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Abstract

Goal-directed dialogue systems aim to proac-
tively reach a pre-determined target through
multi-turn conversations. The key to achieving
this task lies in planning dialogue paths that
smoothly and coherently direct conversations
towards the target. However, this is a challeng-
ing and under-explored task. In this work, we
propose a coherent dialogue planning approach
that uses a stochastic process to model the tem-
poral dynamics of dialogue paths. We define
a latent space that captures the coherence of
goal-directed behavior using a Brownian bridge
process, which allows us to incorporate user
feedback flexibly in dialogue planning. Based
on the derived latent trajectories, we generate
dialogue paths explicitly using pre-trained lan-
guage models. We finally employ these paths
as natural language prompts to guide dialogue
generation. Our experiments show that our ap-
proach generates more coherent utterances and
achieves the goal with a higher success rate1.

1 Introduction

Dialogue systems have made significant progress in
generating high-quality responses for open-domain
chitchat (Zhang et al., 2020; Roller et al., 2021)
and assisting users in completing specific tasks
(Madotto et al., 2018; Wu et al., 2019a). Instead of
passively responding to users, dialogue systems can
also take a proactive role to direct a conversation
towards specific goals, such as introducing new and
interesting topics (Wu et al., 2019b) or providing
sociable recommendations on target items (Wang
et al., 2022a). Such a proactive target-oriented or
goal-directed dialogue system can guide conversa-
tions towards topics that the system knows how to
discuss, making it promising to build autonomous
conversational AI.

∗Equal contribution.
1Our code and data are available at https://github.

com/iwangjian/Color4Dial.

Hello, how are you going today?

Not so good. I failed the exam today.

You’d better watch some movies to 
relax. Is there any movie you enjoy?

Yeah, I love Running Out of Time.

Ask user | 
Running Out of Time

𝑆!

𝑆"
𝑆#

Chat about stars | 
Andy Lau

Movie recommendation |
McDull, Prince de la Bun

…

Action: Movie recommendation 
Topic: McDull, Prince de la Bun Target 𝑆#

Dialogue Path

Really? I’m a fan of Andy Lau. I like 
watching all the movies he starred in.

Figure 1: An example from the repurposed DuRecDial
2.0 (Liu et al., 2021b) dataset. Given a pre-determined
target and current dialogue context, we expect to plan a
dialogue path to direct the conversation.

For goal-directed dialogue systems, the objec-
tive is to proactively direct conversations towards a
designated target. Previous work has primarily pre-
determined the targets as specific keywords (Tang
et al., 2019), topics (Wu et al., 2019b; Sevegnani
et al., 2021), and dialogue action-topic pairs (Zhang
et al., 2021; Wang et al., 2022a). To achieve this
task, effective dialogue planning is essential, which
requires taking reasonable actions and smoothly di-
recting dialogue topics to the designated one. More
importantly, the whole process is expected to be co-
herent and natural. Prior studies attempted to tackle
this challenge through next-turn transition predic-
tion (Tang et al., 2019), sub-goal generation (Zhang
et al., 2021; Kishinami et al., 2022), and knowledge
path reasoning (Gupta et al., 2022) to control di-
alogue generation. However, there are still open
issues worth exploring. First, previous studies
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adopted a greedy strategy with a single-turn topic
prediction mechanism, which lacks global planning
for the dialogue process (Yang et al., 2022). Con-
sequently, these methods are often short-sighted,
resulting in sub-coherent topic threads. Second,
recognizing a user’s engagement and willingness
to follow the system is crucial for achieving co-
herent transitions. However, current studies often
overlook the importance of modeling such user
feedback. Therefore, it is necessary to explore
globally planned dialogue strategies while incorpo-
rating user feedback to improve the coherence of
goal-directed dialogue systems.

In this work, our objective is to globally plan
dialogue paths that connect the current context to
the target at each turn. As illustrated in Figure 1,
this dialogue path should strike a balance between
coherence with the ongoing dialogue context and
smooth transitions towards the target. Assuming
that path trajectories without a target can be repre-
sented as Brownian motion (Revuz and Yor, 2013)
in latent space, we expect the embeddings of neigh-
boring trajectory points to be similar to each other,
while those of distant trajectory points to be dissim-
ilar. Drawing inspiration from Wang et al. (2022b),
we view goal-directed dialogue behavior as a Brow-
nian bridge (Revuz and Yor, 2013) stochastic pro-
cess conditioned on fixed start and end points. As
such, we can derive latent trajectories that follow
coherent temporal dynamics.

Based on the above intuition, we propose a
coherent dialogue planning approach via Brownian
bridge (COLOR) stochastic process. It involves
mapping dialogue path points, such as topics or
action-topic pairs, into a latent space of Brownian
bridge conditioned on the current context and desig-
nated target. To ensure goal-directed behavior and
incorporate user feedback, we also map the latest
user utterance into real-time user feedback repre-
sentation using the same latent space. We leverage
this feedback to perturb the density and uncertainty
of the Brownian bridge, simulating its impact on
the dialogue planning process. Our training pro-
cess uses a contrastive objective, which helps retain
global coherence. We then fine-tune pre-trained
language models (PLMs) using the derived latent
trajectories to plan dialogue paths explicitly. These
paths provide step-by-step explanations for reach-
ing the target and serve as natural language prompts
for generating system utterances.

In summary, our main contributions are: (1) We

propose a novel approach called COLOR, which ef-
fectively models global coherence and incorporates
user feedback in goal-directed dialogue planning.
Our method utilizes the Brownian bridge stochastic
process, and to the best of our knowledge, this is the
first work to apply this method to the goal-directed
proactive dialogue task. (2) We repurpose exist-
ing dialogue datasets by automatically constructing
system goals and splitting them into in- and out-of-
domain test sets. It facilitates research in the field
and allows for more accurate evaluation of mod-
els. (3) Extensive experiments demonstrate that
our proposed approach outperforms other methods,
both in automatic and human evaluations.

2 Preliminaries

Problem Formulation We consider a corpus of
goal-directed dialogues D = {(Ki,Pi, Ci)}Ni=1,
where N is the total number of dialogues. The
domain knowledge facts relevant to the i-th dia-
logue are represented as Ki = {ki,j}NK

j=1, each in
the form of a triple. The dialogue content for the
i-th dialogue is Ci = {Ci,t}NT

t=1, with a total of NT

turns. The whole dialogue path for the i-th dia-
logue is denoted as Pi = {Pi,l}Ll=1, where each
path point is a topic or an action-topic pair. Here,
dialogue topics are mainly constructed based on the
domain knowledge Ki. In some scenarios, there
also exists a user profile Ui, which can be user
attributes or certain personal preferences.

Given a target T consisting of an action-topic
pair or a topic only, a dialogue context C, and a
set of relevant domain knowledge K (and a user
profile U , if any), our objective is to generate co-
herent utterances to reach the target T when ap-
propriate. The problem can be decomposed into
two sub-tasks: (1) dialogue planning, which in-
volves planning suitable actions and topics to lead
the dialogue proactively with coherent transitions
to the target, and (2) dialogue generation, which
involves generating an appropriate utterance to
achieve the planned action and topic at each turn.

Brownian Bridge The standard Wiener process
or Brownian motion W (t) has a normal distribution
with mean 0 and variance t, i.e., W (t) ∼ N (0, t).
A Brownian bridge (Revuz and Yor, 2013) is a
continuous-time stochastic process pinned at fixed
start and end points, where its distribution B(t) is
given by:

B(t) = W (t)− t

T
W (T ) (1)
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where t ∈ [0, T ], T denotes the end time. Fur-
thermore, the transition distribution of a Brownian
bridge process from an initial point z0 at t = 0 to
an end point zT at t = T is:

p(zt|z0, zT ) ∼ N
((

1− t

T

)
z0 +

t

T
zT ,

t
(
T − t

)

T

)
(2)

It implies that a trajectory point zt follows a noisy
linear interpolation between z0 and zT , with zt
closer to z0 at the start and closer to zT at the end.
The uncertainty is higher in the middle of the time
interval and lower near the start and end points.
The time-controlled nature of the Brownian bridge
process has led to its application in various fields,
such as trajectory simulation (Sousa et al., 2015)
and language modeling (Wang et al., 2022b).

3 Method

We propose a coherent dialogue planning approach
via Brownian bridge (COLOR) stochastic process
to steer goal-directed dialogue generation. The in-
tuition behind COLOR is to learn a mapping (see
§3.1) in the Brownian bridge latent space that cap-
tures coherent temporal dynamics for planning di-
alogue paths. Each dialogue path consists of a
sequence of topics or action-topic pairs, starting
from the current context and leading to the target.
We generate these paths explicitly (see §3.2) based
on representations derived from the latent space,
and use them to guide the generation of dialogue
utterances (see §3.3).

3.1 Stage 1: Brownian Bridge Mapping

A Brownian bridge latent space involves a non-
linear mapping that transforms observations into a
low-dimensional latent space, using the Brownian
bridge stochastic process. Our objective is to utilize
this mapping to train an encoder F , to convert
raw dialogue paths into latent representations that
retain global coherence, with the overview depicted
in Figure 2. In the following sections, we will
introduce two crucial aspects of our approach: user
feedback modeling and contrastive training.

User Feedback Modeling Suppose we obtain
the user feedback representation zu and have an
engagement indicator δu ∈ (0, 1), which reflects
the user’s level of engagement and likelihood of
following the system, we newly define the transi-
tion distribution of the Brownian bridge process
between a start point zs0 at t = 0 and end point

transition0 𝑇

𝑧!!

𝑧!"
𝑧!#

𝜇!#
𝑧 "

PLM Encoder 𝑓# (frozen)

MLP Block 𝑓$
(feature conversion)

𝑆%

MLP Block 𝑓&
(feature projection)

𝛿% 𝑧!!𝑧% 𝑧!"𝑧!#

MLP Block 𝑓'
(feedback estimation)

	𝜎

𝑆( 𝑆) 𝑆*

Brownian bridge 
latent space

ℒ$+

Figure 2: Overview of Stage 1: Mapping observations to
Brownian bridge latents. Su is the latest user utterance,
S0 is the concatenated text of domain knowledge and
dialogue context, ST is the designated target, St denotes
a sampled path point in the dialogue path with 0 < t <
T . We differentiate data flow by colored arrows.

zsT at t = T as:

p(zst) ∼ N
( (

1− t

T

)
(zs0 + zu) +

t

T
zsT

︸ ︷︷ ︸
µst

,
t(T − t)

T
+ φ(δu)

︸ ︷︷ ︸
σ2

)

(3)
where 0 < t < T , φ(·) is a decaying function.
Here, zu is used to perturb the density (the mean
µst) of the Brownian bridge process, and δu is used
to perturb its uncertainty (the variance σ2), with
perturbation strength decaying over time. This de-
cay means that the impact of the current user feed-
back on future planning is reduced. Alternatively,
φ(·) can be implemented with the linear decaying,
i.e., φ(δu) = δu(1 − t/T ), or the exponential de-
caying, i.e., φ(δu) = δue

−t/(λT ), where λ ∈ (0, 1)
is a scaling factor.

Contrastive Training For a tuple of observations
(Su, S0, St, ST ), our objective is to ensure that their
latent representations (zu, zs0 , zst , zsT ) follow the
Brownian bridge transition distribution described
in Eq. (3). Here, Su is the latest user utterance (and
the concatenation of the user profile, if applicable),
which may embody real-time user feedback infor-
mation. S0 consists of the concatenated domain
knowledge and dialogue context, revealing the start
of the dialogue path. ST is the designated target,
representing the end of the dialogue path. A path
point, by default, refers to a topic or action-topic
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pair specific to the dataset. St denotes a sampled
path point in the dialogue path, s.t., 0 < t < T .
Here, T denotes the number of transitions required
to reach the target.

As shown in Figure 2, we build our encoder F
on top of a frozen PLM encoder, which is followed
by specific trainable multilayer perceptron (MLP)
blocks. All the necessary latents are given by:

zs0 = fP

(
AvgPool

(
fθ(S0)

))
, (4)

zst = fP

(
AvgPool

(
fθ(St)

))
, (5)

zsT = fP

(
AvgPool

(
fθ(ST )

))
, (6)

zu = fP

(
fC

(
AvgPool

(
fθ(Su)

)))
, (7)

δu = σ

(
fE

(
fC

(
AvgPool(fθ(Su))

)))
(8)

where fθ denotes a frozen PLM encoder such as
BERT (Devlin et al., 2019) or BART (Lewis et al.,
2020) encoder, AvgPool(·) denotes the average
pooling operation. fP , fC , and fE are MLP blocks
that produce output with a latent dimension of d.
σ is the Sigmoid activation function. The intu-
ition behind the training is to ensure that the rep-
resentation zst of a positive path point St sampled
from the same dialogue is close to the expected
embedding µst (the mean in Eq. (3)). In contrast,
the representation z

′
of a negative random path

point S
′
t from a different dialogue is far from µst

(see Figure 2) because it does not align with the
Brownian bridge pinned by zs0 and zsT . We con-
sider a contrastive objective proposed in Wang et al.
(2022b) for training. Formally, given input batches
B = {(Su, S0, St, ST )} consisting of randomly
sampled positive path points St where 0 < t < T ,
we optimize our encoder F as follows:

LCL = − log
exp(d(S+

t ;F))∑
S−
t ∈B

exp(d(S−
t ;F))

, (9)

d(St;F) = − 1

2σ2

∥∥∥∥zst − µst

∥∥∥∥
2

2

(10)

where S+
t denotes a positive tuple (Su, S0, St, ST ),

S−
t denotes a negative tuple (Su, S0, S

′
t, ST ), σ2 is

the variance in Eq. (3), µst is the mean in Eq. (3).

3.2 Stage 2: Planning Dialogue Paths
The Brownian bridge latent space makes it easy to
derive a coherent latent trajectory with temporal

BART DecoderBART Encoder

MLP 𝑓!

𝑇 𝑧"!

𝑧""
𝑧"#

𝜇"#

sampling

𝑧"$ 𝑧"% 𝑧""⋯

𝜒 𝒫

Brownian bridge process

(inference)

Figure 3: Overview of Stage 2: Planning the dialogue
path P , where X is the required input, T denotes the
number of transitions required to reach the target.

dynamics. We feed the start point S0, designated
target ST , and observed Su, into the trained en-
coder F respectively, then sample a latent trajec-
tory z = (zs1 , zs2 , · · · , zsT ) that follows Eq. (3),
where zst ∈ Rd, t = 1, 2, · · · , T . Here, z acts
like the transition-level latent representation that
connects the ongoing dialogue context to the target,
i.e., the dialogue path P to be planned.

To generate the path P , we define the required
input as X = [C;K; T ], which is the concatenated
text of the dialogue context C, domain knowledge
K, and target T . As shown in Figure 3, we feed
X into a pre-trained BART (Lewis et al., 2020)
model for fine-tuning, with the encoded hidden
states being h = (h1, h2, · · · , hm). We discuss the
generation of P by conditioning on h and z below.

First, sampling the latent trajectory z requires
the value T , i.e., the number of transitions to reach
the target. We obtain this value by adding an MLP
layer fT to the BART encoder as a predictor, which
outputs the probability of T :

p(T ) = softmax(W1fT (h̄) + b1) (11)

where h̄ is the average pooled representation of h,
W1 and b1 are trainable parameters. We optimize
the predictor using cross-entropy loss Lc.

Second, our BART decoder conditions on h and
the derived latent trajectory z, then generates the
dialogue path P with encoder-decoder attentions.
The output distribution is approximated as follows:

pθ(ŷt) = softmax(W2h
o
t + b2), (12)

hot = Decoder(yt−1, H), (13)

H = [h;WTz] (14)

where W2, b2 are trainable parameters, W denotes
a linear transformation that maps the dimension of
z to be identical to h, and [; ] denotes concatenation.
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The decoder is trained by minimizing the negative
log-likelihood below:

Lg = −
N∑

i=1

p(y(i)) log pθ(ŷ
(i)) (15)

where p(y(i)) is the distribution of the ground-truth
dialogue path, while pθ(ŷ

(i)) is the distribution of
the approximated dialogue path.

In addition, for the decoder’s all hidden states
ho = (ho1, h

o
2, · · · , hon) (see Eq. (13)) and the trans-

formed latent trajectory zo = WTz (see Eq. (14)),
they inevitably both represent the dialogue path P
though at different levels. We minimize the Kull-
back–Leibler (KL) divergence between ho and zo:

LKL =
N∑

i=1

DKL(h̄o
(i)||z̄o(i)) (16)

where h̄o and z̄o denote the average pooled repre-
sentation of ho and zo, respectively.

For training, our model is optimized as follows:

L = αLc + βLg + γLKL (17)

where α, β, and γ are hyperparameters. Dur-
ing inference, we obtain the value T inferred by
the predictor fT , then sample a latent trajectory
z = (zs1 , · · · , zsT ) given t = 1, · · · , T . The de-
coder then generates a dialogue path token by token.
Additionally, no transition is needed to reach the
target if T = 0. In such cases, we directly generate
the dialogue path by copying the given target T .

3.3 Stage 3: Generating Dialogue Utterances
Motivated by prior work on prompt-based learning
for dialogue generation (Zheng and Huang, 2021;
Madotto et al., 2021), we regard each dialogue
path P as a natural language prompt to guide a
generative PLM for dialogue generation. Here, P
serves as a global prompt that outlines the dialogue
actions and topics needed to reach the target step
by step. With the power of the PLM, P helps to
distill the necessary knowledge from both the input
text and the PLM. To formulate the newly input X ′

,
we append P to the given dialogue context C and
domain knowledge K, and concatenate them as:

X ′
= [K; C;P] (18)

where [; ] denotes concatenation. We then feed
X ′

into a pre-trained GPT-2 (Radford et al., 2019)
or DialoGPT (Zhang et al., 2020) for supervised
fine-tuning. We adopt the planned dialogue paths
generated by our COLOR during inference.

Dataset #Dial. #Utter. Dial. Turn
#Max. #Avg.

DuRecDial 2.0

Train 4,256 68,781 13 8.1
Valid 608 9,677 14 8.0
Test-ID 770 12,299 13 8.0
Test-OOD 446 7,962 12 8.9

TGConv
Train 15,197 70,205 9 3.8
Valid 2,681 12,167 9 3.7
Test 1,000 5,132 9 3.9

Table 1: Overview of the datasets.

4 Experiments and Results

4.1 Experimental Setup

Datasets The task of goal-directed proactive di-
alogue is under-explored, making it challenging
to find feasible benchmarks for evaluation. Af-
ter careful consideration, we have identified the
DuRecDial 2.0 (Liu et al., 2021b) and TGConv
(Yang et al., 2022) datasets as appropriate for our
experiments. DuRecDial 2.0 (Liu et al., 2021b) is
a crowdsourced dataset of human-to-human dia-
logues in recommendation-oriented scenarios. We
repurpose the dataset by defining the targets as
action-topic pairs. We obtain two types of splits
for the test set: in-domain (ID) and out-of-domain
(OOD), similar to Sevegnani et al. (2021). The
OOD split ensures that none of the target topics in
the test set are present in the training set, whereas
the ID split allows them to appear. The TGConv
(Yang et al., 2022) dataset contains high-quality
open-domain dialogues on a variety of common-
sense topics. Each dialogue is designed to direct the
conversation towards a specific keyword or topic
through coherent keyword transitions, which are
categorized as either easy-to-reach or hard-to-reach
based on their difficulty level. Table 1 summarizes
the statistics of both datasets. More details are
available in Appendix A.

Baseline Methods For dialogue generation, our
baselines include: GPT-2 (Radford et al., 2019),
DialoGPT (Zhang et al., 2020), and BART (Lewis
et al., 2020). On the repurposed DuRecDial 2.0
dataset, we also compared our method with three
competitive methods: MGCG_G (Liu et al., 2020),
KERS (Zhang et al., 2021), and TCP-Dial (Wang
et al., 2022a). We chose these methods because
they are highly relevant to our problem setting, and
TCP-Dial is currently the state-of-the-art model in
our knowledge. Given that our method is general-
izable to the existing TGConv dataset, we evalu-
ated its effectiveness against four competitive mod-
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Split Model PPL (↓) F1 (%) BLEU-1 / 2 DIST-1 / 2 Know. F1 (%) Succ. (%)

ID

MGCG_G (Liu et al., 2020) 25.32 35.13 0.316 / 0.211 0.016 / 0.053 39.53 29.49
KERS (Zhang et al., 2021) 20.15 31.27 0.288 / 0.196 0.017 / 0.061 41.18 33.75
GPT-2 (Radford et al., 2019) 5.33 36.86 0.314 / 0.222 0.024 / 0.081 43.62 41.80
DialoGPT (Zhang et al., 2020) 5.26 38.12 0.324 / 0.252 0.023 / 0.076 44.71 46.46
BART (Lewis et al., 2020) 6.46 36.11 0.279 / 0.181 0.030 / 0.096 43.33 58.40
TCP-Dial (Wang et al., 2022a) 5.88 34.46 0.293 / 0.201 0.027 / 0.091 45.75 60.49

Ours (COLOR w/ GPT-2) 5.17 40.43* 0.337* / 0.243* 0.026 / 0.084 50.81* 69.14*
Ours (COLOR w/ DialoGPT) 5.22 43.14* 0.371* / 0.277* 0.024 / 0.073 57.89* 73.20*

OOD

MGCG_G (Liu et al., 2020) 28.21 30.84 0.276 / 0.167 0.015 / 0.046 20.53 8.46
KERS (Zhang et al., 2021) 24.35 27.91 0.259 / 0.160 0.016 / 0.058 26.88 14.15
GPT-2 (Radford et al., 2019) 5.86 33.06 0.276 / 0.193 0.023 / 0.077 28.79 32.79
DialoGPT (Zhang et al., 2020) 5.37 34.27 0.283 / 0.176 0.021 / 0.068 31.75 32.47
BART (Lewis et al., 2020) 8.09 32.38 0.244 / 0.149 0.026 / 0.081 30.02 43.08
TCP-Dial (Wang et al., 2022a) 8.24 29.24 0.255 / 0.165 0.027 / 0.089 21.36 18.40

Ours (COLOR w/ GPT-2) 5.63 34.44* 0.285* / 0.198* 0.025 / 0.082 34.04* 57.41*
Ours (COLOR w/ DialoGPT) 5.30 37.97* 0.320* / 0.227* 0.024 / 0.072 41.35* 52.36*

Table 2: Automatic local and global evaluation results of dialogue generation on the DuRecDial 2.0 dataset with
different test splits. Significant improvements over backbone models are marked with * (t-test, p < 0.05).

els specific to that dataset: MultiGen (Ji et al.,
2020), DKRN (Qin et al., 2020), CKC (Zhong
et al., 2021), and TopKG (Yang et al., 2022). More
details about the above methods are shown in Ap-
pendix B.1. For dialogue planning, we compared
our COLOR with the planning models proposed
in the above methods using a planning-enhanced
paradigm. We also included BERT (Devlin et al.,
2019) and BART (Lewis et al., 2020) as our base-
lines. More details about them are described in
Appendix B.2.

Implementation Details Our proposed COLOR

model is implemented by PyTorch. In both Stage 1
and Stage 2, we adopt the BART-base model (768
dimensions, 6 encoder/decoder layers, and 12 atten-
tion heads) released in Huggingface’s Transformers
(Wolf et al., 2020) library. The latent dimension d
is set to 16. The MLP blocks fP , fC , and fE are all
stacked to 3 layers. The decaying function φ(·) em-
ploys the linear decaying. The hyperparameters α,
β and γ are set to 0.1, 1.0 and 1.0, respectively. For
training in Stage 2, we construct the dialogue path
P in the format of [A]a1[T]t1 · · · [A]aT [T]tT on
the DuRecDial 2.0, and of [T]t1 · · · [T]tT on the
TGConv. Here, [A] is a special token to separate
an action ai, [T] is a special token to separate a
topic ti. During inference, we generate a dialogue
path token by token. Further details on training and
inference are provided in Appendix C.

4.2 Evaluation of Dialogue Generation

Evaluation Metrics To evaluate the performance
of next-turn system utterance generation, we adopt

Model Easy Target Hard Target
Succ. (%) Coh. Succ. (%) Coh.

GPT-2† (G) 22.3 0.23 17.3 0.21
DialoGPT (D) 32.3 0.30 23.8 0.25
MultiGen† 26.7 0.21 19.6 0.24
DKRN† 38.6 0.33 21.7 0.31
CKC† 41.9 0.35 24.8 0.33
TopKG† 48.9 0.31 27.3 0.33

Ours (COLOR w/ G) 54.2 0.34 28.8 0.33
Ours (COLOR w/ D) 66.3 0.36 30.1 0.35

Table 3: Automatic global evaluation results of dialogue
generation on the TGConv dataset. G and D are short
for GPT-2 and DialoGPT, respectively. Models marked
with † are reported from Yang et al. (2022).

commonly used local evaluation metrics, including
perplexity (PPL), distinct (DIST) (Li et al., 2016),
BLEU-n (Papineni et al., 2002), word-level F1 and
knowledge F1 (Know. F1) (Liu et al., 2020). To
evaluate models’ goal-directed performance, we
use the goal success rate (Succ.) as the global eval-
uation metric. In the repurposed DuRecDial 2.0
dataset, Succ. measures the proportion of correct
target topic generation within the target turn and
the two adjacent turns in the test set, as per Wang
et al. (2022a). For the TGConv dataset, we perform
self-play simulations, following Yang et al. (2022),
to simulate multi-turn conversations and compute
the success rate of generating the target keyword
within 8 turns. Additionally, we adopt coherence
(Coh.) (Yang et al., 2022) as another global evalua-
tion metric, which measures the average contextual
semantic similarity between the last utterance in
the context and generated utterance.
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Results and Discussion Table 2 shows evalu-
ation results on the DuRecDial 2.0 dataset. We
observe that MGCG_G and KERS achieve com-
parable performance to PLM-based models on the
in-domain (ID) split. One main reason is that they
use the predicted dialogue action and topic to guide
the model in utterance generation. However, they
perform poorly in terms of goal success rate due
to a lack of dialogue-level planning. We note that
BART and TCP-Dial obtain much better DIST-1/2
scores than others because they seldom generate
repeated words, making the generated utterances
more diverse. In comparison, our models achieve
remarkable improvements over most evaluation
metrics. For example, our COLOR with DialoGPT
achieves much better knowledge F1 scores, indi-
cating that our method is more likely to generate
utterances with correct knowledge. Regarding the
goal success rate, our models obtain a large mar-
gin of improvement on both ID and OOD splits.
It shows that using prompts with appropriate di-
alogue paths effectively steers PLMs to generate
proper utterances for goal-directed dialogue.

As shown in Table 3, we notice that directing a
dialogue to reach the target seems challenging in
the context of open-domain chitchat for all mod-
els. However, with the guidance of our dialogue
planning approach, COLOR, our models are able
to produce more coherent utterances and reach the
target at a significantly higher success rate.

4.3 Evaluation of Dialogue Planning

Evaluation Metrics To evaluate the performance
of dialogue planning, we first adopt F1 to measure
the micro-averaged precision and recall of the pre-
dicted action or topic. For generation-based mod-
els, we extract the action or topic at the evaluated
turn from the generated dialogue path for a fair
comparison. Due to the nature of dialogue, multi-
ple temporary planning strategies can be reasonable
before reaching the target. Following Zhou et al.
(2020), we also expand gold labels by considering
the system’s actions or topics within the previous
and subsequent turns. As such, we then compute
bigram action F1 (Bi-act. F1) and bigram topic F1
(Bi-top. F1) for evaluation.

Results and Discussion Table 4 reports the eval-
uation results on the DuRecDial 2.0 dataset. We
find that predicting or generating dialogue topics
is more challenging than dialogue actions. Further
analysis reveals that the dialogue actions follow

Split Model Action Topic
F1 Bi-act. F1 F1 Bi-top. F1

ID

MGCG 90.26 92.47 74.93 79.24
KERS 90.33 91.54 77.85 80.35
BERT 91.68 92.37 80.64 82.59
TCP 92.25 93.82 85.77 87.25
BART 95.40 96.31 90.96 92.21

Ours (COLOR) 96.86 97.68 93.30 94.26

OOD

MGCG 82.30 87.25 36.03 42.00
KERS 84.21 86.39 34.20 37.85
BERT 92.23 94.19 46.55 52.12
TCP 89.93 92.09 44.49 50.71
BART 92.63 93.18 58.57 62.37

Ours (COLOR) 93.43 93.82 79.09 83.46

Table 4: Results of dialogue planning on the DuRecDial
2.0 with different test splits.

Model F1 Bi-top. F1

BERT (Devlin et al., 2019) 45.90 49.17
BART (Lewis et al., 2020) 43.20 47.69
TopKG-Plan (Yang et al., 2022) 46.06 48.04

Ours (COLOR) 47.17 52.85

Table 5: Results of dialogue planning on the TGConv.

a similar transition pattern in the dialogue paths,
making it easier for all models to predict actions
with an F1 score of over 80%. On the other hand,
the variation in dialogue paths is primarily related
to topics, which requires complex reasoning of do-
main knowledge, dialogue context, and target for
accurate prediction. When evaluating on the OOD
split, all baselines show lower F1 and Bi-top. F1
scores for topics. However, our proposed COLOR

achieves substantial improvements. We observe
similar trends in Table 5 when evaluating on the
TGConv dataset. Overall, our COLOR outperforms
the baselines by generating more reasonable ac-
tions and appropriate topics, making it a promising
approach for planning dialogue paths.

Analysis of Model Variants We analyze the fol-
lowing variants of our model: (1) COLORd=?,
which varies the value of the latent dimension d in
{8, 32, 128} (The d in our COLOR is set to 16 as
described in §4.1); (2) w/o Brownian bridge (BB),
which removes the operation of conditioning on
the derived Brownian bridge latent representation
z; (3) w/o user feedback modeling (UFM), which
removes zu and φ(δu) in our Brownian bridge pro-
cess as defined in Eq. (3); (4) w/o LKL, which
means the model is trained without the loss LKL.

We report evaluation results on the OOD split
of the DuRecDial 2.0 dataset, as shown in Table 6.
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Model Action Topic
F1 Bi-act. F1 F1 Bi-top. F1

COLORd=8 93.21 93.73 79.21 83.30
COLORd=32 91.24 92.82 78.03 83.34
COLORd=128 93.57 94.30 78.67 82.89

COLOR 93.43 93.82 79.09 83.46
w/o BB 93.66 93.93 62.45 64.27
w/o UFM 92.42 92.84 77.21 80.57
w/o LKL 92.95 93.01 77.34 80.97

Table 6: Dialogue planning performance of our COLOR
with different variants.

We observe that a larger value of d brings fewer
performance gains. Hence, the d in our COLOR is
set to 16 after making a trade-off between effec-
tiveness and efficiency. We note that each module
or mechanism of COLOR contributes to dialogue
planning. In particular, the performance of COLOR

sharply drops without the Brownian bridge (BB).
It is because the derived Brownian bridge latent
trajectory serves as a transition-level latent repre-
sentation of the dialogue path to be planned. More
importantly, it follows coherent temporal dynamics
and thus benefits planning the dialogue path.

4.4 Human Evaluation

We recruit three well-educated graduate students
as annotators for human evaluation. We ask the
annotators to score different models based on turn-
level and dialogue-level metrics, following Liu et al.
(2020). The turn-level evaluation measures ap-
propriateness (Appr.) and informativeness (Info.).
The dialogue-level evaluation measures proactiv-
ity (Proact.), coherence (Coh.), and goal success
(Succ.). More details on the metrics and evaluation
procedure are described in Appendix D.

Table 7 shows human evaluation results on the
DuRecDial 2.0 dataset. The Fleiss’s kappa (Fleiss,
1971) scores are mainly distributed between [0.41,
0.60], indicating moderate inter-annotator agree-
ment. We observe that DialoGPT, TCP-Dial, and
ours obtain comparable scores in informativeness
since they all utilize powerful PLMs. However,
our method is able to generate more appropriate
utterances in response to dialogue context. For
dialogue-level evaluation, our method obtains bet-
ter results on average compared to all baseline mod-
els. Notably, our method achieves the highest co-
herence score and goal success rate, indicating that
our method is more likely to direct the dialogue to
reach the target coherently and successfully.

Model Appr. Info. Proact. Coh. Succ.

MGCG_G 0.84 1.02 0.92 0.92 0.90
DialoGPT 1.17 1.35 1.06 1.17 1.19
TCP-Dial 1.20 1.24 1.26 1.20 1.02
Ours 1.33 1.40 1.42 1.35 1.38
kappa 0.48 0.52 0.46 0.56 0.53

Table 7: Human evaluation results. The Fleiss’s kappa
measures the agreement among the annotators.

4.5 Case Study

To better analyze goal-directed dialogue generation,
we show some cherry-picked cases in Appendix E
due to space limitation. We observe that some base-
line models can generate fluent and informative
utterances. However, they still fail to direct the
dialogue to reach the target and are ineffective to
maintain coherence. In comparison, our COLOR

model can plan a dialogue path with reasonable
actions and appropriate topics that outlines how to
reach the target step by step. With the guidance of
the planned dialogue path, our system better knows
when and what to talk about to proactively move the
dialogue forward. More importantly, our method
succeeds in achieving the goal (see Appendix E).

5 Related Work

Goal-directed Dialogue Generation In the goal-
directed or target-oriented setting, existing studies
mainly predetermine the targets as specific key-
words (Tang et al., 2019; Qin et al., 2020; Zhong
et al., 2021), topics (Wu et al., 2019b; Sevegnani
et al., 2021; Lei et al., 2022), and dialogue action-
topic pairs (Zhang et al., 2021; Wang et al., 2022a).
The key to the task is dialogue planning, which
leads the dialogue towards the target smoothly and
coherently. Prior work pays attention to next-turn
transition strategy (Tang et al., 2019), hierarchical
policy (Xu et al., 2020a,b), and sub-goal genera-
tion (Zhang et al., 2021; Kishinami et al., 2022).
For this knowledge-rich task, recent work (Gupta
et al., 2022; Yang et al., 2022; Wang et al., 2022a)
further concerns planning a dialogue path based
on grounded knowledge to guide every turn of re-
sponse generation.

Planning for Language Generation There is
a line of work (Puduppully et al., 2019; Hua and
Wang, 2019; Moryossef et al., 2019; Su et al., 2021)
that separates text generation into content planning
and surface realization. Content planning mainly
concerns selecting key content (e.g., key entities)
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and arranging their orders. Several planning frame-
works (Hua et al., 2021; Hu et al., 2022; Li et al.,
2022) have been studied to control complex lan-
guage generation tasks. Our work is more related to
planning for dialogue generation (Kishinami et al.,
2022; Yang et al., 2022; Cohen et al., 2022). Our
proposed COLOR is a novel dialogue-level plan-
ning method that steers dialogue generation.

6 Conclusion

In this work, we explore the task of goal-directed
proactive dialogue and focus on planning dialogue
paths that direct conversations towards the desig-
nated target. We propose a novel approach called
COLOR, which models coherent temporal dynam-
ics for dialogue paths in the defined latent space,
and considers the impact of user feedback on the
dialogue planning process. We employ the planned
dialogue paths as prompts to steer dialogue genera-
tion. Experiments show that our proposed method
outperforms other methods significantly.

Limitations

Though our proposed method exhibits superior per-
formance, we also recognize its limitations and
discuss potential solutions. Our proposed method
for goal-directed dialogue generation suffers from
error propagation since the three stages perform in
a pipeline manner. After analyzing those generated
utterances with low human evaluation scores, we
find that the performance of dialogue generation
is prone to drop when our COLOR model fails to
plan an appropriate dialogue path. We intend to
alleviate this issue by introducing some techniques
in the cascaded generation, such as noisy channel
models (Shannon, 1948; Liu et al., 2021a). In ad-
dition, other issues, such as how to make existing
goal-directed dialogue systems more engaging and
personalized, are worth further exploring.

Ethical Considerations

Goal-directed dialogue systems can be used for cre-
ating non-obtrusive recommendations for specific
products and services, introducing interesting new
topics and educating users about those topics, and
so forth. Developing such systems requires careful
consideration since it has a broad impact on appli-
cations. The intention of our work is not to force
the system to reach the designated target nor force
users to accept recommendations. Instead, we aim
to build better assistive technologies to improve the

proactiveness of dialogue systems. Furthermore,
our experimental datasets are publicly available.
They have been filtered for sensitive and private
information during dataset construction.

We hope to raise awareness of the potential for
misuse of such systems with toxic intentions. For
example, such systems may be used to pose as hu-
mans and actively manipulate users’ perceptions
on specific issues or political inclinations. To miti-
gate these risks, we emphasize the importance of
improving transparency through regulations. It is
essential to inform users that they are conversing
with a bot instead of a human, and regulations on
target designation are crucial when deploying these
systems in specific domains. It is necessary to en-
sure that setting a target does not violate factual
accuracy, user privacy rules, or human laws.
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A Dataset Descriptions and
Pre-processing

DuRecDial 2.0 The DuRecDial 2.0 (Liu et al.,
2021b) dataset is collected from crowdsourced
human-to-human dialogues. In each dialogue, one
person is defined as the seeker (the user’s role) and
the other as the recommender (the system’s role).
The recommender needs to proactively lead the di-
alogue and make recommendations by introducing
new topics. Each seeker is equipped with a user
profile containing user attributes (e.g., age range)
and his/her past preference information. In order
to smoothly converse with the seeker, the recom-
mender has a domain knowledge graph consist-
ing of domain-specific topics (e.g., movies, music)
with related attributes. More importantly, a dia-
logue path composed of dialogue actions and topics
is annotated for the recommender from the begin-
ning to the end of the dialogue. All dialogues are

Movie Rec.

Music Rec.

16.10 %

13.32 %

12.52 %

Play Music6.18 %
5.87 %

Point-of-Interest Rec.Food Rec.

13.49 %

4.13 %

Chat about stars

Ask user 
questions

12.54 %

5.01 %

Say goodbye

Greetings 5.11 %
2.97 %

Respond Q&A

Respond to weather
Respond to date (1.62 %)

Respond to music on demand 
(1.14 %)

Recommendation Topic Elicitation Chit-chat User Exploration

Figure 4: Statistics of the system’s dialogue actions on
the repurposed DuRecDial 2.0 dataset.

aligned across the English and Chinese languages.
We adopt the dataset in English for experiments.

Since there are no explicit annotated targets, we
repurpose the original dataset automatically. For
all those dialogues that are proactively led by the
system, we treat the topic that the user has ac-
cepted at the end of each dialogue as the target
topic, and view the system’s corresponding action
(e.g., movie recommendation, point-of-interest rec-
ommendation, etc.) as the target action. Each target
topic is guaranteed to be grounded in the domain
knowledge triples corresponding to the dialogue.
We filter out those dialogues without introducing
any new recommendation topics. The total number
of topics is 628 (including a NULL topic). Figure 4
shows the statistics of all the system’s actions. We
observe an average of 4.3 ∼ 4.8 action-topic transi-
tions from the beginning to reaching the target.

Following the splitting criterion (Liu et al.,
2021b), we obtain training/validation/test sets with
4,256/608/1,216 dialogues, respectively. To inves-
tigate the performance of different methods for
goal-directed dialogue generation, we further use
the dataset with two types of splits for the test
set: in-domain (ID) split and out-of-domain (OOD)
split, similar to Sevegnani et al. (2021); Gupta et al.
(2022). The OOD split ensures that none of the tar-
get topics in the test set are present in the training
set. In contrast, the target topics in the ID split are
allowed to appear in the training set.

TGConv The TGConv (Yang et al., 2022) dataset
is extracted based on the chit-chat corpus Con-
vAI2 (Dinan et al., 2020), and the external com-
monsense KG ConceptNet (Speer et al., 2017).
In the TGConv dataset, all target-oriented sam-
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ples are identified by the dialogue utterances con-
taining a go-through keyword/concept sequence
that aligns with the KG path over the Concept-
Net. Suppose the designated global target keyword
is wn, a transition path of keywords or concepts
P = {w1 → · · · → wn} is annotated for each
dialogue. Here, each neighbor word pair (i.e., wi

and wi+1) is direct or low-order connected in the
ConceptNet. On average, the number of transitions
from the start context to the target is approximately
5. Furthermore, the target keywords are distin-
guished into “easy-to-reach” and “hard-to-reach”.
Specifically, the easy-to-reach targets refer to tar-
get keywords with high frequency in the corpus. In
comparison, target words with low frequency (less
than 800) in the corpus are classified as hard-to-
reach targets because there are fewer cases to learn
the transition to low-frequency target words. In this
work, we follow the same data splitting as in Yang
et al. (2022) for experiments.

B Baseline Methods

B.1 Dialogue Generation
To evaluate dialogue generation quality, we first
consider the following PLMs-based methods:

• GPT-2 (Radford et al., 2019): It is an autoregres-
sive generation model for language generation.
We use the GPT-2 base2 model for fine-tuning.

• DialoGPT (Zhang et al., 2020): It is an autore-
gressive dialogue generation model pre-trained
using large-scale dialogue corpora. We adopt the
pre-trained small3 model for fine-tuning.

• BART (Lewis et al., 2020): It is a denoising
encoder-decoder model for language generation.
We use the BART-base4 model for fine-tuning.

Note that these models concatenate all parts of
input texts described in the problem formulation
as the model input and are fine-tuned to generate
utterances directly.

On the DuRecDial 2.0 dataset, we additionally
consider several competitive models that follow the
planning-enhanced generation paradigm:

• MGCG_G (Liu et al., 2020): It employs the
predicted next dialogue action and next topic to

2https://huggingface.co/gpt2
3https://huggingface.co/microsoft/

DialoGPT-small
4https://huggingface.co/facebook/bart-base

guide utterance generation. We re-run the offi-
cially released code5 on the repurposed dataset.

• KERS (Zhang et al., 2021): It leverages a
knowledge-enhanced mechanism to guide dia-
logue generation. We re-run the available code6

on the repurposed dataset.

• TCP-Dial (Wang et al., 2022a): It builds a target-
driven conversation planning method to explicitly
extract necessary knowledge and then guides dia-
logue generation. We re-run the available code7

on the repurposed dataset.

On the TGConv dataset, we consider the follow-
ing competitive models:

• MultiGen (Ji et al., 2020): It is a language gen-
eration model with multi-hop reasoning on com-
monsense knowledge graphs.

• DKRN (Qin et al., 2020): It builds a dynamic
knowledge routing network for topic transitions.

• CKC (Zhong et al., 2021): It is a keyword-
guided neural conversational model that lever-
ages ConceptNet for keyword transitions.

• TopKG (Yang et al., 2022): It employs global
planning on ConcepNet to guide dialogue gener-
ation and is the state-of-the-art approach8 on the
TGConv dataset.

B.2 Dialogue Planning

To compare the performance of dialogue planning
for goal-directed dialogues, we consider the follow-
ing dialogue planning methods:

• MGCG (Liu et al., 2020): It makes multi-task
predictions for the next-turn’s dialogue action
and topic. However, it assumes that ground-truth
historical dialogue actions and topics are known
for a system. For a fair comparison in this work,
we adopt the same input as our problem definition
to conduct multi-task predictions.

• KERS (Zhang et al., 2021): It generates the next-
turn’s dialogue action and topic based on a Trans-
former (Vaswani et al., 2017) network.

5https://github.com/PaddlePaddle/Research/
tree/master/NLP/ACL2020-DuRecDial

6https://github.com/z562/KERS
7https://github.com/iwangjian/Plan4RecDial
8https://github.com/yyyyyyzt/topkgchat
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• TCP (Wang et al., 2022a): It is a target-driven
planning framework that plans a dialogue path
consisting of dialogue actions and topics in a
generation-based manner.

• TopKG-Plan (Yang et al., 2022): It employs
reinforcement learning to plan a commonsense
keyword path based on ConceptNet.

• BERT (Devlin et al., 2019): Based on the intu-
ition of multi-task predictions, we fine-tune the
widely-used BERT model by adding two fully-
connected layers to jointly predict the next-turn’s
dialogue action and topic. We use the uncased
BERT-base9 model for fine-tuning.

• BART (Lewis et al., 2020): Based on the intu-
ition of generation, we use the BART-base model
for fine-tuning, which is then used to generate a
dialogue path similar to ours.

C Training and Inference Details

In Stage 1, we set the batch size for contrastive
training to 64 and adopt the Adam (Kingma and
Ba, 2014) optimizer with a learning rate of 2e-4.
We train our encoder F for 10 epochs. For training
in Stage 2, we adopt the Adam optimizer with an
initial learning rate of 2e-5 and warm up over the
first 10% training steps. We train our COLOR for a
maximum of 10 epochs with a batch size of 16. The
best checkpoint is chosen based on its performance
on the validation set. For inference, we employ
greedy decoding to generate a dialogue path token
by token, with a maximum decoding length of 80.
In Stage 3, we employ GPT-2 base and DialoGPT-
small (see Appendix B.1) as our backbone models.
We follow the description in §3.3 and fine-tune
backbone models for 10 epochs. For a fair com-
parison, we use greedy decoding with a maximum
decoding length of 100 for all models. We conduct
experiments on one NVIDIA 3090 GPU machine.

D Procedure of Human Evaluation

For turn-level evaluation, we randomly sampled
50 dialogues from the ID test split and 50 dia-
logues from the OOD test split from the DuRec-
Dial 2.0 dataset. We then compared the generated
utterances of the following models: MGCG_G,
DialoGPT, TCP-Dial, and ours (COLOR w/ Di-
aloGPT). For a fair comparison, the models were
randomly renamed as “model-1”, “model-2”, and

9https://huggingface.co/bert-base-uncased

so forth. The annotators were then asked to mark
scores for the compared models from (1) appropri-
ateness (Appr.), which measures whether the utter-
ance responds to the dialogue context appropriately,
and (2) informativeness (Info.), which measures
whether the utterance is informative by making full
use of the grounded knowledge.

For dialogue-level evaluation, we asked our an-
notators to act as users and converse with the mod-
els. Each model’s generated utterance in the cur-
rent turn was used as part of the dialogue context in
the next turn. Our annotators were asked to main-
tain consistency with the equipped user profile. To
ensure diverse evaluation targets, we randomly se-
lected 5 target actions from the DuRecDial 2.0 test
set, each paired with 10 different target topics, re-
sulting in a total of 50 targets evaluated. We did
not expose the targets to them during human-model
conversations and restricted all conversations to no
more than 12 turns. We finally released the desig-
nated targets to the annotators and asked them to
score the models based on three evaluation metrics:
(1) proactivity (Proact.), which measures whether
a model proactively leads the dialogue; (2) coher-
ence (Coh.), which manually examines whether the
whole dialogue is fluent, coherent, and smoothly
transited; (3) goal success (Succ.), which estimates
whether a model effectively reaches the target.

Our annotators were required to score the gen-
erated dialogues rating in {0, 1, 2}, where higher
is better. The agreement among the annotators is
measured by Fleiss’s kappa (Fleiss, 1971). We re-
ported each model’s average score from different
annotators as the ultimate human evaluation result.
In addition, we transparently informed all anno-
tators of our research intent. We paid reasonable
wages and provided enough time for the annotators
to complete the evaluation.

E Case Study

Table 8 and Table 9 show some cases on the DuRec-
Dial 2.0 and TGConv datasets, respectively.
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Target: Movie recommendation (target action) | The Art of Action: Martial Arts in Motion (target topic)

Model Example Dialogue Planning

MGCG_G

User: Do you know who starred in the movie Jackie Chan:
My Story?
Bot: of course. it’s jackie chan.
User: Well, I see. You are so brilliant!
Bot: you’re welcome. let’s talk about movies. let’s talk about
movies. (not fluent and coherent)
User: OK. What would you like to talk about?
Bot: jackie chan’s movies are very good.
User: Yeah, that’s why I love him so much.
Bot: i recommend you to see rumble in the bronx . it’s very
good. it’s a very good movie.
User: Yeah. Of course.
Bot: you have a good taste. the rumble in the bronx is
recommended to you.
... (not reach the target)

Respond Q&A | Jackie Chan: My Story

Respond Q&A | Jackie Chan: My Story

Chat about stars | Jackie Chan

Movie recommendation | Rumble in the Bronx

Movie recommendation | Rumble in the Bronx

DialoGPT

User: Do you know who starred in the movie Jackie Chan:
My Story?
Bot: Yes, it’s Jackie Chan.
User: Well, I see. You are so brilliant!
Bot: You’re welcome. Speaking of Jackie Chan, he is really a
very good actor.
User: Yeah. I sincerely love him!
Bot: Yes, he has won the Golden Horse Award for Best
Actor.
User: Wow, that’s great.
Bot: He also won the Hong Kong Film Award for Best Actor.
User: Anything else?
Bot: Well, it’s a documentary movie. It’s worth to
recommend to you . Don’t miss it! (not coherent with context)
... (get trapped)

(no dialogue planning)

Ours

User: Do you know who starred in the movie Jackie Chan:
My Story?
Bot: Yes, it’s Jackie Chan.
User: Well, I see. You are so brilliant!
Bot: You’re welcome. Jackie Chan is a Chinese martial arts
superstar.
User: Yeah. I sincerely love him!
Bot: Well, he has won the Golden Horse Award for Best
Actor. He has many good movies . (more coherent)
User: Wow, that’s great.
Bot: I’d recommend his movie The Art of Action: Martial
Arts in Motion Picture to you.
User: Sounds good.
Bot: It’s a documentary movie expressing Hong Kong
kung fu movies. Don’t miss it.
(succeed to reach the target)

P1: [A] Respond Q&A [T] Jackie Chan: My
Story [A] Chat about stars [T] Jackie Chan [A]
Movie recommendation [T] The Art of Action:
Martial Arts in Motion Picture
P2: [A] Chat about stars [T] Jackie Chan [A]
Movie recommendation [T] The Art of Action:
Martial Arts in Motion Picture

P3: (same as P2)

P4: [A] Movie recommendation [T] The Art
of Action: Martial Arts in Motion Picture

P5: (same as P4)

Table 8: Generated cases from dialogue-level human evaluations on the DuRecDial 2.0 dataset. The bot’s utterances
are generated by different models, including (a) MGCG_G, (b) DialoGPT, and (c) Ours (COLOR w/ DialoGPT).
The topics and topic-related attributes that also appear in the domain knowledge are marked with underlines.
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Start Keywords: wear → shoes Easy Target: computer

Context A: it is freezing outside, i enjoy wearing skinny jeans.
B: i am often gunning for new shoes lol.

Model Example Dialogue Planning

TopKG

A: i love tee shirts with rock band logos.
B: that sounds more cozy. what is your favorite band?
A: i’m young but i love old stuff , beatles.
B: that is nice.
A: it’s cool! i like working on the computer
(succeed to reach the target)

shirt → band → stuff → computer

Ours

A: oh, me too. my favorite shirts are flannel ruffle sleeves.
B: really that’s sick love them, why do you like that?
A: i enjoy playing video games and listening to music.
B: is that game rolls royce’s ghost tho am i right.
A: yeah, it is the wallpaper for my computer .
(succeed to reach the target more coherently)

P1: [T] shirt [T] band [T] music [T] computer
P2: [T] like [T] music [T] computer
P3: [T] play [T] game [T] computer
P4: [T] game [T] computer
P5: [T] computer

Start Keywords: day → living Hard Target: barbershop

Context A: i enjoy lawn mowing on sunny days .
B: i enjoy green living and just put solar panels on roof.

Model Example Dialogue Planning

TopKG

A: i do live rpg events over the weekends.
B: wow, are you living in game or like that?
A: i gonna make it a big one day .
B: amazing dream, huh?
... (get trapped)

event → game → day → dream → · · ·

Ours

A: cool. do you only live with your parents?
B: yes i do. i also have two dogs myself.
A: ha, i love dogs. but my italian wife doesn’t.
B: not easy. dogs must spend a lot of time outdoors .
A: lol, but she love going to the pet barbershop for pictures.
(succeed to reach the target)

P1: [T] live [T] family [T] outdoor [T] barbershop
P2: [T] dog [T] room [T] outdoor [T] barbershop
P3: [T] wife [T] outdoor [T] barbershop
P4: [T] outdoor [T] barbershop
P5: [T] outdoor [T] barbershop

Table 9: Generated cases from self-play simulations on the TGConv dataset. The compared models include (a)
TopKG and (b) Ours (COLOR w/ DialoGPT).
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