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Abstract

We propose SETI (Systematicity Evaluation of
Textual Inference), a novel and comprehensive
benchmark designed for evaluating pre-trained
language models (PLMs) for their systematicity
capabilities in the domain of textual inference.
Specifically, SETI offers three different NLI
tasks and corresponding datasets to evaluate
various types of systematicity in reasoning pro-
cesses. In order to solve these tasks, models
are required to perform compositional infer-
ence based on known primitive constituents.
We conduct experiments of SETI on six widely
used PLMs. Results show that various PLMs
are able to solve unseen compositional infer-
ences when having encountered the knowledge
of how to combine primitives, with good perfor-
mance. However, they are considerably limited
when this knowledge is unknown to the model
(40-100 % points decrease). Furthermore, we
find that PLMs can improve drastically once
exposed to crucial compositional knowledge
in minimalistic shots. These findings position
SETI as the first benchmark for measuring the
future progress of PLMs in achieving system-
aticity generalization in the textual inference.

1 Introduction

Natural Language Inference (NLI) determines
whether a hypothesis follows from a premise (Da-
gan et al., 2013; Bowman et al., 2015; Williams
et al., 2018) and has been explored for decades.
Existing large pre-trained language models (PLMs)
have shown remarkable performance on this task
(Devlin et al., 2019; Raffel et al., 2019; Lan et al.,
2020). To better assess the true capabilities of mod-
els to perform NLI, various associated tasks and
benchmarks have been proposed. These works
concentrate on exploring how models make pre-
dictions, e.g. by establishing ‘hard’ NLI datasets
(Koreeda and Manning, 2021) or asking models
to ‘explain’ their predictions through highlighting
(Camburu et al., 2018), or by generating plausible

Task
Train Test

Primitive Concepts Compositional Concepts Compositional Concepts

Task1

Task2

Task3 .

Table 1: Illustrating three visual tasks realizing different
forms of systematicity in compositional generalization.

explanations (Bhagavatula et al., 2020). But little
is known about how well such models are able to
address compositional generalization.

Compositional generalization focuses on how to
combine primitive units to predict larger compou-
nds (Hupkes et al., 2020). A key property under-
lying compositional generalization is systematicity
(Fodor and Pylyshyn, 1988), a hallmark of human
cognition. Systematicity concerns the ability of
(re)combining known constituents and composing
rules. For example, humans who understand ‘red
apple’ and ‘green train’ are able to conceptualize
‘red train’ by recombining ‘red’ and ‘train’ into a
new concept. Similar effects of systematicity (gen-
eralization) can be studied in Natural Language Un-
derstanding (NLU) (Lake and Baroni, 2018; Kim
and Linzen, 2020). Since PLMs have achieved
results on par with human performance by fitting
NLI training data (Wang et al., 2019), we aim to
evaluate to what extent these models can master
different types of systematicity in textual inference.

We propose a novel benchmark SETI (System-
aticity Evaluation of Textural Inference), which
extensively explores systematicity in NLI. SETI
contains three interrelated yet independent tasks
covering various types of systematicity: 1) Task1:
primitives → compositions aims to evaluate if
models can perform compositional inference if
primitive constituents of the given inference task
have been learned independently. 2) Task2: com-
positions → compositions aims to evaluate if mod-
els can perform novel compositional inferences if
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their constituents have been learned in other com-
positions. 3) Task3: primitives and composi-
tions → compositions aims to evaluate if mod-
els can perform novel compositional inferences if
one primitive constituent has been learned inde-
pendently, while the other has only been encoun-
tered in compositions. SETI can be used to explore
systematicity in NLI comprehensively since it con-
siders all possibilities of how to construct a novel
composition from known constituent types, derived
from the ‘permutation and combination’1 theory
acting between primitives and compositions. We
introduce these tasks in detail in Section §3. To
make the instantiations of systematicity covered
in SETI easily accessible, we indicate three anal-
ogous visual tasks in Table 1. They test if models
can understand: i) a novel compositional concept
red apple – given the primitive concepts 2red and
apple have been learned independently; ii) a novel
compositional concept red train – given constituent
concepts red and train have been encountered in
compositions red apple and green train; iii) a novel
compositional concept red train – given red has
been learned independently, and train in the com-
positional concept green train.

To apply SETI in practice, we define veridical
inference (Karttunen and Peters, 1979; Ross and
Pavlick, 2019) and natural inference as primitives,
and their combinations as compositions. For each
systematicity task setting, we provide two instanti-
ations: trivial and non-trivial, depending on the va-
riety of instances presented to the model in training.
While both settings fulfill the given task require-
ments, the non-trivial setting is more challenging
because the compositional inference knowledge of
how to combine constituents is not seen in training.

We evaluate six well-known PLMs on all SETI
tasks. They show good performance in trivial set-
tings, but inferior results in non-trivial settings, for
all tasks. This indicates that models can generalize
well to unseen compositions when constituents and
compositional knowledge are known, while they
are limited when they lack knowledge about how to
compose constituents. Hence, we further explore
whether, and to what extent we can enhance the sys-
tematicity capabilities. Our experiments indicate

1While permutations make sense in a setting that deals
with grammaticality, this does not hold for inference, hence
we do not consider permutation order for SETI.

2In the visual domain, primitive concepts such as colors
and object properties seldomly occur independently of objects,
instead they occur in composition with objects. Here, they are
only used for task clarifications.

that all PLMs benefit greatly from being exposed to
minimal doses of relevant compositional instances.

Our main contributions are as follows:

i) We introduce SETI (Systematicity Evaluation
of Textual Inference), which to our knowl-
edge is the first benchmark to comprehen-
sively evaluate the systematicity capabilities
of PLMs when performing NLI.

ii) We provide datasets for three NLI challenge
tasks that evaluate systematicity, with con-
trolled splits for seen vs. unseen information.

iii) We conduct experiments for six widely used
PLMs. The results indicate that models gen-
eralize well to unseen compositions if they
have previously acquired relevant composi-
tional inference knowledge, but are limited
when lacking such knowledge.

2 Related Work

Textual Inference Natural Language Inference
(NLI) involves reasoning across a premise and hy-
pothesis, determining the inferential relationship
holding between them (Dagan et al., 2013; Bow-
man et al., 2015; Williams et al., 2018). As one
of the major tasks for establishing Natural Lan-
guage Understanding (NLU), NLI has been widely
explored for decades. Recently, large pre-trained
language models (Devlin et al., 2019; Raffel et al.,
2019; Lan et al., 2020) exhibit remarkable perfor-
mance on NLI tasks, on par with humans. To better
explore the true NLI capabilities of models, various
associated tasks and benchmarks have been pro-
posed. Some work has probed NLI models by con-
structing hypothesis-only baselines (Glockner et al.,
2018; Liu et al., 2020), finding that models cap-
ture undesired biases. McCoy et al. (2019); Zhou
and Bansal (2020); Gubelmann et al. (2022) reveal
that models rely on heuristics, e.g., lexical over-
lap, subsequence heuristics, etc. Nie et al. (2020);
Chien and Kalita (2020) evaluate models in adver-
sarial settings and show robustness improvement
by training on additional adversarial data. Others
focus on explainable NLI, such as highlighting in-
put words that are essential for the label(Camburu
et al., 2018), or generating plausible explanations
(Bhagavatula et al., 2020). In this work, we focus
on exploring the compositional generalization abil-
ities of PLMs when performing textual inference.

Systematicity Systematicity is a crucial property
of compositionality, which was first introduced in
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cognitive science (Fodor and Pylyshyn, 1988) and
recently formalized in Hupkes et al. (2020). It
is the ability to make use of known concepts to
produce novel concept combinations that have not
been encountered before. Recently, systematicity
has been widely explored in domains such as image
caption generation (Nikolaus et al., 2019), visual
attribute recognition (Misra et al., 2017; Li et al.,
2020), question answering (Keysers et al., 2020;
Liu et al., 2022) and semantic parsing (Lake and
Baroni, 2018; Finegan-Dollak et al., 2018; Kim
and Linzen, 2020; Zheng and Lapata, 2022). In
this work, we focus on systematicity in the domain
of textual inference.

Existing works that evaluate systematicity in tex-
tual inference only focus on one specific type. For
example, Yanaka et al. (2021) evaluates systematic-
ity by testing the transitivity of inference relations.
Others conduct experiments on novel compositions
involving specific linguistic phenomena, such as
systematicity of predicate replacements and embed-
ding quantifiers (Yanaka et al., 2020), systematicity
when combining lexical entailment and negation
(Geiger et al., 2020), and systematicity of quanti-
fiers, negation and concerning the order between
premises and hypotheses (Goodwin et al., 2020).

Compared to prior work, we propose a compre-
hensive systematicity evaluation benchmark SETI,
which: i) covers the full spectrum of systematicity;
ii) evaluates various PLMs; and ii) showcases how
PLMs can overcome limitations in systematicity.

3 Reasoning Tasks for Systematicity

We now define primitive and compositional infe-
rences and introduce three NLI systematicity tasks.

3.1 Primitive and Compositional Inferences

Among various textual inference types, we select
veridical inference and natural inference as two
primitive inference tasks3, since they can be flex-
ibly scaled to compositional inferences. Table 2
shows relevant notation and corresponding exam-
ples of the two primitive inference types.

Veridical Inference Veridical inference is
strongly determined by the lexical meaning of sen-
tence embedding verbs. In the context of a veridi-
cal verb we can infer that the proposition it takes
as complement is taken to hold true. By contrast,
in the context of a non-veridical verb, we can not

3We adopt binary labels (entailment/non-entailment) by
grouping contradiction and neutral as non-entailment.

infer that the proposition it takes as complement is
taken to hold true. (Karttunen, 1971; Ross and
Pavlick, 2019). PIver in Table 2 shows exam-
ples of both verb classes. The verb “realize” in
the premise “Someone realizes that a man is eat-
ing pizza” is veridical in relation to the embedded
proposition “A man is eating pizza”, since speak-
ers cannot say the premise unless they believe the
latter proposition to be true. In contrast, “hope” is
non-veridical, since the premise “Someone hopes
that a man is eating pizza” does not license the
equivalent conclusion towards the hypothesis “A
man is eating pizza”. In our work, we emphasize
veridicality in verb-complement constructions and
formulate their inference potential in an NLI set-
ting, as premise-hypothesis pairs, as established by
Ross and Pavlick (2019). Specifically, the premises
of all veridical inference samples follow the tem-
plate “Someone fv/fnv that s”, where fv and fnv
represent veridical and non-veridical complement
embedding verbs, respectively. We denote samples
of entailed vs. non-entailed veridical inferences as
fv(s) → s and fnv(s) ↛ s, respectively.

Natural Inference A pair of sentences is con-
sidered a true entailment if we are able to infer
the hypothesis based on the premise. PInat in
Table 2 shows examples. We categorize natural
inference samples into two groups: 1) lexically-
based inferences typically build on lexical infer-
ence knowledge captured in lexical meaning rela-
tions, e.g., hypernymy boy → kid in “A boy is jump-
ing into the water” → “A kid is jumping into the
water”. 2) structure-based inferences involve struc-
tural changes, e.g., from active to passive voice and
vice versa, as in “The detective follows the man” →
“The man is being followed by the detective”. We
restrict natural inferences to these two types to fa-
cilitate controlled data creation. We denote entailed
and non-entailed samples from these two groups
as: s lex−−→ s′, s Xlex−−→ s′ and s

stru−−→ s′, s Xstru−−→ s′.

Composing veridical and natural inference To
evaluate the compositional generalization ability
of models, we construct compositional inferences
CIver_nat (CI) by combining primitive veridical
inference PIver and natural inference PInat, fol-
lowing Yanaka et al. (2021) (see Table 3).

For such compositions to be valid, the hypothe-
sis of a veridical inference must match the premise
of a natural inference. This matching condition
serves as a crucial link to perform transitive infer-
ence. Table 3 shows how a compositional inference
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Primitive Inference Types Examples (premise → hypothesis)
Veridical
Inference PIver

veridical fv(s) → s Someone realizes that a man is eating a pizza → A man is eating a pizza
non-veridical fnv(s) ↛ s Someone hopes that a man is eating a pizza ↛ A man is eating a pizza

Natural
Inference PInat

lexically-based

inference rule lex−−→
entailment s lex−−→ s′ A boy is jumping into the water → A kid is jumping into the water

non-entailment s Xlex−−→ s′ A woman is smiling ↛ A man is smiling

structure-based
inference rule stru−−→

entailment s stru−−→ s′ The detective follows a man → A man is being followed by the detective
non-entailment s Xstru−−→ s′ A fish is being sliced by a man ↛ A cat is jumping into a box

Table 2: Examples of primitive veridical (PIver) and natural (PInat) inferences. s, s′ represent distinct sentences.

PIver PInat CIver_nat (CI) Composed Rules Examples (premise → hypothesis)

fv(s) → s s
lex−−→ s′ fv(s)

lex+

−−−→ s′ ① True ∧ True → True He realizes a boy is jumping into the water → A
kid is jumping into the water

fv(s) → s s Xlex−−→ s′ fv(s) Xlex
−

−−−→ s′ ② True ∧ False → False He realizes a woman smiling ↛ A man is smiling

fnv(s) ↛ s s
lex−−→ s′ fnv(s) Xlex

+

−−−→ s′ ③ False ∧ True → False He hopes a boy is jumping into the water ↛ A
kid is jumping into the water

fnv(s) ↛ s s Xlex−−→ s′ fnv(s) Xlex
−

−−−→ s′ ④ False ∧ False → False He hopes a woman is smiling ↛ A man is smiling

Table 3: Examples of compositional inferences CI obtained by combining veridical and natural inference (we use
lex−−→ as example; stru−−−→ works analogously). For CI , the label (→/↛) is decided by the Boolean ‘Composed Rules’.

We use lex+ and lex− to indicate the label of its PInat component being True or False, respectively.

sample ‘He realizes a boy is jumping into the water’
→ ‘A kid is jumping into the water’ is composed
from PIver ‘He realizes a boy is jumping into the
water’ → ‘A boy is jumping into the water’ and
PInat ‘A boy is jumping into the water’ → ‘A kid
is jumping into the water’. This reasoning process
we denote as: fv(s) → s ∧ s → s′ ⇒ fv(s) → s′.

In this way, we construct four types of compo-
sitional inferences CI from primitive PIver and
PInat inferences, where Boolean logical rules (Ta-
ble 3, col. 3) decide the label of CI , i.e., whether
it yields entailment or non-entailment. In case
both veridical PIver and natural inference PInat
resolve to True, CI yields entailment, given the
Boolean logic rule True ∧ True → True (rule ①).
By contrast, if PInat yields non-entailment, the
compositional veridical inference CI will fail (rule
②). However, compositional inference with non-
verdical verbs invariably yields non-entailment, no
matter whether PInat resolves to True or False.
This is again due to Boolean logic (rules ③, ④):
False ∧ (True ∨ False) → False. In conclusion, the
first two cases of CI are more complex, since mod-
els need to follow Boolean logic, while a model
could exploit shortcuts and invariantly predict non-
entailment with non-entailing verbs in PIver.

3.2 SETI Tasks

Having characterized the two types of primitive in-
ferences we will use in our experiments, along with
ways of composing them, we will now spell out i)

how to define increasingly difficult generalization
tasks targeting systematicity, with ii) appropriate
specifications of train and test settings, to guaran-
tee proper assessment of a model’s generalizing
capacities. Table 4 presents examples.

Task1: primitives → compositions aims to
evaluate whether a model can perform a compo-
sitional inference CI if its (primitive) constituent
inferences PIx and PIy, have been learned inde-
pendently, while their combination is unseen in
training. Hence, Train and Test sets (Dtrain|test)
consist of instances e and ẽ:

Dtrain = {e | e ∈ PIx ∨ e ∈ PIy}
Dtest = {ẽ | ẽ ∈ CI} (1)

We select veridical inference and lexically-based
natural inference as primitive inferences, and com-
binations of these two primitives as compositional
inferences, as formally specified below:

PIx = PIver = {fv(s) → s, fnv(s) ↛ s}
PIy = PIlex = {s lex−−→ s′, s Xlex−−→ s′}

CI = {fv(s) lex+

−−−→ s′, fv(s) Xlex
−

−−−→ s′,

fnv(s) Xlex
+

−−−→ s′, fnv(s) Xlex
−

−−−→ s′}

(2)

Here, sentences (s and s′) of composed inferences
CI are constrained to match sentences of their
primitive constituents PIver∨lex. This is a trivial
setting since the challenge is restricted to classify-
ing compositional inference from seen primitive
inferences.
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Tasks Examples (premise → hypothesis)

Ta
sk

1 Dtrain
PIx : Someone realizes a boy is jumping into the water → A boy is jumping into the water
PIy : A boy is jumping into the water → A kid is jumping into the water

Dtest CI : Someone realizes a boy is jumping into the water → A kid is jumping into the water
Ta

sk
2 Dtrain

CIx : Someone realizes a boy is jumping into the water → A kid is jumping into the water
CIy : Someone hopes a woman is eating a pizza ↛ A man is eating a pizza

Dtest CI : Someone hopes a boy is jumping into the water ↛ A kid is jumping into the water

Ta
sk

3 Dtrain
PI : A man is driving a car → A car is being driven by a man
CI : Someone realizes a boy is jumping into the water → A kid is jumping into the water

Dtest CI : Someone realizes a man is driving a car → A car is being driven by a man

Table 4: Examples of three systematicity tasks from SETI. For each task, we select one sample from the trivial
setting for representation.

However, overlaps of words between PInat and
CI bear a risk of shortcuts (Sanchez et al., 2018).
Hence, we also evaluate compositional inferences
in a non-trivial setting, where sentences used in
compositional inferences in Dtest are constrained
to differ from sentences used in primitive con-
stituents in Dtrain. This is doable if we guarantee
that instances from PInat and CI share the same
inference rules lexx. For example, we provide ‘A
boy is jumping into the water → A kid is jumping
into the water’ in PInat; and ‘Someone fv/fnv a
boy is playing in the mud → A kid is playing in
the mud’ in CI . In this way, models can retain the
knowledge of PIlex by using the same inference
rules, e.g., rule x : boy → kid, while we inhibit
shortcuts by using different contexts in the test set.

Task2: compositions → compositions aims to
evaluate if a model is able to predict unseen compo-
sitional inferences CItest whose constituting primi-
tives have been encountered in other compositional
inferences CItrain in training. Train and Test sets
(Dtrain|test) consist of instances e and ẽ:

Dtrain = {e | e ∈ CItrain}
Dtest = {ẽ | ẽ ∈ CItest}

(3)

We construct specific types of compositional train-
ing instances by combining veridical inference
with lexical natural inference, and non-veridical
with structural natural inference, see (4). To eval-
uate if models can generalize to novel composi-
tions, we switch the constituents (primitive infer-
ence types) seen in training to unseen composi-
tional inferences in testing. I.e., we evaluate veridi-
cal inference with structural natural inference, and
non-veridical inference with lexical natural infer-

ence. CItrain and CItest are specified as:

CItrain ={fv(s) lex+

−−−→ s′, fv(s) Xlex
−

−−−→ s′,

fnv(s) Xstru
+

−−−−→ s′, fnv(s) Xstru
−

−−−−→ s′}

CItest ={fv(s) stru+

−−−−→ s′, fv(s) Xstru
−

−−−−→ s′,

fnv(s) Xlex
+

−−−→ s′, fnv(s) Xlex
−

−−−→ s′}

(4)

This is a trivial setting, given that four composition
rules (①②③④ in Table 3) have been instantiated
in the training samples. The challenge is restricted
to correctly classifying novel compositions from
known primitives.

To further explore if models can generalize to
novel compositions based on unseen composition
rules we propose a non-trivial setting. Here, a
model must combine entailed veridical inference
with entailed natural inference, and non-veridi-
cal inference with non-entailed natural inference.
With this, only rules ① and ④ are instantiated by the
training samples. In testing we confront the model
with composition instances unseen in training, by
switching constituents, so that we test for the un-
seen rules ② and ③: we compose entailed veridi-
cal with non-entailed natural inference, and non-
veridical with entailed natural inference. CItrain
and CItest are defined as:

CItrain ={fv(s) nat+−−−→ s′, fnv(s) Xnat−−−−→ s′}

CItest ={fv(s) Xnat−−−−→ s′, fnv(s) Xnat+−−−→ s′}
(5)

We expected this to be an intractable challenge,
since models are now required to classify novel
compositions, where identical primitives have been
encountered in training compositions, but the re-
quired composition rules of tested compositions
are not instantiated in the training data.

Task3: Primitives and Compositions → Com-
positions aims to evaluate whether a model is
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able to predict an unseen compositional inference
CItest whose one primitive inference PI has been
learned independently, while the other has only
been encountered in a compositional inference
CItrain in training. Hence, Train and Test sets
(Dtrain|test) consist of instances e and ẽ:

Dtrain = {e | e ∈ PI ∨ e ∈ CItrain}
Dtest = {ẽ | ẽ ∈ CItest}

(6)

We could choose either veridical or natural infer-
ence as a primitive inference PI . Here, we select
natural inference as the PI (veridical inference
works analogously). Specifically, we construct
CItrain by combining entailed veridical inference
with lexically-based natural inference, and define
structure-based natural inference as PI . To evalu-
ate if models can generalize to novel compositional
inference, we substitute the lexically-based natu-
ral inference component in CItrain with structure-
based natural inference to form CItest instances,
as stated below:

PI = PIstru = {s stru−−−→ s′, s Xstru−−−→ s′}

CItrain = {fv(s) lex+

−−−→ s′, fv(s) Xlex
−

−−−→ s′}

CItest = {fv(s) stru+

−−−−→ s′, fv(s) Xstru
−

−−−−→ s′}

(7)

This is again a trivial setting, given that the com-
position rules (①②) required in testing have been
exemplified by training samples. That is, the chal-
lenge is restricted to correctly classifying novel
compositions, where their primitives and the com-
position rules are known.

Analogous to Task2, we introduce a further non-
trivial setting to evaluate if models can generalize
to novel compositions that test for unseen compo-
sition rules. The primitive inference PI could be
either veridical or natural inference.

Hence in one variant, we choose i) veridical in-
ference (-Rver) as the PI , and construct the train-
ing compositions by combining entailed veridical
with entailed lexical natural inference, while the
primitive inference is non-veridical inference. For
testing, we replace the veridical inference in train-
ing compositions with independent non-veridical
inferences. This setting is defined below:

PI = {fnv(s) ↛ s′}

CItrain = {fv(s) lex+

−−−→ s′}

CItest = {fnv(s) Xlex
+

−−−→ s′}

(8)

This setting should be challenging, since models
are required to evaluate novel compositions that

Tasks
Composition Generalization In-distribution

type Train Dev Test Train Dev Test

Ta
sk

1

trivial
PIver
PInat

1680
1686

420
422

63240 3366 842 63240

¬ trivial
PIver
PInat

600
603

150
151

22620 1203 301 22620

Ta
sk

2 trivial CI 25296 6324 31620 25296 6324 31620
¬ trivial CI 25296 6324 31620 25296 6324 31620

Ta
sk

3

trivial
PInat
CI

480
480

120
120

9000 960 240 9000

¬ trivial
-Rver

PIver
CI

9048
9048

2262
2262

11310 18096 4524 11310

¬ trivial
-Rnat

PInat
CI

600
603

150
151

11310 1203 301 11310

Table 5: Statistics of compositional generalization con-
trolled data. PI and CI indicate primitive and com-
positional inferences, respectively. “type” marks the
inference types used in train and dev sets.

correspond to the compositional rule ③, while they
have only encountered rule ① in training.

As alternative variant ii), we choose natural in-
ference (-Rnat) as the primitive inference PI . We
construct training data for compositions by combin-
ing entailed veridical with entailed lexical natural
inference, and define non-entailed lexical natural
inference as the primitive inference. For testing,
we replace the entailed lexical inference in train-
ing compositions with independent non-entailed
lexical inferences. This is defined below:

PI = {s Xlex−−→ s′}

CItrain = {fv(s) lex+

−−−→ s′}

CItest = {fv(s) Xlex
−

−−−→ s′}

(9)

This setting is challenging, since models are re-
quired to evaluate novel compositions according to
rule ②, while having only seen rule ① in training.

4 Experimental Setup

4.1 Dataset

To evaluate the systematicity capabilities of PLMs
on the series of SETI tasks we established above,
we construct controlled datasets with instances cho-
sen from established NLI datasets. For primitive
inference: 1) veridical inference, we select 30 verbs
(15 veridical, 15 non-veridical) that appear in both
the MegaVeridicality2 (White et al., 2018) and the
verb veridicality dataset of Ross and Pavlick (2019),
as Yanaka et al. (2021) do (cf. Appendix.A for de-
tails). 2) natural inference, we extract instances
from the SICK dataset (Marelli et al., 2014) that use
lexical inferences s

lex−−→ s′ where sentence pairs
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Figure 1: Performance of six PLMs on the SETI benchmark in two configurations: “Compositional Generalization”
and “In-Distribution”. For each task setting and PLM, we perform five runs and represent each result by a symbol.

are formed from lexical relations, e.g., synonymy
and hyponymy. In addition, we select structural in-
ferences s stru−−→ s′ where sentence pairs are derived
from each other using the active-passive diathesis.
Examples are shown in Table 2. For compositional
inferences, we construct instances following §2.1.
We combine premises fv/nv(s) from veridical in-
ferences with hypotheses s′ from natural inference.
Boolean logic rules are used to assign labels for
these compositional inference instances.

Based on the constructed pool of inference data,
we design three Compositional Generalization
task datasets to evaluate the systematicity of PLMs.
Specifically, primitive and compositional infer-
ences data is divided for training Dtrain and testing
Dtest in a controlled way, as outlined in Section
§3. This ensures that the evaluated models will be
exposed to specific types of inference instances in
training, while being evaluated on unseen compo-
sitional inferences. That is to say, the testing data
is out of distribution from the training data. In ad-
dition, we provide corresponding In-Distribution
task datasets for comparison. Here, the data is di-
vided into D

′
train and D

′
test by producing random

splits from D = Dtrain ∪Dtest. Hence, the eval-
uated models will, during training, encounter in-
stances of the kind that will be presented in testing.
In other words, the testing data is In-distribution
of the training data. In-Distribution data makes it
possible to confirm whether the failure of Compo-
sitional Generalization is due to intractable com-
positional inference tests or a lack of systematicity.
Table 5 shows detailed data statistics for both con-
figurations. For further details see Appendix B.

4.2 Evaluated Models
We choose six well-known PLMs for evaluation, of
which three are masked language models (encoder-
only): BERT (Devlin et al., 2019), RoBERTa (Liu

et al., 2019) and ALBERT (Lan et al., 2020);
two are denoising autoencoder models (encoder-
decoder): T5 (Raffel et al., 2020) and BART
(Lewis et al., 2020); and one auto-regressive model
(decoder-only): GPT-2 (Radford et al., 2019). We
use standard accuracy as the evaluation metric.

For all PLMs we have chosen Large models,
with checkpoints from the Hugging Face imple-
mentation (Wolf et al., 2020)4. We finetuned these
models using the Adam Optimizer with batch size
of 16. The maximum input token number is limited
to 128. For each of the seven task settings, we per-
form five runs for each PLM, using different seeds.
Further details are provided in Appendix C.

5 Experiments

5.1 Overview Results

Fig.1 illustrates the performance of six well-known
PLMs on the SETI benchmark across two data
configurations: Compositional Generalization and
In-Distribution. Among seven different task set-
tings, we find the test accuracy of PLMs in In-
Distribution to be close to 100% in most cases,
with a drop to ≥ 80% in Task1 and Task2, non-
trivial, but always stable across five rounds. This
indicates that compositional inferences of various
types are feasible for the evaluated PLMs if they
have seen relevant instances in training. Composi-
tional Generalization shows comparable results
in trivial settings of Task2 (Fig.1.b) and Task3
(Fig.1.c), but inferior results for most of the re-
maining settings. This suggests that the evaluated
PLMs are lacking systematicity capabilities when
encountering unseen compositional inference prob-
lems, while achieving remarkable performance in
In-Distribution by fitting training data.

4https://huggingface.co/models
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Figure 2: Few-shot performance of six well-known PLMs on three challenging sub-task of the SETI benchmark.

Comparing trivial and non-trivial settings across
three tasks, we find: 1) In Task1, the test accuracy
of In-Distribution slightly decreases in the non-
trivial setting, which confronts the models with
novel contexts for PInat inferences within the com-
positional test cases CI . This shows that the non-
trivial setting is more challenging. We also find
that the performance of Compositional General-
ization drops in the non-trivial setting. However,
the encoder-only models ALBERT and RoBERTa
outperform others substantially, showing strong
systematicity generalization ability in both settings.
2) In Task2, the test accuracy of all generalization-
tested models declines sharply to 50% in the non-
trivial setting, no matter how well a model per-
forms in the trivial setting. And this finding holds
across different rounds of each PLM, indicating
that novel compositional inferences are equally
challenging for all evaluated models. 3) In Task3,
generalization-tested models also show inferior re-
sults in the non-trivial setting, while non-trivial-
Rver (Fig.1.f) is an exception (100% accuracy).
This is expected since in this setting the PLMs
can solve unseen compositional problems by ex-
ploiting superficial characteristics during training,
rather than by generalization, i.e., the capability
of systematicity. Specifically, the non-trivial-Rver

task evaluates fnv(s) Xlex
+

−−−→ s′ given fv(s)
lex+

−−−→
s′ and fnv(s) ↛ s′. In this task setting, non-
veridical verbs fnv are only seen in non-veridical
inference, which may lure models to predict non-
entailment for compositional inferences containing
non-veridical verbs, yet without considering the
entailment class of the embedded lexical inference.

Across the different tasks, the evaluated PLMs
show diverse performance for generalization test-
ing. Task1 is almost solved by ALBERT and
RoBERTa, highlighting that some models are ca-
pable of combining different primitive inferences
(learned independently) in unseen compositional
inferences. However, along with all other PLMs,

none of the two remaining Tasks can be reliably
solved in the controlled, non-trivial “Compositional
Generalization” setting: i) predicting unseen com-
positions, the components of which have been
learned during training (Task2) and ii) determining
a novel composition, where one primitive is learned
independently, while the other has been encoun-
tered in a composition during training (Task3).

5.2 Few-shot Evaluation

We conclude from the results shown in Fig 1 that
the evaluated PLMs are incapable of performing
compositional generalization if they have not en-
countered crucial compositional inference knowl-
edge during training. Hence, we aim to explore
whether, and to what extent we could enhance the
systematicity capabilities of the evaluated PLMs,
by exposing them to small doses of relevant in-
stances. Specifically, we select three non-trivial
sub-tasks that expect models to solve compositional
inferences without encountering the required infer-
ential knowledge in training. For each such task,
we construct a few-shot dataset Dfew where each
sample (compositional inference, CI) is constructed
following §4.1. Dfew and Dtest contain different
data, i.e., Dtest ∩ Dfew = ∅. For each task, we
evaluate few shot samples from 0 to 128, and each
model is fine-tuned for three epochs. By doing so,
we expect the models to learn the underlying com-
positional inference knowledge from the samples
given in Dfew, so they can finally solve Dtest.

Figure 2 shows the few-shot experiment results.
Across different tasks, we find that all evaluated
PLMs benefit from few-shot samples that teach the
model relevant compositional inference knowledge.
In Task1, most PLMs show a significant perfor-
mance increase with only four CI samples in Dfew.
This finding is consistent with the fact that solv-
ing Dtest requires four different compositional rule
types, as shown in definition Table 3. Similarly,
Dtest from Task2 and Task3 require two and one
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samples illustrating required, but previously unseen
compositional inference knowledge, respectively.
We find most evaluated PLMs in Fig 2.b to dras-
tically improve their performance with only two
samples, and in Fig.2.c with just a single sample.
An exception is BERT, which requires more shots
than the number of unseen inference cases.

The above experiment suggests that the evalu-
ated PLMs can greatly benefit from few-shot set-
tings to enhance their systematicity capabilities. It
is compelling that the number of samples in Dfew

needed to reach substantial task performance corre-
sponds to the number of inference knowledge types
required to make correct inference predictions, i.e.,
making it possible to evaluate novel compositions.
It will be interesting to study how to identify po-
tentially missing types of compositional inference
knowledge for existing PLMs, and how to inject
this knowledge in an efficient, data-free method.

6 Conclusion

We propose the first comprehensive systematicity
evaluation benchmark, SETI, applied to Natural
Language Inference. Experiments on six widely
used PLMs show that they can distinguish novel
compositions with known primitives and compos-
ing knowledge with high accuracy, but limited
when lacking such knowledge. Moreover, we show
that models can quickly acquire missing inferential
knowledge for systematicity by being presented
with unique samples representing each missing
case of inferential knowledge, in a few-shot setup.

7 Limitation

SETI only considers veridical inference and natu-
ral inference (including both lexically-based infer-
ence and structure-based inference). However, our
benchmark SETI can be flexibly extended to more
varied reasoning patterns, such as negation, quan-
tifiers, or others. In addition, we evaluate the sys-
tematicity capabilities of PLMs on semi-synthetic
datasets, which are limited in language variance.
Extending our benchmark on manually annotated
compositional inference datasets might be a promis-
ing future work.

Recently, Hupkes et al. (2020) dissect the no-
tion of compositionality and define five theoreti-
cally grounded tests for generalization, in a task-
agonistic manner. Our work is limited to evaluat-
ing the systematicity of PLMs in textual inference.
While the systematicity test is one of the most im-

portant tests, the remaining ones (e.g., productivity
and localism) are still worth to be explored in future
works.
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A Veridical Inference

In order to construct veridical inference, we select
30 verbs, including 15 veridical verbs fv and 15
non-veridical verbs fnv. Table 6 show instantiation
of selected verbs.

Verb Types Instantiations

veridical
verbs fv

realize, acknowledge, remember, note, find, no-
tice, learn, see, reveal, discover, understand, know,
admit, recognize, observe

non-veridical
verbs fnv

feel, claim, doubt, hope, predict, imply, suspect,
wish, think, believe, hear, expect, estimate, as-
sume, argue

Table 6: Instantiation of veridical and non-veridical
verbs used for constructing veridical inference.

B Data Stastics

Since we use 30 verbs to construct premises
fv/nv(s) for primitive veridical (PIver) and com-
positional (CI) inferences from the premises (s) of
natural inferences (PInat), the number of these two
inference types is 30 times the amount of PInat,
respectively. To avoid data biases in composition
training, we guarantee the two major types from
Dtrain are balanced by downsampling the exten-
sive inference type. For example, in Task1 trivial
setting, we downsample PIver to ensure the train-
ing data of PIver and PInat is balanced.

C Evaluated Pre-train Language Models

We evaluate SETI across six well-known PLMs.
Table 7 shows the training objective and parameters
of each model. Detailed information and training
parameters of each model is:

BERT (Devlin et al., 2019) is a bidirectional
transformer pre-trained model, trained with masked
language modeling and next sentence prediction ob-
jectives on a large corpus. We fine-tuned the base-
uncased-large version, with the default setting.

ALBERT (Lan et al., 2020) build on BERT,
and presents two parameter-reduction techniques
to lower memory consumption and increase the
training speed. We fine-tuned the ALBERT-large
version, with the default setting.

RoBERTa (Liu et al., 2019) builds on BERT,
but is trained without the next-sentence prediction
objective and uses much larger data. We fine-tuned
a RoBERTa-large version, with the default setting.

GPT-2 (Radford et al., 2019) is a decoder-only
model, pre-trained on a large corpus of English

data in a self-supervised fashion. We fine-tuned the
GPT2-large version, with the default setting.

BART (Lewis et al., 2020) is an encoder-decoder
model. The pretraining task involves randomly
shuffling the order of the original sentences and
a novel in-filling scheme, where spans of text are
replaced with a single mask token. We fine-tuned
the BART-large version, with the default setting.

T5 (Raffel et al., 2020) is an encoder-decoder
model which is pre-trained on a multi-task mixture
of unsupervised and supervised tasks. Each task is
in a text-to-text format. We fine-tuned the T5-large
version, with the default setting.

Model Objective Parameters Layers Type

BERT MLM+NSP 340M 24
EncALBERT MLM+SOP 17M 24

RoBERTa MLM 355M 24

GPT-2 LM 774M 36 Dec

BART DAE 406M 24
Enc-Dec

T5 DAE 770M 24
.

Table 7: Overview of PLMs evaluated for systematicity
in our work. For training objectives, MLM is masked
language modeling, NSP is next sentence prediction
objective, SOP is sentence order prediction, LM is lan-
guage modele, and DAE is the denoising autoencoder
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