of inter-
est. Intuitively, the schema information from fine-
tuning documents should be transferrable to the
target test document type. So we directly reuse
the learned S-Prompt when testing the target docu-
ments. In this case, qi = (s, ei) and the prediction
becomes:

ŷqi = pϕ([s; fθ([t(ei); t(x)])]). (2)

Finally, the model is trained with the objective:

min
θ,ϕ,s

∑

x

m∑

i=1

L (yqi , ŷqi) , (3)

where L is the cross-entropy loss.

4.2 QueryWeb: Webpage-based Pre-training

Distinct from recent work that focuses on multi-
modal pre-training, our proposed pre-training ap-
proach provides a new perspective with two core
ideas: (1) Aligning pre-training and fine-tuning
objectives. (2) Utilizing easy-accessible and infor-
mative webpages.

Recall that, in the fine-tuning stage, QueryForm
is trained with a moderately sized set of queries
composed of E-Prompts generated from human-
annotated entities and a learnable S-Prompt that
encodes schema information. It is reasonable to be-
lieve that if we can pre-train the model with an ex-
tremely large set of queries composed of different

http://www.example.com
<div class=”product”>
<span id=”name”>Bath Mat</span>
<span id=”price”>$13.99</span>
</div>

Figure 4: An example of HTML snippets, with two
entities product/name and product/price.

E-Prompt and S-Prompt generated from weakly-
annotated documents, the model will perform better
than the Masked Language Model (MLM) (Devlin
et al., 2018) pre-training alone. Here, we present
our simple webpage-based pre-training technique
as well as our data collection recipes to enpower
the pre-training.

Dual prompting based pre-training. We di-
rectly extract schema and entity information from
rich HTML structure of various webpages and
use them to generate the S-Prompt and the E-
Prompt, respectively. With a slight abuse of no-
tation, we denote S-Prompt by s̃, where ·̃ in-
dicates that S-Prompt is no longer a learnable
parameter. Different from the fine-tuning stage
with a single set of entities under a unified
schema, we can group the webpages by schema:
{(s̃1,E1,X1), · · · , (s̃n,En,Xn)}, where each
schema s̃j corresponds to a set of entities Ej

and a set of webpages Xj . Similarly, the model
takes the query-document tuple (qij ,x), where
qji = (s̃j , eji), eji ∈ Ej and x ∈ Xj , and outputs
the following conditional prediction ŷqji :

ŷqji = pϕ(fθ([t(s̃i); t(ej); t(x)])). (4)

Equation 4 is analogous to equation 2, however, si
here is directly sourced from webpage data, which
makes it different from the learnable s in equa-
tion 2. Then we have the following pre-training
objective:

min
θ,ϕ

n∑

j=1

∑

x∈Xj

|Ej |∑

i=1

L
(
yqji , ŷqji

)
. (5)

The pre-training format is highly aligned with the
fine-tuning in equation 3, so the model learns
consistently during both stages to make query-
conditional predictions.

Data collection recipe. How to extract schema
and entity information from any webpage is another
contribution of this paper. Consider the HTML
snippets from Figure 4. First, it naturally con-
tains two entities, and the combination of HTML
tags defines what the entity is about, or its “entity
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Task Pre-training Train Test

Zero-shot
QueryWeb

FUNSD XFUND
Zero-shot Inventory Payment

Few-shot QueryWeb + Inventory Payment X-shot Payment

Table 1: Experiment design of two zero-shot transfer
learning and one few-shot learning tasks.

Dataset Schema Lang. Entity Example

FUNSD 1 1 4 199
XFUND 1 7 4 1393
Payment 1 1 7 10k

Inventory 1 1 7 or 28 24k

QueryWeb 87K 1 2.6M 1.2M
QueryWeb-ML 113K >50 11.5M 13M

Table 2: Detailed statistics of used datasets.

type”. Therefore, we have "Bath Mat" is of en-
tity product/name, and “$13.99” is of entity prod-
uct/price. Second, the schema of the webpage =
{product/name, product/price}, and the schema is
usually shared by a series of similar webpages un-
der the same domain. Therefore, we can extract the
domain name “www.example.com” as the schema
information. Both the schema information and en-
tity types generated from webpages are then respec-
tively encoded by our dual prompting mechanism.
In practice, the schema and entity information auto-
matically generated from webpages are often noisy.
However, in the experiments, our model is still able
to learn structured information from noisy queries
and obtain significantly better entity extraction per-
formance on the target form-like documents. More-
over, in order to represent webpages in a manner
that generalizes to form-like documents, the web-
page representation consists only of the visible text
tokens and corresponding x/y coordinates.1

5 Experiments

5.1 Datasets and Experiment Design

We use 3 publicly available datasets and 2 in-house
datasets that we collected to design and conduct ex-
tensive experiments to validate our method. Table
2 summaries the datasets.

FUNSD (Jaume et al., 2019) is a form under-
standing benchmark consisting of 199 annotated
forms in English with 4-entity types: header,
question, answer, and other.

XFUND (Xu et al., 2021) is a multilingual

1Visible text and coordinates are generated
by rendering each page with Headless Chrome:
https://developer.chrome.com/blog/headless-chrome/.

form understanding benchmark by extending the
FUNSD dataset. The XFUND benchmark has 7 dif-
ferent languages with 1,393 fully annotated forms,
where each language includes 199 forms with the
same set of 4 entity types as FUNSD.

Payment (Majumder et al., 2020) consists of
around 10K documents and 7 entity types from
human annotators. The corpus is collected from
different vendors with various layout templates. In
the few-shot learning experiments, we create multi-
ple subsets by randomly subsampling documents
from its training set.

Inventory is collected by us that contains
inventory-related purchase documents in English
(e.g., utility bills), containing a few document types
different from the Payment dataset. We prepare the
dataset consists of ∼ 24k documents in two an-
notated versions. The first version, Inventory-7, is
annotated at word-level with the same 7 entity types
from Payment. The second version, Inventory-28,
is annotated at word-level with 21 additional enti-
ties types, including common entity types such as
shipping address, supplier name.

QueryWeb is collected by us from publicly
available webpages in English from the Internet
with the acquisition procedure stated in Section 4.2.

QueryWeb-ML is a multilingual (ML) version
of QueryWeb with more than 50 languages (at 99%
percentile). We collect the dataset to validate the
effectiveness for multilingual pre-training for zero-
shot generalizability across different languages.

5.2 Experimental Details

We use the BERT-multilingual vocabulary (Devlin
et al., 2018) to tokenize the serialized OCR words.
We have two variants of QueryForm: a 6-layer ETC
with 512 hidden size and 8 attention heads and a
12-layer ETC with 768 hidden size and 12 attention
heads. For both S-Prompt and E-Prompt generated
from dataset annotations, we use a maximum token
length of 32 with zero padding. For learnable S-
Prompt used in the fine-tuning stage, we treat its
token length as a hyperparameter to search.

Our method uses the proposed QueryWeb pre-
training approach on the 2 large-scale webpage-
based datasets. Other comparing methods use
MLM pre-training with the corresponding datasets
mentioned in their papers, including ∼0.7k unla-
beled form documents for ETC+RichAtt (Ainslie
et al., 2020), IIT-CDIP dataset (Lewis et al., 2006)
with 7M documents for FormNet (Lee et al., 2022),
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Method Pre-training Image # Layers FUNSD XFUND
Method Size (Model Size) ZH JA ES FR IT DE PT Avg.

XLM-RoBERTa MLM 2.5TB 12L(270M) 66.70 41.44 30.23 30.55 37.10 27.67 28.86 39.36 38.24
InfoXLM MLM 2.5TB 12L(270M) 68.52 44.08 36.03 31.02 40.21 28.8 35.87 45.02 41.19
LayoutXLM MLM 30M ✓ 12L(345M) 79.40 60.19 47.15 45.65 57.57 48.46 52.52 53.90 55.61

XLM-RoBERTa MLM 2.5TB 24L(550M) 70.74 52.05 39.39 36.27 46.72 33.98 41.80 49.97 46.37
InfoXLM MLM 2.5TB 24L(550M) 73.25 55.36 41.32 36.89 49.09 35.98 43.63 51.26 48.35
LayoutXLM MLM 30M ✓ 24L(625M) 82.25 68.96 51.90 49.76 61.35 55.17 59.05 60.77 61.15

QueryForm QW 1.2M 6L(82M) 75.92 59.30 44.43 47.75 67.63 55.23 70.75 62.79 58.27
QueryForm QW-ML 13M 12L(185M) 80.84 67.68 53.30 55.80 72.91 67.30 74.25 69.30 65.79

Table 3: Comparison between QueryForm and competing methods on FUNSD-XFUND zero-shot benchmark.

Method Pre-training Model Size Supervised Source → Target
Method Size Upper-bound I7 → Payment I28 → Payment

ETC+RichAtt MLM 0.7M 83M 94.33 81.54 78.37
FormNet MLM 7M 82M 95.70 79.77 77.88
FormNet MLM 7M 157M 95.61 86.04 82.42

QueryForm QW 1.2M 82M 94.60 88.15 89.23

Table 4: Comparison between QueryForm and previous state-of-the-arts on Inventory-Payment zero-shot benchmark.
I-7 and I-28 are abbreviations of Inventory-7 and Inventory-28, respectively. QueryForm has much better general-
ization ability indicated by its stronger zero-shot performance and smaller gap with its supervised upper-bound
(trained and tested both on Payment).

Pre-training E-P S-P Source → Target
I7 → Payment I28 → Payment

MLM ✓ 81.95 85.71
QueryWeb ✓ 85.33 87.41

MLM ✓ ✓ 84.91 86.41
QueryWeb ✓ ✓ 88.15 89.23

Table 5: Ablation study of QueryForm on Inventory-
Payment benchmark. E-P and S-P are abbreviations of
E-Prompt and S-Prompt, respectively.

30M multilingual documents for LayoutXLM (Xu
et al., 2021), and 2.5TB multilingual Common-
Crawl data for XLM-RoBERTa (Conneau et al.,
2019) and InfoXLM (Chi et al., 2020).

We use mirco-F1 to evaluate the performance on
XFUND related expeirments, following Xu et al.
(2021); macro-F1 to evaluate Payment related ex-
periments, following Majumder et al. (2020); Lee
et al. (2022). We report the mean of best experi-
ment results across three runs with difference seeds.
Please see Appendix B for more experimental de-
tails.

5.3 Zero-shot Transfer Learning Results
To evaluate QueryForm, we introduce two zero-
shot transfer learning tasks and one few-shot learn-
ing task, as shown in Table 1. We follow the official
train-test split for all public available datasets by
default, unless specified explicitly. For zero-shot
on Payment test set, we pre-train on QueryWeb and
fine-tune on Inventory.
FUNSD-XFUND. In Table 3, we compare Query-
Form with recent zero-shot transfer learning meth-

Method Payment 1-shot Payment 10-shot

ETC+RichAtt2 59.62 88.21
FormNet2 (157M) 55.67 86.25
QueryForm 89.26 90.53

Table 6: Comparison between QueryForm and compar-
ing methods further fine-tuned on few-shot Payment
training sets.

ods, include XLM-RoBERTa (Conneau et al.,
2019), InfoXLM (Chi et al., 2020), and the cur-
rent state-of-the-art LayoutXLM (Xu et al., 2021),
which are all MLM pre-trained on multilingual
text or document datasets of different sizes (de-
tails in Section 5.2). QueryForm outperforms
all comparing methods even with much smaller
model size and no image modality. In particu-
lar, when we pre-train QueryForm on the multi-
lingual QueryWeb-ML, QueryForm obtains a sig-
nificant boost on all languages. Although XLM-
RoBERTa and InfoXLM are MLM pre-trained on
2.5TB multilingual data, and LayoutXLM espe-
cially collected 30M visually rich documents for
MLM pre-training, the stronger transferability of
QueryForm for zero-shot DEE indicates that our
pre-training method is more effective than MLM
for this specific task. Since the 12 layer (185M)
QueryForm has outperformed previous state-of-the-
arts by a large margin with a much smaller model
size, we leave further scaling up as future work.
Inventory-Payment. Table 4 shows the zero-shot
transfer learning result on the Inventory-Payment
benchmark. We compare QueryForm against the
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Ground Truth QueryForm Output
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Figure 5: Visualization example from XFUND (French). QueryForm labels entities with ambiguous “others”
annotation from ground truth as one of the other three entity types with concrete meanings.
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Figure 6: Loss visualization of pre-training on Query-
Web (Left) and fine-tuning on Inventory (Right).

current state-of-the-art on Payment, FormNet (Lee
et al., 2022), and our baseline ETC+RichAtt (see
Section 3.2). QueryForm outperforms competing
methods by a significant margin. Although Form-
Net obtains the best supervised upper-bound result
on Payment, the lower zero-shot results indicate
that knowledge transfer from different types of doc-
uments is still very challenging.

QueryForm is expected to take advantage of
larger number of queries though they are less rele-
vant. To validate, we compare fine-tuning datasets
with 7 and 28 annotated entities. As can be seen, su-
pervised methods like FormNet and ETC+RichAtt
suffer performance drop when seeing additional en-
tities not existed in target dataset, while QueryForm
gains further performance improvement.
Ablation study. We conduct ablation study of
QueryForm. From the results in Table 5, we can see
that both our dual prompting strategy and Query-
Web pre-training contribute to the zero-shot F1
score individually, and synergistically improve the
performance when working together.

5.4 Few-shot Learning on Payment
In practice, it is reasonable to believe that a few
annotated document from the target document type
can make models quickly adapt. Therefore, we de-
sign a few-shot learning step based on the best per-
forming model obtained on the Inventory dataset.

Table 6 shows the 1- and 10-shot results on Pay-
ment. To make sure the training is stable on low
data regime and comparison is fair, we conduct

hyperparameter search (e.g., learning rates, # of
freezing layers) for all methods and select the best
performing ones to present. When fine-tuning on
the extreme Payment 1-shot, both FormNet and
ETC-RichAtt overfit the single document from Pay-
ment severely, while QueryForm maintains high
performance2.When extending to 10-shot, all meth-
ods improves, and QueryForm still perform the
best. Although FormNet is state-of-the-art in su-
pervised learning setting, it underperforms other
methods on low data regime. We hypothesize GCN
requires more data to learn layout features.

5.5 Result analysis

Prediction visualization. Figure 5 demonstrates
an example output of QueryForm. QueryForm in-
fers entities that are annotated as “others” in ground
truth as one of the other three entity types with con-
crete meanings. For example, “Type” is a question
in the form, however, without corresponding an-
swer. Although human annotators might find it
ambiguous and mark it as “others”, QueryForm
successfully recognize it as a “question”.
Loss visualization. Figure 6 shows the loss curves
of pre-training on QueryWeb (Left) and fine-tuning
on Inventory (Right). According to the pre-training
loss curve, we observe that the loss converges well
despite the fact that the weak supervision extracted
from webpages is often noisy. Moreover, accord-
ing to the fine-tuning curve, we observe that the
loss converges very fast, thanks to the knowledge
learned during pre-training. The observations in-
dicate that our framework successfully extracts
useful information from the weak supervision and
leverages the learned information to facilitate fine-
tuning on form-like documents.

2For compared methods trained by us, although 10-
shot leads to improvement, 1-shot degrades with the same
parameter-search methods used for QueryForm. More ad-
vanced training strategies are not considered here.
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6 Conclusion

This paper presents QueryForm, a novel framework
to address the challenging zero-shot document en-
tity extraction problem. The dual prompting design
in QueryForm offers a refreshing view to unify the
pre-training and fine-tuning objectives, allowing
us to leverage large-scale form-like webpages with
HTML tags as weak annotations. QueryForm sets
new state-of-the-art results on multiple zero-shot
DEE benchmarks. We believe QueryForm serves
as a flexible framework for document understand-
ing tasks, and multiple interesting directions could
be further explored within the framework, such as
prompt design, richer pre-training sources, etc.

Ethical and Broader Impact

We have read the ACL Code of Ethics, and ensure
that our work is conformant to this code. As a novel
framework for zero-shot document entity extrac-
tion, QueryForm has a great potential to boost the
performance of existing DEE systems. However,
we would still like to discuss the limitations and
risks to avoid any misuse of QueryForm.

Although our proposed QueryWeb pre-training
approach can effectively achieve knowledge trans-
fer from publicly available webpages to form-like
documents, it inevitably carries the bias and fair-
ness problems (Mehrabi et al., 2021) to the down-
stream task. Therefore, in real-world applications,
we should have more strict rules to filter and clean
up the webpages, and thoroughly check the bias
and fairness issues of the pre-trained model.

Limitations

In addition to the bias and fairness concerns that
we discussed in the Ethical and Broader Impact
section, we discuss the possible limitations of our
method in this section.

As a query-based DEE framework, QueryForm
may be prone to specific prompting based adver-
sarial attacks (Xu et al., 2022), which may further
pose potential security concerns for safety-critical
documents. Thus, it is important to test the robust-
ness of QueryForm against adversarial attacks and
design defense schemes to further strengthen our
method in the future.

Our work focuses on the closed-world setting
that source documents include entities contained in
the target documents, following (Xu et al., 2021),
without further investigating the possible open-
world (Shu et al., 2018) setting with unseen test

entities. However, as a query-based framework that
makes conditional prediction with no pre-defined
set of entities, QueryForm actually supports the
prediction of unseen entities at test time and we
would like to leave it as an interesting future re-
search direction.
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A Additional Dataset Information

Licensing information. We provide the licens-
ing information of publicly available dataset as
follows:

• FUNSD is licensed under the license
specified in https://guillaumejaume.
github.io/FUNSD/work/, where the
use of the FUNSD Dataset is solely for non-
commercial, research and educational pur-
poses.

• XFUND is licensed under the Attribution-
NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) license.

• Payment has no licensing information, how-
ever, we use it accordingly following Ma-
jumder et al. (2020); Lee et al. (2022).

The use of existing artifacts is consistent with their
intended use for research and educational purposes.
Collection of in-house datasets. For datasets that
we collect, both Inventory and QueryWeb are suf-
ficiently anonymized to remove personal informa-
tion. Moreover, our internal system filters offensive
content when collecting public available webpages.
The possible limitation of our current data collec-
tion methodology for QueryWeb is that we do not
enforce strict check on the bias and fairness issues,
as discussed in Section 6. Our method mainly lever-
ages layout and HTML-related information from
webpages instead of the semantic content. No im-
ages are used. Additionally, it is useful to further
improve our data collection method in the future to
avoid potential bias and fairness issues.

B Additional Experiment Information

For QueryWeb pre-training, we use Adam opti-
mizer with a batch size of 512. We set the learning
rate to 0.0002 with a warm-up proportion of 0.01
and a linear learning rate decay of 100k steps. We
fine-tune all models using the Adam optimizer with
a batch size of 128 and a learning rate of 0.0004.
No warm-up or learning rate decay is used. Pre-
training takes approximately 48 hours on 8x8 TPU
v3. Fine-tuning takes approximately 4 hours on the
largest corpus, Inventory, on both TPUs and Tesla
V100 GPUs. We implement our method based on
the same codebase used in Lee et al. (2022).
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