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Abstract

Masked language modeling, widely used in
discriminative language model (e.g., BERT)
pretraining, commonly adopts a random mask-
ing strategy. However, random masking does
not consider the importance of the different
words in the sentence meaning, where some of
them are more worthy to be predicted. There-
fore, various masking strategies (e.g., entity-
level masking) are proposed, but most of them
require expensive prior knowledge and gener-
ally train from scratch without reusing existing
model weights. In this paper, we present Self-
Evolution learning (SE), a simple and effective
token masking and learning method to fully and
wisely exploit the knowledge from data. SE
focuses on learning the informative yet under-
explored tokens and adaptively regularizes the
training by introducing a novel Token-specific
Label Smoothing approach. Experiments on 10
tasks show that our SE brings consistent and
significant improvements (+1.43∼2.12 average
scores) upon different PLMs. In-depth anal-
yses demonstrate that SE improves linguistic
knowledge learning and generalization.

1 Introduction

Masked language modeling (MLM), which com-
monly adopts a random masking strategy to select
the mask tokens, has become the de-facto stan-
dard for discriminative pretrained language models
(PLMs) (Devlin et al., 2019; Liu et al., 2019; He
et al., 2020; Joshi et al., 2020). However, such a
random masking process is usually criticized as
being sub-optimal, as it allocates an equal masking
rate for all tokens. In particular, the masked tokens
are sometimes too easy to guess with only local
cues or shallow patterns (Joshi et al., 2020), while
the informative tokens that carry more critical lin-
guistic knowledge may be neglected (Church and
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Hanks, 1990; Sadeq et al., 2022). For example,
“Bush” and “Sharon” express more important mean-
ing than “a” in the sample sentence “Bush held a
talk with Sharon”. MLM with predicting the above
easy-to-guess tokens, e.g., “a”, would lead to low
data efficiency and sub-optimal model capability.

To address this problem, various methods have
been carefully designed to improve MLM via fully
leveraging the training data (Sun et al., 2019; Joshi
et al., 2020; Levine et al., 2020). The common
goal is to inject language prior knowledge into the
pretraining process (Cui et al., 2022; Ding et al.,
2021). Although empirically successful, there are
still some limitations. First, they usually require
annotation derived from off-the-shelf tools to select
mask tokens, which is not only expensive but also
too deterministic1, and may cause error propaga-
tion from the third-party tool. For instance, Sun
et al. (2019) employ external linguistic tools, e.g.,
Stanford CoreNLP (Manning et al., 2014), to an-
notate the entities. Second, to ensure the effective-
ness of the masking strategy, most previous works
train PLM from scratch without reusing the exist-
ing models trained with vanilla MLM (Sun et al.,
2019; Joshi et al., 2020; Levine et al., 2020; Sadeq
et al., 2022), which is wasteful and inefficient.

Thus, there raises a question: whether we can
strengthen the PLM capability and data efficiency
through further learning from the informative yet
under-explored tokens, where such tokens are de-
termined by the existing PLM itself. In fact, an
off-the-shelf PLM already has the ability to deter-
mine the worthy and informative tokens that should
be further exploited, as the representation of PLM
generally can reveal good enough linguistic prop-
erties (Hewitt and Manning, 2019; Swayamdipta
et al., 2020). For example, tokens that PLMs pre-
dict incorrect or low confidence are usually more

1The once-for-all prior is not suitable for different PLMs,
e.g., under-explored word for BERT may already well-
mastered by RoBERTa.
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hard-to-learn and challenging, which are essen-
tial for further training. Also, the conjecture to
improve the off-the-shelf PLM is model-agnostic,
green, and efficient, thus having the great potential
to evolve any existing discriminative PLMs.

Motivated by this, we design a simple and ef-
fective Self-Evolution learning (SE) mechanism to
improve the pretraining of discriminative PLMs.
Specifically, the SE contains two stages: ❶self-
questioning and ❷self-evolution training. In
stage 1, the PLM is forced to locate the informa-
tive but under-explored tokens2 from the pretrain-
ing data. After locating these hard-to-learn tokens,
we then encourage the PLM to learn from them
in stage 2, where we basically follow the vanilla
MLM to mask these tokens and then optimize the
PLM by minimizing the loss between the predic-
tions and one-hot labels. It should be noted that due
to the hard-to-learn properties, directly enforcing
the PLM to fit the hard labels may lead to overfit-
ting or overconfidence problem (Miao et al., 2021).
Inspired by the label smoothing (LS) (Szegedy
et al., 2016) that regularizes the learning by smooth-
ing target labels with a pre-defined (static) prior
distribution, we propose a novel Token-specific La-
bel Smoothing (TLS) approach. Our TLS consid-
ers both the precise hard label and, importantly,
the easily-digestible3 distribution that is adaptively
generated by the PLM itself.

We validated our SE on several benchmarks
including GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019), SQuAD2.0 (Ra-
jpurkar et al., 2018), SWAG (Zellers et al., 2018)
and LAMA (Petroni et al., 2019) over several
PLMs: BRET (Devlin et al., 2019)-BASE, -LARGE,
RoBERTa (Liu et al., 2019)-BASE, and -LARGE.
Experiments demonstrate the effectiveness and uni-
versality of our approach. Extensive analyses con-
firm that SE effectively enhances the ability of
PLMs on linguistic knowledge learning, model gen-
eralization and robustness.

Contributions Our main contributions are:

• We propose SE to strengthen the MLM-based
PLMs, where our mechanism does not require
external tools and enjoys a simple recipe: con-
tinue pretraining with SE.

2We refer to those hard-to-learn tokens that are not learned
well by PLMs as the informative but under-explored tokens.

3Analogous to human learning behavior, it is often easier
for humans to grasp new things described by their familiar
knowledge (Reder et al., 2016).

• We design a novel token-specific label smooth-
ing approach for regularization, which adopts
the token-specific knowledge-intensive distri-
butions to adaptively smooth the target labels.

• Extensive experiments show that our SE
could significantly and robustly evolve a se-
ries of backbone PLMs, up to +2.36 aver-
age score improvement on GLUE benchmark
upon RoBERTa.

2 Related Works

In recent years, we have witnessed numerous dis-
criminative PLMs (Devlin et al., 2019; Liu et al.,
2019; He et al., 2020; Sun et al., 2019; Joshi et al.,
2020) that achieved tremendous success in vari-
ous natural language understanding (NLU) tasks.
Although the discriminative PLMs vary in terms
of pretraining data or model architecture, they are
commonly based on MLM loss function. MLM
mechanism is pioneered in BERT (Devlin et al.,
2019) that uses a random masking strategy to mask
some tokens, and then enforces the PLM to learn
to recover word information from the masked to-
kens. Obviously, the vanilla MLM is a linguistic-
agnostic task, as the random masking procedure
does not integrate linguistic knowledge explicitly,
which is sub-optimal. Thus, several previous stud-
ies attempt to improve MLM by exploring a diverse
of linguistically-motivated masking strategies, such
as entity-level masking (Sun et al., 2019), span-
level masking (Joshi et al., 2020), N-grams mask-
ing (Levine et al., 2020), etc., to fully leverage the
pretraining data.

Although achieving remarkable performance,
these strategies still have some limitations. First,
their implementations are relatively complex, as
they usually require annotation derived from exter-
nal models or tools to select tokens for masking.
Even for the unsupervised PMI-masking (Sadeq
et al., 2022), it is still expensive to measure the
pointwise mutual information for pretrain-level
large-scale data, and the annotated labels are static,
while our SE could obtain dynamic annotations
via given existing PLMs. Second, in order to en-
sure the effectiveness of masking strategy, most
previous works (Sun et al., 2019; Joshi et al., 2020;
Levine et al., 2020; Sadeq et al., 2022) train the
language models from scratch without reusing the
existing PLMs trained with vanilla MLM, which is
wasteful and inefficient.
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Figure 1: Overview of the proposed SE mechanism, which contains two stages: ❶ using an existing PLM to locate
the informative yet under-explored tokens and ❷ encouraging the PLM to robustly learn from these tokens via a
token-specific label smoothing approach.

Along the same research line, in this paper, we
improve the MLM-based PLMs with a novel self-
evolution learning mechanism. Instead of training
a PLM from scratch based on a carefully-designed
and complex masking strategy, our mechanism
aims to strengthen the PLM’s capability and data
efficiency by further learning from the informative
yet under-explored tokens, which are determined
by the existing PLM itself.

3 Methodology

3.1 Preliminary
Given a sentence S = {t1, t2, ..., tn} with n tokens,
MLM first randomly selects some percentage of the
input tokens and replaces them with a special mask
symbol [MASK]. Suppose that there are m masked
tokens and {k1, k2, ..., km} is the set of masked
positions, we can denote the masked tokens as
M = {tk1 , tk2 , ..., tkm}. Let S′ denote the masked
sentence, we can feed S′ into the model and obtain
the last hidden layer representations as H ∈ Rn×d

(d is the hidden size), and a subset of represen-
tations w.r.t masked positions as Hm ∈ Rm×d.
Subsequently, the input word embedding matrix
E ∈ RV×d (V is the vocabulary size) is used to
project the hidden representations into vocabulary
space. Lastly, we can get the normalized prediction
probabilities for each masked token as:

pi = softmax(Hm
i ET + b), (1)

where pi ∈ RV and i ∈ {1, 2, ...,m}. Finally,
given the one-hot labels yi, we use the cross-

entropy loss to optimize the MLM task:

LMLM = − 1

m

m∑

i=1

yi log pi (2)

3.2 Self-Evolution Learning for PLMs
In this part, we introduce our SE mechanism in de-
tail. At its core, SE is to enforce the existing PLM
to further learn from the informative yet under-
explored tokens, which are wisely determined by
the PLM itself. Figure 1 illustrates the process
of SE mechanism, which contains two stages: (1)
self-questioning and (2) self-evolution training.

❶ Self-questioning Stage. The goal of this stage
is to select the informative yet under-explored to-
kens, i.e., these hard-to-learn tokens that the PLMs
do not learn well during the previous pretraining.
However, how to select these target tokens? In-
spired by the finding of the representations of the
off-the-shelf PLM on individual tokens can reveal
good enough linguistic properties (Hewitt and Man-
ning, 2019; Swayamdipta et al., 2020), we hereby
propose to straightforwardly leverage the behavior
of PLMs to wisely select target tokens in this stage.
Specifically, we mainly focus on two important
properties, i.e., correctness (accuracy) and confi-
dence (the probability output that the model assigns
to the prediction), as the tokens that PLMs pre-
dict incorrect or low confidence are usually more
hard-to-learn and worthy for further exploring (Guo
et al., 2017; Park and Caragea, 2022). Based on
the above two properties, we introduce two simple
metrics to estimate the learning value of tokens:
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Correctness-based metric. In practice, we first
feed the original sentence S into the existing frozen
PLM and enforce it to output the prediction proba-
bilities pi (i ∈ {1, 2, ..., n}) for each token. Given
the one-hot labels yi (i ∈ {1, 2, ..., n}), we calcu-
late the cross-entropy loss (i.e., correctness) for
each token position (denoted as {l1, l2, ..., ln}).
Then, we set a loss threshold Tl and select the
tokens that exceed Tl as the target tokens, i.e.,
M = {ti|li > Tl} where i ∈ {1, 2, ..., n}.

Confidence-based metric. Similarly, we can
measure the confidence of tokens and use it as the
metric. Different from the above process, in this
metric, we compute the entropy of pi as the confi-
dence for each token (denoted as {e1, e2, ..., en}).
Intuitively, the tokens with high entropy value are
hard-to-learn, as the PLM predict them with low
confidence towards the gold labels. Also, an en-
tropy threshold Te is used to select the target tokens,
i.e., M = {ti|ei > Te}4.

❷ Self-evolution Training Stage. After estimat-
ing these hard-to-learn tokens, we can then choose
them for masking and encourage the PLM to learn
from them. Intuitively, we can follow the vanilla
MLM process to optimize the PLM by minimizing
the loss between the predictions and one-hot la-
bels, as implemented in Eq. 2. However, due to the
hard-to-learn properties of these tokens, directly en-
forcing the PLM to fit the hard labels may lead to
overfitting or overconfidence problem (Miao et al.,
2021; Li et al., 2022). To tackle this issue, in this
stage, inspired by the label smoothing (LS) reg-
ularization approach (Szegedy et al., 2016), we
further propose a novel token-specific label smooth-
ing (TLS) approach to adaptively regularize the
training and improve the generalization of PLMs.

Mathematically, in LS approach, it minimizes
the cross-entropy between modified label distribu-
tion y′i and the model output pi, where y′i is the
smoothed label distribution formulated as:

y′i = (1− λ) ∗ yi + λ ∗ ui, (3)

where ui is a fixed distribution that is usually a
uniform distribution, and λ is a weighting factor.
Furthermore, following Yuan et al. (2020), we re-
formulate the loss function of LS as:

LLS = (1− λ) ∗H(y, p) + λ ∗Dkl(u, p), (4)

4In practice, Tl and Te are empirically set as 0.1 and 1, re-
spectively. The detailed analyses are shown in Appendix A.4.

where H denotes the ordinary cross-entropy loss
and Dkl denotes the KL divergence loss. We can re-
gard Dkl(u, p) as a knowledge distillation process,
where u corresponds to a virtual teacher to guide
the student model (i.e., the PLM). Obviously, it is
sub-optimal as u hardly provides enough linguistic
information to guide the training of PLM.

Motivated by this, in our TLS, we design a more
informative prior distribution to smooth the labels.
Specifically, inspired by human learning behavior
(it is often easier for humans to grasp new things
described by their familiar knowledge (Reder et al.,
2016)), we improve the Dkl supervision with a
more easily-digestible and informative distribution
that is adaptively generated by the PLM itself. In
other words, Dkl can be recast as a self-distillation
process, where the virtual teacher distribution is
acquired from the student model itself. In practice,
for each masked position ki, in addition to the pre-
diction probabilities pi on the corrupted S′, we also
feed the original sentence S into the current PLM
and regard the corresponding probabilities as the
reference probabilities ri5. Then, similar to Eq. 3,
we can obtain the smoothed label ỹi via:

ỹi = (1− λ) ∗ yi + λ ∗ ri (5)

Lastly, we use the cross-entropy as the loss function
in the SE training stage, as follows:

LSE = − 1

m

m∑

i=1

ỹi log pi (6)

4 Experiments

4.1 Tasks and Datasets
We follow many previous studies (Zhong et al.,
2022a,c, 2023a,b) and conduct extensive experi-
ments on various NLU tasks, including a diversity
of tasks from GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019) benchmarks, i.e.,
linguistic acceptability (CoLA), natural language
inference (RTE, CB), paraphrase (MRPC), ques-
tion answering (BoolQ), word sense disambigua-
tion (WiC) and causal reasoning (COPA). Addition-
ally, we also evaluate on three knowledge-intense
tasks, which require the ability of commonsense
knowledge reasoning, i.e., SQuAD2.0 (Rajpurkar
et al., 2018), SWAG (Zellers et al., 2018) and

5It is noteworthy that, although the ri may not be much
close to the ground-truths, the linguistic information contained
in ri is potentially beneficial for further learning.
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CoLA MRPC RTE BoolQ CB WiC COPA Score
Method

Mcc. Acc. Acc. Acc. Acc. Acc. Acc. Avg. ∆ (↑)

Performance of Different Masking Strategies

BERTbase 62.33 88.97 76.89 75.05 85.71 66.77 63.00 74.10 –
-w/ Entity-level masking 60.06 88.73 76.53 74.77 87.50 66.61 65.00 74.17 +0.07
-w/ Span-level masking 61.41 88.48 78.34 74.28 87.50 67.40 65.00 74.63 +0.53
-w/ PMI-based masking 61.09 88.24 76.90 74.25 87.50 66.61 65.00 74.23 +0.13
-w/ Self-questioning 63.78 87.99 78.34 74.13 85.71 67.87 66.00 74.83 +0.73

BERT-SEbase 63.63 89.50 77.98 74.37 89.29 67.40 66.00 75.45 +1.35

Performance upon More Discriminative PLMs

BERTlarge 63.00 87.25 83.80 78.40 91.07 67.24 72.00 77.54 –
BERT-SElarge 65.66 88.23 85.20 80.18 92.86 68.34 78.00 79.78 +2.24
RoBERTabase 62.00 90.20 83.12 78.72 83.93 69.12 70.00 76.72 –
RoBERTa-SEbase 62.11 89.71 84.12 79.39 92.86 71.40 74.00 79.08 +2.36
RoBERTalarge 64.73 90.69 88.44 84.37 91.07 69.90 78.00 81.03 –
RoBERTa-SElarge 67.80 91.91 90.25 84.56 96.40 70.53 80.00 83.06 +2.03

Table 1: Comparison between our SE and the vanilla method applied to all PLMs on the combination of GLUE
and SuperGLUE benchmarks. Average scores on all tasks are underlined. The best results are given in bold. “∆”
denotes the improvement of SE methods compared to the baseline PLMs.

LAMA (Petroni et al., 2019). In practice, we re-
port the performance with Accuracy (“Acc.”) met-
ric for most tasks, except the Matthew correla-
tion (“Mcc.”) for CoLA, the F1 and Exact Match
(“EM”) scores for SQuAD2.0, and the Mean Recip-
rocal Rank (“MRR”) scores for LAMA. We report
the averaged results over 10 random seeds to avoid
stochasticity. The details of all tasks and datasets
are provided in Appendix A.1.

4.2 Implementation Details

Pre-training. We employ the representative
BRET (Devlin et al., 2019)-BASE, -LARGE,
RoBERTa (Liu et al., 2019)-BASE, and -LARGE as
the backbone discriminative PLMs, and implement
our methods in a continued pretraining manner.
For pretraining settings, we follow the original pa-
pers (Devlin et al., 2019; Liu et al., 2019) and use
the same pretraining corpus and (most of) hyper-
parameters6 (e.g., batch size and the maximum
length of the input sentence), respectively.

Especially, as suggested by Liu et al. (2019), we
do not use the next sentence prediction (NSP) ob-
jective during BERT pretraining. For our methods,
we continue pretraining the backbone PLMs with
2 epochs. Additionally, for reference, we train the
PLMs with the vanilla MLM for the same steps and
refer to them as the baselines.

6Notably, for the continued pretraining process, we use
1/10 of the learning rate in the original paper as the initial one.

Fine-tuning. The learning rate is selected in
{1e-5, 2e-5, 3e-5, 5e-5}, while the batch size is
in {12, 16, 32} depending on tasks. The max-
imum length of the input sentence is 384 for
SQuAD2.0 and 256/512 for other tasks. We use
AdamW (Loshchilov and Hutter, 2018) as the op-
timizer, and set the β2 and weight decay as 0.98
and 0.01, respectively. All experiments are con-
ducted on NVIDIA A100 GPUs. The detailed
hyper-parameters are provided in Appendix A.2.

Compared Methods. For references, we com-
pare our SE method with other cutting-edge coun-
terparts. Specifically, taking the BERTbase as the
baseline, we use the following masking strategies
to further improve its performance:

• Entity-level masking: following Sun et al.
(2019), we mask the named entities in the sen-
tence and enforce the model to predict them.

• Span-level masking: as done in (Joshi et al.,
2020), we randomly select spans from the sen-
tence based on a geometric distribution and
mask the selected span.

• PMI-based masking: similar to (Sadeq et al.,
2022), we use PMI to identify a set of contigu-
ous (informative) N-grams and mask them.

• Self-questioning masking7: We adopt our
7The main difference from our full SE is that it does not
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Method SQuAD2.0 SWAG Avg.
EM F1 Acc.

BERTbase 72.18 75.07 77.53 74.93
BERT-SEbase 72.89 75.64 77.91 75.48
BERTlarge 81.35 84.38 83.40 83.04
BERT-SElarge 81.94 85.00 83.61 83.52

RoBERTabase 78.79 81.92 79.69 80.13
RoBERTa-SEbase 79.41 82.55 79.88 80.61
RoBERTalarge 84.70 87.65 84.34 85.56
RoBERTa-SElarge 85.03 87.93 84.54 85.83

Table 2: Performance on SQuAD2.0 (Rajpurkar et al.,
2018) and SWAG (Zellers et al., 2018) dev sets.

Method Google-RE (LAMA) Avg.
date-birth place-birth place-death

RoBERTabase 5.51 11.52 2.68 6.57
RoBERTa-SEbase 6.35 15.16 9.61 10.37

Table 3: Performance of our SE on LAMA (Petroni
et al., 2019) to probe the factual knowledge.

stage 1 to select the hard-to-learn tokens and
directly follow the vanilla MLM to mask them
and predict the one-hot labels.

Notably, for a fair comparison, we implement all
these methods in a continual pretraining manner,
same to the settings of our SE.

4.3 Main Results

SE surpasses the previous carefully-designed
masking strategies. Results on GLUE and Su-
perGLUE benchmarks are shown in Table 1. Com-
pared with the baseline BERTbase, all masking
strategies bring the average performance gains,
proving the necessity of improving MLM. Among
all these methods, our proposed self-questioning
masking achieves the relatively better performance
on many tasks, confirming the effectiveness of
using the PLMs themselves to select the hard-to-
learn tokens. More encouragingly, with the help of
self-evolution training, our final BERT-SEbase can
achieve further performance improvements. These
results can prove the superiority of our SE.

SE brings consistent and significant perfor-
mance improvements among all PLMs. In ad-
dition to the results upon BERTbase, we also apply
our method on more discriminative PLMs and re-
port the results in Table 1. Compared with the base-
lines, SE brings consistent and significant perfor-

involve the self-evolution training process of stage 2.

Figure 2: Parameter analysis of λ on BERT-SElarge.

mance improvements across all BERT/RoBERTa
model sizes. Specifically, for Base and Large
RoBERTa models, SE brings 2.36% and 2.03%
relative gains in overall score respectively. Also,
the gain for BERT is up to 2.24%. These results
prove the effectiveness and universality of our SE.

SE enhances the ability of knowledge learning.
For the knowledge-intense tasks, i.e., SQuAD2.0
and SWAG, we report the results in Table 2. With
the help of SE, all PLMs consistently achieve bet-
ter performance. Specifically, the performance im-
provements on SQuAD2.0 in terms of EM and F1
are up to 0.71% and 0.64%, respectively. Besides
QA tasks that require to be fine-tuned, we conduct
experiments on a widely-used factual knowledge
probing task, i.e., LAMA (Petroni et al., 2019), to
verify whether SE improves the ability of PLMs on
commonsense knowledge. We report the results in
Table 3. Based on the powerful RoBERTa, SE still
brings significant improvements, i.e. +3.8 average
score, to the knowledge-learning ability of PLMs.

4.4 Ablation Study
We evaluate the impact of each component of our
SE, including i) token-selecting metrics, ii) token-
specific label smoothing approach, iii) coefficient
λ, and iv) more SE iterations.

Impact of Token Selecting Metrics. As men-
tioned in §3.2, we introduce several metrics to se-
lect the hard-to-learn tokens in the self-questioning
stage. Here, we conduct experiments to analyze
the impact of different metrics. Specifically, for ref-
erence, we compare the “Correctness-based” and
“Confidence-based” metrics8 with a simple alter-
native, i.e., “randomly selecting”. Results in Ta-

8Our preliminary study shows the non-complementarity be-
tween two token-selecting metrics, we compute their vocabu-
lary distribution difference and give evidence at Appendix A.5.
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Method BERTbase BERTlarge RoBERTabase RoBERTalarge Avg.

Baseline 74.10 77.54 76.73 81.03 77.35
Selecting metrics in self-questioning stage

-w/ randomly selecting 73.85 (-0.25) 78.28 (+0.74) 77.09 (+0.36) 81.64 (+0.61) 77.72 (+0.37)
-w/ Correctness-based 75.45 (+1.35) 79.78 (+2.24) 79.08 (+2.35) 83.06 (+2.03) 79.34 (+1.99)
-w/ Confidence-based 75.77 (+1.67) 78.88 (+1.34) 77.86 (+1.13) 82.46 (+1.43) 78.74 (+1.39)

Table 4: Ablation study of different metrics used to select the hard-to-learn tokens in SE, evaluated on the
combination of GLUE and SuperGLUE benchmarks. For simplicity, we show the overall score here. The full results
and analyses about the superiority of the correctness-based metric can be found in Appendix (Table 11&10).

Method GLUE/SGLUE SQuAD/SWAG

Avg. (∆ ↑) Avg. (∆ ↑)

RoBERTabase 76.73 80.13
RoBERTa-SEbase

-w/ vanilla LS 78.37 (+1.64) 80.37 (+0.24)
-w/ TLS (Ours) 79.08 (+2.35) 80.61 (+0.48)

Table 5: Ablation study of our TLS approach. “-w/
vanilla LS” and “-w/ TLS (Ours)” refer to using the
vanilla and our proposed token-specific label smoothing
approaches in SE mechanism, respectively. Full results
are shown in Appendix (Table 12).

ble 4 show that 1) although the “randomly se-
lecting” performs worst, it still outperforms the
continually trained baseline, showing the effec-
tiveness of the self-evolution training. 2) both
our proposed metrics “Correctness-based” and
“Confidence-based” achieve significantly better per-
formance, confirming our claim that learning on in-
formative yet under-explored tokens can strengthen
the capability of PLMs and data efficiency. No-
tably, the correctness-based metric outperforms the
confidence-based metric in most cases, thus leaving
as our default setting in SE.

Impact of Token-specific Label Smoothing. A
key technology in our SE is the TLS, which uses
the token-specific smoothed label to adaptively
guide training. To verify its effectiveness, we con-
duct experiments and present the results in Table 5.
We show that 1) the vanilla label smoothing ap-
proach equipped SE could easily outperform the
continuously trained backbone, showing the superi-
ority of our SE framework, and importantly, 2) our
TLS could further improve the results by a large
margin against vanilla LS equipped SE, e.g. aver-
aging +0.71, indicating the effectiveness of TLS.

Impact of Coefficient λ. The factor λ in Eq. 5,
which is used to control the ratio of label smooth-
ing, is an important hyper-parameters. In this study,

GLUE N = 1 N = 2 N = 3

CoLA 63.63 63.59 63.60
MRPC 89.50 88.23 88.97
RTE 77.98 79.42 78.70
Avg. (∆ ↑) +0.97 +1.02 +1.03

Table 6: Performance for different iterations N on
BERT-SEbase. “Avg. (∆ ↑)” indicates the relative im-
provement against the vanilla BERTbase.

Figure 3: Analysis of task generalization. The model
is fine-tuned on the QNLI task and transferred to four
different tasks. We can see that SE consistently brings
better generalization compared with its counterparts.

we analyze its influence by evaluating the perfor-
mance with different λ spanning {0.1, 0.3, 0.5, 0.7,
0.9} on several GLUE tasks. Figure 2 illustrates the
average results. Compared with the baseline, our
SE consistently brings improvements across all ra-
tios of λ, basically indicating that the performance
of SE is not sensitive to λ. More specifically, the
case of λ = 0.1 performs best, and we thereby use
this setting in our experiments.

Impact of More SE Iterations. Researchers may
doubt whether SE can be further augmented by
performing the self-questioning and token-specific
label smoothing with already evolved PLMs that
own better representations. That is, whether more
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Figure 4: The 3D loss surface comparison between baseline, SE (“-w/ vanilla LS”) and SE (“-w/ TLS”) methods
applied to RoBERTabase. Note that the PLMs are fine-tuned on the CoLA task.

Figure 5: 1D visualization of loss landscapes of
RoBERTabase models fine-tuned on different tasks.

iterations (denoted as “N”) further enhance SE?
To answer this question, we continuously train the
PLMs with more SE iterations and report the per-
formance of several GLUE tasks in Table 6. As
seen, increasing the iterations improves the perfor-
mance but the gain margin is insignificant. Given
that increasing N costs more, we suggest using SE
for only one iteration to achieve a better trade-off
between costs and performance.

5 Discussion

To better understand SE, we conduct extensive anal-
yses to discuss whether it gains better generaliza-
tion/ robustness and knowledge-learning ability.

5.1 Does SE Bring Better Generalization?
We examine from two perspectives: i) measuring
the cross-task zero-shot performance, and ii) visu-
alizing the loss landscapes of PLMs.

Task Generalization. The performance of out-
of-domain (OOD) data is widely used to verify
the model generalization (Wang et al., 2022; Ding
et al., 2022). Thus, we follow Xu et al. (2021);
Zhong et al. (2022b) and evaluate the performance
of PLMs on several OOD data. In practice, we first
fine-tune RoBERTabase models trained with differ-
ent methods (including “Baseline”, “SE (-w/ LS)”,
and “SE (-w/ TLS)”) on the QNLI task, and then in-
ference on other tasks, i.e., CoLA, MRPC, STS-B,

and RTE. The results are illustrated in Figure 3. We
observe that “SE (-w/ TLS)” consistently outper-
forms the other counterparts. To be more specific,
compared with baseline, our SE brings a +2.90 av-
erage improvement score on these tasks, indicating
that our SE boosts the performance of PLMs on
OOD data.

Visualization of Landscape. To have a close
look, we visualize the loss landscapes of differ-
ent RoBERTabase models fine-tuned on the CoLA
task. In practice, we first show the 3D loss surface
results in Figure 4 following the “filter normalized”
setting in (Li et al., 2018; Zan et al., 2022). As seen,
SE-equipped PLMs show flatter smoother surfaces
compared with the vanilla. To closely compare the
differences of “SE (-w/ LS)” and “SE (-w/ TLS)”
in the loss landscape, we follow He et al. (2021) to
plot the 1D loss curve on more tasks in Figure 5.
We find that through detailed 1D visualization, our
optimal setting “SE (-w/ TLS)” shows a flatter and
optimal property. These results prove that SE can
smooth the loss landscape and improve the gener-
alization of PLMs effectively.

5.2 Cloze Test

To verify whether SE enforces the PLMs to learn
from the informative tokens, we follow Sun et al.
(2019) and apply the Cloze test (Taylor, 1953) to
evaluate the knowledge learning ability of PLMs.
For each test sample, we first remove the informa-
tive token and then enforce the PLMs to infer what
it is. Some cases are shown in Figure 6.

In case 1 and case 2, both BERTbase and BERT-
SEbase can successfully predict the type of masked
tokens according to the contexts. However, with
the help of the SE mechanism, BERT-SEbase per-
forms more correctly on filling in the slot. Dra-
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Figure 6: Cloze test comparison between BERTbase and BERT-SEbase. The correct predictions are in bold.

matically, in case 3, the baseline BERTbase makes
unreasonable predictions. One possible reason is
that the baseline PLM only learns the shallow pat-
tern and fails to understand the meaning of the con-
text. Additionally, due to the unsatisfactory ability
of the baseline PLM on commonsense reasoning,
the baseline PLM also predicts strangely in case
4. Different from the baseline, while BERT-SEbase

does not predict the completely correct tokens in
case 3 and case 4, it can capture deep patterns
and make more reasonable predictions. In gen-
eral, these cases prove that SE indeed improves
the knowledge-learning ability of PLMs.

☞ More analyses in Appendix In addition
to the above discussions, we conduct more related
analyses and show them in Appendix, e.g., param-
eter analyses on Tl and Te (Appendix A.4), ro-
bustness analysis based on the empirical results
on AdvGLUE (Wang et al., 2021) (Appendix A.3),
and non-complementarity analysis between token-
selecting metrics (Appendix A.5). Please refer to
Appendix for more details.

6 Conclusion

In this paper, we propose a simple and effective self-
evolution (SE) learning mechanism to improve the
existing discriminative PLMs by fully exploiting
the knowledge from data. SE follows two stages,
i.e., self-questioning and self-evolution training,
and can be used to evolve any MLM-based PLMs
with a simple recipe: continue pretraining with
SE. We empirically demonstrated the effectiveness
and universality of the SE on a series of widely-
used benchmarks. Further analyses show our ap-
proach improves the generalization, robustness,
and knowledge-learning ability. We hope our work
could facilitate more research on how to improve
existing trained models after all the previous PLM
weights are expensive and knowledgeable.

Limitations

Our work has several potential limitations. First,
given the limited computational budget, we only
validate our self-evolution learning on the Large
and Base sizes. It will make our work more con-
vincing if scaling the experiments up to the larger
model size and training corpus. On the other hand,
besides the improved commonsense knowledge
learning ability, we believe that there are still other
abilities, e.g., mathematical word problems, of
PLMs that can be improved by our method, which
are not fully explored in this work.
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A Appendix

A.1 Details of Tasks and Datasets
Here, we introduce the descriptions of all down-
stream tasks and datasets in detail. Firstly, we
present the statistics of all datasets in Table 7. Then,
each task is described as:

CoLA Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) is a binary single-
sentence classification task to determine whether a
given sentence is linguistically “acceptable”.

MRPC Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a task to predict
whether two sentences are semantically equivalent.
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Task #Train #Dev #Class LR BSZ Epochs/Steps

GLUE

CoLA 8.5K 1,042 2 2e-5 32 2668 steps
MRPC 3.7K 409 2 1e-5 32 1148 steps
RTE 2.5K 278 2 1e-5 16 2036 steps

SuperGLUE

BoolQ 9.4K 3,270 2 1e-5 16 10 epochs
CB 250 57 2 2e-5 16 20 epochs
WiC 6K 638 2 2e-5 16 10 epochs
COPA 400 100 2 2e-5 16 10 epochs

Commonsense QA SQuAD2.0 130K 11,873 - 3e-5 12 2 epochs
SWAG 73K 20K - 5e-5 16 3 epochs

LAMA Google-RE 60K - N/A

Table 7: Data statistics and fine-tuning hyper-parameters of all used tasks in this paper. “Class” refers to the label
class, “LR” means the learning rate and “BSA” denotes the batch size. Note that the LAMA benchmark is wrapped
into a cloze test to probe the PLM without fine-tuning.

Method BERTbase ROBERTAbase

RTE SST-2 QNLI MNLI QQP Avg. RTE SST-2 QNLI MNLI QQP Avg.

Baseline 32.8 29.7 40.5 22.8 38.5 32.9 47.1 41.9 36.2 21.0 30.9 35.4
-w/ SE 33.3 28.4 42.6 23.5 42.3 34.0 45.7 37.8 32.4 23.5 38.5 35.6

Method BERTlarge ROBERTAlarge

RTE SST-2 QNLI MNLI QQP Avg. RTE SST-2 QNLI MNLI QQP Avg.

Baseline 45.6 35.8 41.4 25.3 45.4 38.7 64.1 43.9 61.5 33.9 44.9 49.7
-w/ SE 53.1 35.1 45.3 24.7 50.0 41.6 67.9 48.6 58.1 34.6 55.1 52.9

Table 8: Comparison between SE and vanilla method applied to all PLMs on AdvGLUE (Wang et al., 2021)
benchmark. Average scores on all tasks are underlined. The best results are given in bold.

RTE Recognizing Textual Entailment (Giampic-
colo et al., 2007), given a premise and a hypothesis,
is a task to predict whether the premise entails the
hypothesis.

QNLI Question Natural Language Inference
is a binary classification task constructed from
SQuAD (Rajpurkar et al., 2016), which aims to
predict whether a context sentence contains the
answer to a question sentence.

CB CommitmentBank (De Marneffe et al., 2019)
can be framed as three-class textual entailment on
a corpus of 1,200 naturally occurring discourses.

BoolQ Boolean Question (Clark et al., 2019)
is a question answering task where each sample
consists of a short passage and a yes/no question
about the passage.

WiC Word-in-Context (Pilehvar and Camacho-
Collados, 2019) is a word sense disambiguation
task that aims to predict whether the word is used
with the same sense in sentence pairs.

COPA Choice of Plausible Alterna-
tives(Roemmele et al., 2011) is a causal reasoning
task in which a system is given a premise sentence
and must determine either the cause or effect of

the premise from two possible choices.

SQuAD2.0 The latest version of the Stanford
Question Answering Dataset (Rajpurkar et al.,
2018) is one of the most widely-used reading com-
prehension benchmarks that require the systems to
acquire knowledge reasoning ability.

SWAG Situations With Adversarial Genera-
tions (Zellers et al., 2018) is a task of grounded
commonsense inference, which unified natural lan-
guage inference and commonsense reasoning. It is
also widely used to evaluate the ability of PLMs on
commonsense knowledge reasoning.

Google-RE The Google-RE corpus contains
60K facts manually extracted from Wikipedia. The
LAMA (Petroni et al., 2019) benchmark manually
defines a template for each considered relation, e.g.,
“[S] was born in [O]” for “place of birth”. Each fact
in the Google-RE dataset is, by design, manually
aligned to a short piece of Wikipedia text support-
ing it. There is no training process and during
inference, we query the PLMs using a standard
cloze template for each relation. It is widely used
to probe the model’s world knowledge, especially
factual knowledge.
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Method
GLUE/SGLUE SQuAD2.0/SWAG

Avg. (∆) Avg. (∆)

BERTbase 74.10 74.93
BERT-SEbase

Tl = 0.05 74.63 (+0.53) 75.44 (+0.51)
Tl = 0.1 75.45 (+1.35) 75.48 (+0.55)
Tl = 0.5 73.93 (-0.17) 75.22 (+0.29)
Tl = 1 74.02 (-0.08) 75.37 (+0.44)

Table 9: Parameter analysis on the threshold Tl used in
self-questioning stage. The “Correctness-based” metric
is used in this study. Full results are in Table 12.

A.2 Hyper-parameters of Fine-tuning

For fine-tuning, we use the BERT and RoBERTa
models as the backbone PLMs and conduct ex-
periments using the open-source toolkit fairseq9

and transformers10. Notably, we apply the same
hyper-parameters to all PLMs for simplicity. The
training epochs/steps, batch size, and learning rate
for each downstream task are listed in Table 7.

A.3 Does SE Improve the Robustness?

Here, we conduct experiments to verify whether SE
improves the robustness of PLMs. In practice, fol-
lowing Jiang et al. (2022), we use the Adversarial
GLUE (AdvGLUE) (Wang et al., 2021), which is
a robustness benchmark that was created by apply-
ing 14 textual adversarial attack methods to GLUE
tasks, to measure the robustness in this study. Ta-
ble 8 lists the results on all PLMs. With the help of
our SE method, the PLMs achieve consistent im-
provements on the AdvGLUE benchmark. These
results prove that our SE method is beneficial to
the robustness of PLMs.

A.4 Parameter Analyses on Tl and Te
As stated in §3.2, we respectively set a threshold Tl
and Te for the Correctness-based and Confidence-
based metrics to select the hard-to-learn tokens.
Here, we analyze the influence of different T
in detail. In practice, taking the Tl as an exam-
ple, we train the BERTbase with different Tl (in
{0.05,0.1,0.5,1}) and evaluate the performance on
a combination of GLUE, SuperGLUE (SGLUE for
short), SQuAD2.0 and SWAG benchmarks. Table 9
lists the average scores of these benchmarks.

Specifically, when the Tl (i.e., 0.05) is too small,
there may be too many easy-to-learn tokens se-

9https://github.com/facebookresearch/fairseq
10https://github.com/huggingface/transformers

JS(P1||P2) KL(P2||P1) KL(P1||P2)

0.1681 0.3875 0.7506

Table 10: Distribution difference between vocabulary
distributions selected by Correctness-based “P1” and
Confidence-based “P2” metrics. BERT-SElarge is used.

lected by the metric, which could make the PLM
pay less attention to the target hard-to-learn tokens
and thus slightly affect the efficacy of SE mecha-
nism. On the other hand, increasing the Tl makes
it hard to learn the few amounts but greatly chal-
lenging tokens, thus slightly harming the perfor-
mance on GLUE/SGLUE. Among them, Tl = 0.1
achieves the best, thus leaving as the default setting
for correctness-based metric11.

A.5 Analysis of non-complementarity
between token-selecting metrics.

As aforementioned in the ablation study, costly
combining both correctness- and confidence-based
metrics to select the tokens in the self-questioning
stage does not show complementarity, having not
outperformed the default one (correctness-based).
To explain their non-complementarity, we quanti-
tatively analyze the difference in their vocabulary
distributions in Table 10.

Specifically, let P1 and P2 denote the token fre-
quency distributions of “Correctness-based” and
“Confidence-based” metrics, respectively. We first
use the Jensen-Shannon (JS) divergence (Lin, 1991)
to measure the overall difference between P1 and
P2. It can be found that the JS(P1||P2) is only
0.1681, indicating that both distributions are over-
all similar. Furthermore, to fine-grained analyze
the impact of both distributions on each other,
we compute the KL divergence (Kullback and
Leibler, 1951) for P1 −→ P2 (i.e., KL(P2||P1)) and
P2 −→ P1 (i.e., KL(P1||P2)), respectively. Clearly,
estimating P2 based on P1 is much easier than the
opposite direction, i.e., KL(P2||P1) < KL(P1||P2),
indicating that tokens selected by the correctness-
based metric contain most of those selected by
confidence-based metric. These statistics nicely
explain the empirical superiority of the correctness-
based metric in Table 4.

11We ablate the Te spanning {0.05, 0.1, 0.5, 1, 5, 10} on the
confidence-based metric, and observe the similar trend, where
the best setting is Te = 1.
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CoLA MRPC RTE BoolQ CB WiC COPA Score
Method Mcc. Acc. Acc. Acc. Acc. Acc. Acc. Avg. ∆

Baseline PLMs
BERTbase 62.33 88.97 76.89 75.05 85.71 66.77 63.00 74.10 –
BERTlarge 63.00 87.25 83.80 78.40 91.07 67.24 72.00 77.54 –
RoBERTabase 62.00 90.20 83.12 78.72 83.93 69.12 70.00 76.73 –
RoBERTalarge 64.73 90.69 88.44 84.37 91.07 69.90 78.00 81.03 –

“Randomly selecting”
BERT-SEbase 63.23 87.01 76.17 74.83 85.70 68.00 62.00 73.85 -0.25
BERT-SElarge 65.28 87.74 84.12 80.10 92.90 68.8 69.00 78.28 +0.74
RoBERTa-SEbase 63.78 88.73 81.59 78.83 89.29 69.43 68.00 77.09 +0.36
RoBERTa-SElarge 63.42 90.20 89.89 84.13 92.86 71.00 80.00 81.64 +0.61

“Correctness-based” metric
BERT-SEbase 63.63 89.50 77.98 74.37 89.29 67.40 66.00 75.45 +1.35
BERT-SElarge 65.66 88.23 85.20 80.18 92.86 68.34 78.00 79.78 +2.24
RoBERTa-SEbase 62.11 89.71 84.12 79.39 92.86 71.40 74.00 79.08 +2.35
RoBERTa-SElarge 67.80 91.91 90.25 84.56 96.40 70.53 80.00 83.06 +2.03

“Confidence-based” metric
BERT-SEbase 63.17 89.22 80.51 73.98 89.29 67.24 67.00 75.77 +1.67
BERT-SElarge 64.07 88.48 84.84 79.30 92.86 69.59 73.00 78.88 +1.34
RoBERTa-SEbase 64.06 89.71 83.03 78.10 85.71 69.44 75.00 77.86 +1.13
RoBERTa-SElarge 64.17 89.71 90.61 84.13 96.40 70.22 82.00 82.46 +1.43

Table 11: Full comparison results (corresponding to the average results in Table 4) between different metrics used
to select the hard-to-learn tokens on the combination of GLUE and SuperGLUE benchmarks. “∆” denotes the
improvement of SE methods compared to the baseline PLMs. Average scores on all tasks are underlined.

CoLA MRPC RTE BoolQ CB WiC COPA SQuAD2.0 SWAG
Method Mcc. Acc. Acc. Acc. Acc. Acc. Acc. EM F1 Acc.

RoBERTabase 62.00 90.20 83.12 78.72 83.93 69.12 70.00 78.79 81.92 79.69
RoBERTa-SEbase

-w/ vanilla LS 63.18 89.71 83.39 78.29 89.29 69.75 75.00 79.01 82.12 79.97
-w/ TLS (Ours) 62.11 89.71 84.12 79.39 92.86 71.40 74.00 79.41 82.55 79.88

BERTbase 62.33 88.97 76.89 75.05 85.71 66.77 63.00 72.85 75.63 77.83
BERT-SEbase

Tl = 0.05 63.30 87.50 77.26 73.91 85.71 67.71 67.00 72.85 75.63 77.83
Tl = 0.1 63.63 89.50 77.98 74.37 89.29 67.40 66.00 72.89 75.64 77.91
Tl = 0.5 61.31 88.24 77.26 73.88 85.71 67.08 64.00 72.46 75.36 77.84
Tl = 1 62.06 88.24 77.26 73.82 82.14 68.65 66.00 72.62 75.56 77.93

Table 12: Full comparison results (corresponding to the average results in Table 5 and 9, respectively) on the
combination of GLUE, SuperGLUE, SQuAD2.0 and SWAG benchmarks. Best results are given in bold.
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