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Abstract

Large pretrained language models have shown
surprising in-context learning (ICL) ability.
With a few demonstration input-label pairs,
they can predict the label for an unseen input
without parameter updates. Despite the great
success in performance, its working mecha-
nism still remains an open question. In this
paper, we explain language models as meta-
optimizers and understand in-context learning
as implicit finetuning. Theoretically, we fig-
ure out that Transformer attention has a dual
form of gradient descent. On top of it, we un-
derstand ICL as follows: GPT first produces
meta-gradients according to the demonstration
examples, and then these meta-gradients are ap-
plied to the original GPT to build an ICL model.
We comprehensively compare the behaviors of
in-context learning and explicit finetuning on
real tasks to provide empirical evidence that
supports our understanding. Experimental re-
sults show that in-context learning behaves sim-
ilarly to explicit finetuning from multiple per-
spectives. Inspired by the dual form between
Transformer attention and gradient descent, we
design a momentum-based attention by analogy
with gradient descent with momentum. The im-
proved performance over vanilla attention fur-
ther supports our understanding from another
perspective, and more importantly, shows the
potential to utilize our understanding for fu-
ture model design. The code is available at
https://aka.ms/icl.

1 Introduction

In recent years, large pretrained language models,
especially in Transformer-based architectures (e.g.,
GPT; Brown et al. 2020), have shown strong emer-
gent in-context learning (ICL) ability (Wei et al.,
2022; Dong et al., 2023). Different from finetuning
which needs additional parameter updates, ICL just
needs several demonstration examples prepended
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Figure 1: According to the demonstration examples,
GPT produces meta-gradients for in-context learning
(ICL) through forward computation. ICL works by ap-
plying these meta-gradients to the model through at-
tention. The meta-optimization process of ICL shares
a dual view with finetuning that explicitly updates the
model parameters with back-propagated gradients.

before the query input, and then the model can pre-
dict labels for unseen inputs. On numerous down-
stream tasks, large GPT models can achieve sur-
prising performance, which even exceeds smaller
models with supervised finetuning. However, al-
though ICL has achieved great performance, its
working mechanism is still an open question to be
investigated.

In this paper, we explain in-context learning as a
process of meta-optimization and analyze connec-
tions between GPT-based in-context learning and
finetuning. Concentrating on the attention mod-
ules, we figure out that the Transformer attention
has a dual form of gradient descent. On top of
it, we propose a novel perspective to explain in-
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context learning: (1) a pretrained GPT serves as
a meta-optimizer; (2) it produces meta-gradients
according to the demonstration examples through
forward computation; (3) the meta-gradients are
applied to the original language model through at-
tention to build an ICL model. As illustrated in
Figure 1, in-context learning and explicit finetun-
ing share a dual view of gradient descent, where
ICL produces meta-gradients through forward com-
putation, while finetuning computes gradients by
back-propagation. Therefore, it is reasonable to un-
derstand in-context learning as implicit finetuning.

In order to provide empirical evidence to sup-
port our understanding, we conduct comprehensive
experiments based on real tasks. On six classi-
fication tasks, we compare the model predictions,
attention outputs, attention weights to query tokens,
and attention weights to training tokens between
in-context learning and finetuning. Experimental
results validate that the behavior of in-context learn-
ing is similar to explicit finetuning from multiple
perspectives. These results are strong evidence
to prove the reasonability of our understanding of
in-context learning as implicit finetuning.

Further, inspired by the dual form between Trans-
former attention and gradient descent, we design
a momentum-based attention, which regards the
attention values as meta-gradients and applies the
momentum mechanism (Polyak, 1964; Sutskever
et al., 2013) to them. Experiments on both lan-
guage modeling and in-context learning show that
our momentum-based attention consistently outper-
forms vanilla attention, which supports our under-
standing of meta-optimization again from another
perspective. We note that beyond this preliminary
attempt, our understanding may have more poten-
tial to enlighten model design, which is worth in-
vestigating in the future.

Our contributions are summarized as follows:

• We figure out a dual form between Trans-
former attention and gradient descent, and ex-
plain ICL as a process of meta-optimization.

• We analyze connections between in-context
learning and explicit finetuning and propose
to understand ICL as implicit finetuning.

• We provide several lines of empirical evidence
to prove that ICL and explicit finetuning be-
have similarly from multiple perspectives.

• We design a momentum-based attention and
validate its effectiveness, which supports our

understanding of meta-optimization again and
shows the potential of our understanding to
enlighten future model design.

2 Background

2.1 In-Context Learning with GPT

In this paper, we focus on ICL for classifica-
tion tasks using GPT (Brown et al., 2020). A
GPT model is stacked with L identical Trans-
former (Vaswani et al., 2017) decoder layers where
each layer consists of an attention module and a
feed-forward network. For a classification task,
given a query input text x and a candidate an-
swer set Y = {y1, y2, . . . , ym}, we need to pre-
dict a label ŷ conditional on n demonstration
examples C = {(x′1, y′1), (x′2, y′2), . . . , (x′n, y′n)},
where (x′i, y

′
i) is an input-label pair different from

the query one. Formally, given a GPT model M,
we first compute the probability of each answer yj :

PM(yj | C, x). (1)

Since the label space is restricted for classifica-
tion, we predict the final answer ŷ by selecting
the answer with the highest probability from the
candidate answer set Y :

ŷ = argmax
yj

PM(yj | C, x). (2)

In practice, we usually use a pre-defined template
to format the demonstrations and prepend them
before the query input. Let T (·) be the function
that formats an example, e.g.:

T (x, y) = Sentence: x. Sentiment: y. (3)

The contextual model input I is organized like

T (x′1, y
′
1) T (x′2, y

′
2) ... T (x′n, y

′
n) T (x, _). (4)

Feeding this contextual input into M, the probabil-
ity of an answer yj is computed as

lj = M(I) · eyj , (5)

PM(yj | C, x) = softmax(lj), (6)

where M(I) denotes the output hidden state at the
last token position; eyj denotes the output word
embedding of yj ; and lj is the logit corresponding
to the j-th answer.
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2.2 Dual Form Between Attention and Linear
Layers Optimized by Gradient Descent

The idea in this paper to explain language models
as meta-optimizers is inspired by Aizerman et al.
(1964); Irie et al. (2022). They present that linear
layers optimized by gradient descent have a dual
form of linear attention. Let W0,∆W ∈ Rdout×din

be the initialized parameter matrix and the update
matrix, respectively, and x ∈ Rdin be the input rep-
resentation. A linear layer optimized by gradient
descent can be formulated as

F(x) = (W0 +∆W )x. (7)

In the back-propagation algorithm, ∆W is com-
puted by accumulating the outer products of his-
toric input representations x′T

i ∈ Rdin and the error
signals ei ∈ Rdout of their corresponding outputs:

∆W =
∑

i

ei ⊗ x′
i, (8)

where ei is derived from the historic output gradi-
ents by multiplying −γ, the negative learning rate.
Combing Equation (7) and Equation (8), we can
derive the dual form of linear layers optimized by
gradient descent:

F(x) = (W0 +∆W )x

=W0x+∆Wx

=W0x+
∑

i

(
ei ⊗ x′

i

)
x

=W0x+
∑

i

ei

(
x′T
i x
)

=W0x+ LinearAttn
(
E,X ′,x

)
,

(9)

where LinearAttn(V,K,q) denotes the linear at-
tention operation, in which we regard the historic
output error signals E as values, the historic inputs
X ′ as keys, and the current input x as the query.

3 Understanding In-Context Learning
(ICL) as Implicit Finetuning

We first qualitatively analyze the Transformer atten-
tion under a relaxed linear attention form to figure
out a dual form between it and gradient descent.
Then, we compare in-context learning with explicit
finetuning to analyze connections between these
two optimization forms. Based on these theoreti-
cal findings, we propose to understand in-context
learning as implicit finetuning.

3.1 Understanding Transformer Attention as
Meta-Optimization

Let x ∈ Rd be the input representation of a query
token t, and q = WQx ∈ Rd′ be the attention
query vector. In the ICL setting, the attention result
of a head is formulated as
FICL(q) = Attn(V,K,q)

=WV [X ′;X] softmax

(
(WK [X ′;X])

T
q√

d

)
,

(10)

where WQ,WK ,WV ∈ Rd′×d are the projection
matrices for computing the attention queries, keys,
and values, respectively;

√
d denotes the scaling

factor; X denotes the input representations of query
tokens before t; X ′ denotes the input representa-
tions of the demonstration tokens; and [X ′;X] de-
notes the matrix concatenation. For ease of qualita-
tive analysis, we approximate the standard attention
to relaxed linear attention by removing the softmax
operation and the scaling factor:

FICL(q) ≈ WV [X ′;X]
(
WK [X ′;X]

)T
q

= WV X (WKX)T q+WV X ′ (WKX ′)T q

= F̃ICL(q).
(11)

We define WZSL = WV X (WKX)T as the ini-
tialized parameters to be updated since WZSLq is
the attention result in the zero-shot learning (ZSL)
setting, where no demonstrations are given. Fol-
lowing the reverse direction of Equation (9), we
derive a dual form of the Transformer attention:
F̃ICL(q) = WZSLq+WV X ′ (WKX ′)T q

=WZSLq+ LinearAttn
(
WV X ′,WKX ′,q

)

=WZSLq+
∑

i

WV x′
i

((
WKx′

i

)T
q
)

=WZSLq+
∑

i

(
(WV x′

i)⊗
(
WKx′

i

))
q

=WZSLq+∆WICLq

=(WZSL +∆WICL)q.

(12)

As shown in the above equations, the attention to
the demonstration tokens is equivalent to param-
eter updates ∆WICL that take effect on WZSL. In
addition, by analogy with E in Equation (9), we
regard WV X

′ as meta-gradients, which are used to
compute the update matrix ∆WICL.

In summary, we explain in-context learning as a
process of meta-optimization: (1) a pretrained GPT
model serves as a meta-optimizer; (2) it produces
meta-gradients according to the demonstration ex-
amples through forward computation; (3) through
attention, the meta-gradients are applied to the orig-
inal language model to build an ICL model.
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3.2 Comparing ICL with Finetuning
Based on the above understanding of in-context
learning, we further compare the meta-optimization
of in-context learning with the explicit optimiza-
tion of finetuning to analyze connections between
them. Considering that ICL directly takes effect
on only the attention keys and values, we design
a specific finetuning setting as the compared base-
line, which also updates only the parameters for the
key and value projection. Also in the relaxed linear
attention form, the attention result of a finetuned
head is formulated as

F̃FT(q) = (WV +∆WV )XXT (WK +∆WK)Tq

= (WZSL +∆WFT)q,
(13)

where ∆WK and ∆WV denote the parameter up-
dates to WK and WV , respectively, which are
acquired by back-propagation from task-specific
training objectives; and ∆WFT is the updates to
WZSL introduced by finetuning.

For a more fair comparison with in-context learn-
ing, we further restrict the finetuning setting as fol-
lows: (1) we specify the training examples as the
demonstration examples for in-context learning;
(2) we train each example for only one step in the
same order as demonstrated for in-context learning;
(3) we format each training example with the same
template used for ICL T (x′i, y

′
i) and use the causal

language modeling objective for finetuning.
Comparing in-context learning and this finetun-

ing setting, we find that ICL has many properties
in common with finetuning. We organize these
common properties into the following four aspects.

Both Perform Gradient Descent Comparing
Equation (12) and Equation (13), we find that both
in-context learning and finetuning introduce up-
dates (∆WICL v.s. ∆WFT) to WZSL, which drive
from implicit and explicit gradient descent, respec-
tively. The main difference is that ICL produces
meta-gradients by forward computation while fine-
tuning acquires real gradients by back-propagation.

Same Training Information The meta-gradients
of ICL are produced according to the demonstration
examples. The gradients of finetuning are also
derived from the same training examples. That is
to say, in-context learning and finetuning share the
same source of training information.

Same Causal Order of Training Examples In-
context learning and our finetuning setting share
the same causal order of training examples. ICL

uses decoder-only Transformers so the subsequent
tokens in the demonstrations will not affect the pre-
ceding ones. For our finetuning setting, we use the
same order of training examples and train only one
epoch, so we can also guarantee that the subsequent
examples have no effect on the preceding ones.

Both Aim at Attention Compared with zero-
shot learning, the direct effect of in-context learn-
ing and our finetuning are both restricted to the
computation of attention keys and values. For ICL,
the model parameters are unchanged and it encodes
demonstration information into additional keys and
values to change the attention behavior. For finetun-
ing, due to our restriction, the training information
can be introduced to only the projection matrices
for attention keys and values as well.

Considering the above common properties be-
tween in-context learning and finetuning, we show
that it is reasonable to understand in-context learn-
ing as implicit finetuning. In the rest of this paper,
we compare ICL and explicit finetuning empirically
from multiple perspectives to provide quantitative
results to support this understanding.

4 Experiments

4.1 Experimental Settings

We analyze two off-the-shelf pretrained GPT mod-
els with 1.3 billion and 2.7 billion model parame-
ters, respectively, which are released by fairseq1.
In the rest of this paper, we call them GPT 1.3B and
GPT 2.7B for short. All experiments are conducted
on NVIDIA V100 GPUs with 32 GB memory.

For each task, we use the same template to for-
mat examples for zero-shot learning (ZSL), fine-
tuning (FT), and in-context learning (ICL). Details
of the templates used for each task are provided
in Appendix A. The answer prediction processes
for ZSL and finetuning are the same with ICL as
described in Section 2.1, except that they do not
have demonstration examples.

For in-context learning, we fix the max num-
ber of demonstration examples to 32 and tune the
random seed for each task to find a set of demon-
stration examples that achieves the best validation
performance. For explicit finetuning, we use the
same demonstration examples for in-context learn-
ing as the training examples and use SGD as the
optimizer. For a fair comparison, we fine-tune the

1https://github.com/facebookresearch/fairseq
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SST2 SST5 MR Subj AGNews CB

# Validation Examples 872 1101 1066 2000 7600 56
# Label Types 2 5 2 2 4 3

ZSL Accuracy (GPT 1.3B) 70.5 39.3 65.9 72.6 46.3 37.5
FT Accuracy (GPT 1.3B) 73.9 39.5 73.0 77.8 65.3 55.4
ICL Accuracy (GPT 1.3B) 92.7 45.0 89.0 90.0 79.2 57.1

ZSL Accuracy (GPT 2.7B) 71.4 35.9 60.9 75.2 39.8 42.9
FT Accuracy (GPT 2.7B) 76.9 39.1 80.0 86.1 65.7 57.1
ICL Accuracy (GPT 2.7B) 95.0 46.5 91.3 90.3 80.3 55.4

Table 1: Statistics of six classification datasets (rows 1-2) and validation accuracy in the zero-shot learning (ZSL),
finetuning (FT), and in-context learning (ICL) settings on these datasets (rows 3-8).

Model SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B 91.84 66.67 97.08 87.17 83.08 87.50 85.56
GPT 2.7B 96.83 71.60 95.83 87.63 84.44 100.00 89.39

Table 2: Rec2FTP for two GPT models on six datasets. From the perspective of model prediction, ICL can cover
most of the correct behavior of finetuning.

model for only one epoch and the training exam-
ples are provided in the same order as demonstrated
for in-context learning. We tune the learning rate
for finetuning and select the one that achieves the
best validation performance. Details of the search
range and selected value for the random seeds and
learning rates are shown in Appendix B.

4.2 Evaluation Datasets

We compare in-context learning and finetuning
based on six datasets spanning three sorts of
classification tasks. SST2 (Socher et al., 2013),
SST5 (Socher et al., 2013), MR (Pang and
Lee, 2005) and Subj (Pang and Lee, 2004) are
four datasets for sentiment classification; AG-
News (Zhang et al., 2015) is a topic classification
dataset; and CB (De Marneffe et al., 2019) is used
for natural language inference. Statistics of the
number of validation examples and label types are
summarized in Table 1.

For reference, we present the validation accuracy
in the ZSL, finetuning, and ICL settings on six
classification datasets in Table 1. Compared with
ZSL, ICL and finetuning both achieve considerable
improvements, which means the optimizations they
make are both helpful to these downstream tasks.

4.3 ICL Covers Most of Correct Predictions
of Finetuning

We compute a recall to finetuning prediction
(Rec2FTP) to measure ICL can cover how much
behavior of finetuning from the perspective of the
model prediction. We first count NFT>ZSL, the
number of query examples that finetuning can pre-
dict correctly but ZSL cannot. Then, among these
examples, we count N(FT>ZSL)∧(ICL>ZSL), the num-
ber that ICL can also predict correctly. Finally, we
compute the Rec2FTP score as

N(FT>ZSL)∧(ICL>ZSL)
NFT>ZSL

.
A higher Rec2FTP score suggests that ICL cov-
ers more correct behavior of finetuning from the
perspective of the model prediction.

We show the Rec2FTP scores for two GPT mod-
els on six datasets in Table 2. As shown in the table,
on average, ICL can correctly predict more than
85% of the examples that finetuning can correct
from ZSL. These results indicate that from the per-
spective of model prediction, ICL can cover most
of the correct behavior of finetuning.

4.4 ICL Tends to Change Attention Outputs
in the Same Direction as Finetuning

From the perspective of representation, we com-
pute a similarity of the attention output updates
(SimAOU) to measure the similarity between the
updates that ICL and finetuning make. For a query
example, let h(l)

X denote the normalized output rep-
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Model Metric SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B
SimAOU (Random ∆) 0.002 0.003 0.001 0.002 0.002 0.003 0.002
SimAOU (∆FT) 0.110 0.080 0.222 0.191 0.281 0.234 0.186

GPT 2.7B
SimAOU (Random ∆) 0.000 -0.002 0.000 0.001 -0.002 0.000 -0.001
SimAOU (∆FT) 0.195 0.323 0.157 0.212 0.333 0.130 0.225

Table 3: SimAOU for two GPT models on six datasets. ICL updates are much more similar to finetuning updates
than to random updates. From the perspective of representation, ICL tends to change attention output representations
in the same direction as finetuning changes.

Model Metric SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B
SimAM (Before Finetuning) 0.555 0.391 0.398 0.378 0.152 0.152 0.338
SimAM (After Finetuning) 0.585 0.404 0.498 0.490 0.496 0.177 0.442

GPT 2.7B
SimAM (Before Finetuning) 0.687 0.380 0.314 0.346 0.172 0.228 0.355
SimAM (After Finetuning) 0.687 0.492 0.347 0.374 0.485 0.217 0.434

Table 4: SimAM for two models on six datasets. From the perspective of attention behavior, compared with attention
weights before finetuning, ICL is more inclined to generate similar attention weights to those after finetuning.

resentation of the last token at the l-th attention
layer in setting X. The updates of ICL and fine-
tuning compared with ZSL are h

(l)
ICL − h

(l)
ZSL and

h
(l)
FT − h

(l)
ZSL, respectively. We compute the cosine

between these two updates to get SimAOU (∆FT)
at the l-th layer. A higher SimAOU (∆FT) means
ICL is more inclined to update the attention output
in the same direction as finetuning. For comparison,
we also compute a baseline metric called SimAOU
(Random ∆) that computes the similarity between
ICL updates and randomly generated updates.

We present the SimAOU scores averaged across
examples and layers for two GPT models on six
datasets in Table 3. From the table, we find
that SimAOU (Random ∆) is always around zero,
while SimAOU (∆FT) remains much more positive.
These results indicate that ICL updates are much
more similar to finetuning updates than to random
updates. From the perspective of representation,
we prove that ICL tends to change the attention
outputs in the same direction as finetuning.

4.5 ICL Is Inclined to Generate Similar
Attention Weights to Finetuning

From the perspective of attention behavior, we com-
pute a similarity of the attention map (SimAM)
to measure the similarity of the attention map to
query tokens for ICL and finetuning. For a query
example, let m(l,h)

X denote the attention weights be-
fore softmax of the last token at the h-th attention

head in the l-th attention layer in setting X. For ICL,
we omit the attention to the demonstration tokens
and only monitor the attention weights to the query
tokens. First, before finetuning, we compute the
cosine between m

(l,h)
ICL and m

(l,h)
ZSL and then average

the similarity across attention heads to get SimAM
(Before Finetuning) at each layer. Similarly, after
finetuning, we compute the cosine between m

(l,h)
ICL

and m
(l,h)
FT to get SimAM (After Finetuning). A

higher SimAM (After Finetuning) over SimAM
(Before Finetuning) indicates that the attention be-
havior of ICL is more similar to a finetuned model
than a non-finetuned one.

Table 4 demonstrates the SimAM scores aver-
aged across examples and layers for two GPT mod-
els on six datasets. We observe that compared with
attention weights before finetuning, ICL is more
inclined to generate similar attention weights to
attention weights after finetuning. Again, from the
perspective of attention behavior, we prove that
ICL behaves similarly to finetuning.

4.6 ICL and Finetuning Tend to Pay Similar
Attention to Training Tokens

Since we understand ICL as a process of meta-
optimization, we also compare the attention to
training tokens for ICL and finetuning with the
Kendall rank correlation coefficient (Kendall,
1948). For a query example, let m(l)

ICL denote the
ICL attention weights to the demonstration tokens
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Model Metric SST2 SST5 MR Subj AGNews CB Average

GPT 1.3B
Kendall (ICL, Random) 0.000 -0.001 0.000 0.001 -0.001 0.000 0.000
Kendall (ICL, FT) 0.192 0.151 0.173 0.181 0.190 0.274 0.193

GPT 2.7B
Kendall (ICL, Random) -0.001 0.000 0.000 0.000 0.000 -0.001 0.000
Kendall (ICL, FT) 0.213 0.177 0.264 0.203 0.201 0.225 0.214

Table 5: Kendall rank correlation coefficients for two GPT models on six datasets. Compared with random attention
weights, ICL attention weights to training tokens are much more similar to finetuning attention weights.

of the last query token in the l-th attention layer,
which is summed across attention heads. For fine-
tuning, we first record all the attention queries
Q′(l,h) ∈ Rd′×N of the training tokens, and then
use the inner product between them and the atten-
tion query q(l,h) ∈ Rd′ of the last token in the
query example as the finetuning attention weights

to the training tokens: m(l)
FT =

∑
hQ

′(l,h)Tq(l,h),
which is also summed across attention heads. The
Kendall coefficient between m

(l)
ICL and m

(l)
FT is com-

puted as Kendall (ICL, FT) = Pc−Pd
N(N−1)/2 , where

N denotes the number of training tokens, Pc de-
notes the number of concordant pairs, and Pd de-
notes the number of discordant pairs. A higher
Kendall coefficient means that the orders of atten-
tion weights to training tokens of ICL and finetun-
ing are more similar. For comparison, we also com-
pute the Kendall coefficient between m

(l)
ICL and ran-

domly generated attention weights m(l)
Random, which

we call Kendall (ICL, Random).

Table 5 shows the Kendall correlation coeffi-
cients averaged across examples and layers for two
GPT models on six datasets. We find that Kendall
(ICL, Random) is always near zero, while Kendall
(ICL, FT) always maintains a distinctly positive
value. These results suggest that ICL and finetun-
ing tend to pay similar attention to training tokens.

5 Momentum-Based Attention Inspired
by Dual Form of Transformer Attention

We have figured out the dual form between Trans-
former attention and gradient descent. As illus-
trated in Figure 2, inspired by this dual view,
we investigate whether we can utilize momen-
tum (Polyak, 1964; Sutskever et al., 2013), a widely
used technique for optimization algorithms, to im-
prove Transformer attention.

Gradient descent with momentum averages gra-

Momentum-Based
Attention

Gradient Descent

Gradient Descent 
with Momentum

Attention
(Dual Form)

(Analogy)

Figure 2: Inspired by the dual form between atten-
tion and gradient descent, we introduce the momentum
mechanism into Transformer attention by analogy with
gradient descent with momentum.

dients among timestamps:

Θt = Θt−1 − γ

t−1∑

i=1

ηt−i∇fΘi , (14)

where γ is the learning rate and η is a scalar be-
tween 0 and 1. As stated in Section 3.1, the atten-
tion values serve as meta-gradients. By analogy
with gradient descent with momentum, we try to
use Exponential Moving Average (EMA; Hunter
1986) to average the attention values to build the
momentum-based attention:

MoAttn(V,K,qt) = Attn(V,K,qt) + EMA(V )

= V softmax(
KTqt√

d
) +

t−1∑

i=1

ηt−ivi,

where vi is the i-th attention value vector. The
momentum of attention value vectors explicitly
strengthens the recency bias of attention, which has
been shown helpful for language modeling (Press
et al., 2022). Therefore, we assume that introducing
momentum into attention will contribute to faster
convergence and better performance.

Experiments on Language Modeling First, we
evaluate the effect of momentum-based attention
on language modeling. We train two GPT models
with 350M parameters from scratch, where one is
the vanilla Transformer, and another applies mo-
mentum to attention. More training details are pro-
vided in Appendix C. We evaluate the perplexity
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Model Train1024 Valid256 Valid512 Valid1024

Transformer 17.61 19.50 16.87 15.14
TransformerMoAttn 17.55 19.37 16.73 15.02

Table 6: Perplexity on the training set and validation sets with different input lengths for language modeling.
Momentum-based attention achieves a consistent perplexity improvement compared with the vanilla Transformer.

Model SST5 IMDB MR CB ARC-E PIQA Average

Transformer 25.3 64.0 61.2 43.9 48.2 68.7 51.9
TransformerMoAttn 27.4 70.3 64.8 46.8 50.0 69.0 54.7

Table 7: Accuracy on six in-context learning datasets. Introducing momentum into attention improves the accuracy
of the vanilla Transformer by 2.8 on average.

of these two models on the training set and three
validation sets with input lengths of 256, 512, and
1024, respectively. The results are shown in Table 6.
On all of the validation sets, applying momentum
to attention introduces a consistent perplexity im-
provement compared with the vanilla Transformer.

Experiments on In-Context Learning We also
evaluate the in-context learning ability of the above
language models to verify the effectiveness of
momentum-based attention on downstream tasks.
We consider six datasets for sentiment analysis
(SST5 (Socher et al., 2013), IMDB (Maas et al.,
2011), and MR (Pang and Lee, 2005)), natural lan-
guage inference (CB (De Marneffe et al., 2019)),
and multi-choice selection (ARC-E (Clark et al.,
2018) and PIQA (Bisk et al., 2020)). For all of
these datasets, we use up to 32 examples as demon-
strations. As shown in Table 7, compared with
vanilla Transformer, using momentum-based atten-
tion achieves consistently higher accuracy on all of
these datasets.

The performance improvements on both lan-
guage modeling and in-context learning prove our
deduction that introducing momentum will im-
prove Transformer attention. From another perspec-
tive, these results further support our understanding
of Transformer attention as meta-optimization.

6 Related Work

Recently, some pieces of work have attempted to
understand the inference mechanism of in-context
learning. Xie et al. (2022) explain in-context learn-
ing as implicit Bayesian inference. They state that
in-context learning emerges when language mod-
els can infer the shared latent concept among the
demonstration examples, which is learned during

pretraining. On another aspect, Olsson et al. (2022)
focus on specific modules in Transformers. They
find some induction heads in Transformers that re-
fer to abstract patterns in previous sequences to
help predict the next token. They indicate that
the induction heads drive the ability of in-context
learning. Different from them, we concentrate on
the learning algorithm of ICL and explain it as a
process of meta-optimization.

Some other work also studies the learning algo-
rithm of ICL. As a case study, Garg et al. (2022)
show that Transformers can be trained to in-context
learn a class of linear functions and the perfor-
mance is comparable to the least squares estimator.
Based on linear regression, Akyürek et al. (2022)
prove that they can construct parameters of Trans-
formers to implement gradient-descent-based learn-
ing algorithms. Further, they show that models
trained with an in-context learning objective tend
to match the behavior of models computed by ex-
plicit learning algorithms. Also based on regres-
sion tasks, von Oswald et al. (2022) show that lin-
ear attention-only Transformers with constructed
parameters that implement gradient descent and
models learned by an in-context learning objective
are highly related. Compared with them, we are
the first ones to explain in-context learning in real
scenarios. To be specific, (1) we analyze in-context
learning for off-the-shelf GPT models, instead of
models trained from scratch by an ICL objective;
(2) our experiments are based on real NLP tasks,
instead of toy ones like linear regression.

7 Conclusion

In this paper, we aim to explain the working mech-
anism of GPT-based ICL. Theoretically, we figure
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out a dual form between Transformer attention and
gradient descent, and propose to understand ICL
as a process of meta-optimization. Further, we
analyze connections between ICL and explicit fine-
tuning and show the reasonability to regard ICL as
implicit finetuning. Empirically, we comprehen-
sively compare ICL and finetuning based on six
real NLP tasks. The results prove that ICL behaves
similarly to explicit finetuning from multiple per-
spectives. Further, inspired by our understanding of
meta-optimization, we design a momentum-based
attention that achieves consistent performance im-
provements over vanilla attention. We believe our
understanding will have more potential to enlighten
ICL applications and model design in the future.

Limitations

Although the ability of in-context learning has been
found for different architectures (e.g., Transformer
and LSTM), we consider only Transformer-based
in-context learning in this paper because Trans-
former is the current mainstream architecture of
NLP. However, as for in-context learning itself, fig-
uring out how it works for other architectures is
also a meaningful problem, which we encourage to
study in the future.

As for the dual form we point out between Trans-
former attention and gradient descent, we consider
a relaxed form of linear attention for qualitative
analysis. Although the experimental results sup-
port our understanding well, the mechanism of stan-
dard Transformer attention without approximation
may be more complex and should be studied more
clearly in the future.

As for empirical experiments, our analysis needs
to record a large number of intermediate results
(e.g., attention output representations, and atten-
tion weights to query tokens and demonstration
tokens) for thousands of validation examples. Con-
sidering the storage space and computational cost
of analysis, we only analyze GPT models with up
to 2.7B parameters and leave larger models such as
GPT 13B for future work. In addition, for the clar-
ity of the problem definition and the convenience
of experiments, our analysis is based on only clas-
sification tasks. Although classification is a repre-
sentative application of in-context learning, other
tasks like multiple choice and open-ended genera-
tion are not considered in this paper and could be
investigated in the future.
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Appendix

A Templates for In-Context Learning

We demonstrate the templates used to format exam-
ples and the candidate answer sets for six classifi-
cation datasets used in our experiments in Table 8.

B Hyper-Parameters for In-Context
Learning and Finetuning

We perform grid search to find the best random seed
for ICL and the best learning rate for finetuning.
The search range for all the datasets is the same.
For random seeds, we search in {1, 2, 3, 4, 5, 6, 7}.
For learning rates, the search base values are
{1, 2, 3, 4, 5, 6, 7, 8, 9} and we scale them to 0.1,
0.01, 0.001, and 0.0001 times, i.e., we have 9×4 =
36 values to search. As an exception, for GPT 1.3B
finetuned on SST5, we perform a more fine-grained
search and finally set its learning rate to 0.00016
since the finetuned model cannot outperform the
zero-shot learning with the above 36 learning rates.

In Table 9, we present the details of the selected
random seeds and learning rates for two GPT mod-
els on six classification datasets.

C Hyper-Parameters for Training
Language Models from Scratch

The hyper-parameters for training two language
models from scratch are summarized in Table 10.
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Dataset Template Candidate Answer Set

SST2 Sentence: {Sentence} { Negative, Positive }
Label: {Label}

SST5 Sentence: {Sentence} { terrible, bad, neutral, good, great }
Label: {Label}

MR Review: {Sentence} { Negative, Positive }
Sentiment: {Label}

Subj Input: {Sentence} { objective, subjective }
Type: {Label}

AGNews Classify the news articles into the categories
of World, Sports, Business, and Technology.

{ World, Sports, Business, Technology }

News: {Sentence}
Type: {Label}

CB {Premise} { True, False, Neither }
Question: {Hypothesis} True, False, or Nei-
ther?
Answer: {Label}

Table 8: Formatting templates and candidate answer sets for six classification datasets.

Hyper-Parameter Dataset GPT 1.3B GPT 2.7B

Random Seed

SST2 2 7
SST5 5 5
MR 5 1
Subj 4 4
AGNews 3 3
CB 3 3

Learning Rate

SST2 0.0005 0.007
SST5 0.00016 0.04
MR 0.003 0.001
Subj 0.003 0.002
AGNews 0.2 0.2
CB 0.08 0.01

Table 9: Selected random seeds and learning rates for two GPT models on six classification datasets.
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Hyper-parameter Value

Embedding & Hidden Dimension 1024
FFN Inner Hidden Dimension 4096
Number of Attention Heads 16
Number of Transformer Layers 24
Number of Parameters 350M

Sequence Length 1024
Batch Size 512K Tokens

Optimizer Adam
Adam Betas (0.9, 0.98)
Adam Epsilon 1e-6
Maximum Learning Rate 3e-4
Learning Rate Scheduler Polynomial Decay
Total Training Steps 500K
Warm-up Steps 20K
Gradient Clip Norm 2.0

Table 10: Hyper-parameters for training two language models from scratch.
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