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Abstract

State-of-the-art approaches to identifying of-
fensive language online make use of large pre-
trained transformer models. However, the infer-
ence time, disk, and memory requirements of
these transformer models present challenges for
their wide usage in the real world. Even the dis-
tilled transformer models remain prohibitively
large for many usage scenarios. To cope with
these challenges, in this paper, we propose
transferring knowledge from transformer mod-
els to much smaller neural models to make pre-
dictions at the token- and at the post-level. We
show that this approach leads to lightweight
offensive language identification models that
perform on par with large transformers but
with 100 times fewer parameters and much less
memory usage.

1 Introduction

The presence of offensive content in social media
has been linked to suicide attempts and ideation in
teenagers, psychological stress, and other undesir-
able consequences to users (Bannink et al., 2014;
Saha et al., 2019). This motivated researchers to
develop models to identify offensive content auto-
matically. There have been several recent studies
published on identifying different types of offen-
sive content such as profanity (Holgate et al., 2018;
Sarkar et al., 2021), pejorative language (Dinu
et al., 2021), abuse (Koufakou et al., 2020), hate
speech (Davidson et al., 2017; Mathew et al., 2021),
cyber-bullying (Paul and Saha, 2020), and toxic-
ity (Ranasinghe and Zampieri, 2021). While most
studies on this topic deal with the identification
of offensive content at the post level, recent work
(Mathew et al., 2021) has addressed the identifica-
tion of offensive tokens in posts along with their
targets (Zampieri et al., 2023), which can assist
human moderators (e.g., news portals moderators)
who often review lengthy comments (Pavlopoulos
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et al., 2021; Weerasooriya et al., 2023). Overall,
both token-level and sentence-level tasks are im-
portant to real-world applications.

Recent international competitions on the topic,
such as OffensEval (Zampieri et al., 2019b), HatE-
val (Basile et al., 2019) and HASOC (Modha et al.,
2021; Satapara et al., 2023), have shown that large
pre-trained transformer models such as BERT (De-
vlin et al., 2019), and XLNet (Yang et al., 2019)
deliver state-of-the-art performance in offensive
language identification at both sentence and token
levels. However, the models based on transform-
ers have an extremely large number of parameters
and are well-known for demanding computing re-
sources such as disk and RAM. This makes infer-
ence time slow, posing challenges for real-time
inference and their deployment in the real world.

Making models smaller and more usable in prac-
tice is an active area in machine learning and NLP
(Tay et al., 2022). One approach is Knowledge
Distillation (KD) which aims to extract knowledge
from a top-performing large model (the teacher)
into a smaller, yet well-performing model (the stu-
dent) (Gou et al., 2021). The student model is
ideally a model which is less demanding in terms
of memory print, computing power and with lower
prediction latency. DistilBERT is such an example
where KD has been used to create smaller language
models (Sanh et al., 2019). The search for compu-
tational efficiency is in line with several initiatives
such as Green AI (Schwartz et al., 2020) and the
ACL’s Efficient NLP policy.1

In this paper, we perform a detailed evaluation
of performing KD in offensive language identifi-
cation. First, we evaluate KD in sentence-level
offensive language detection. Previous attempts
for KD in text classification propose to use com-
putationally augmented synthetic data (Tang et al.,
2019) to address data scarcity (Rizos et al., 2019).

1https://www.aclweb.org/adminwiki/images/7/7e/
ACL_Efficient_NLP_Policy.pdf
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We address this limitation by using a very large
offensive language identification dataset in the KD
process. Secondly, we evaluate KD in token-level
offensive language identification. We introduce
a novel way to perform KD at the token level by
using the Viterbi algorithm (Viterbi, 1967).

In both sentence-level and token-level, we show
that smaller student models deliver results on par
with KD despite requiring fewer computing re-
sources, and interestingly smaller student models
outperform machine learning models based on dis-
tilled transformers such as DistilBERT. To the best
of our knowledge, this is the first comprehensive
KD research applied to offensive language online
opening exciting new avenues for research in this
area. The findings of this research will be bene-
ficial not only to offensive language research but
also to a wide range of related social media tasks,
such as sentiment analysis and fake news detection.

The contributions of this paper are as follows:

1. An empirical evaluation of KD in sentence-
level offensive language identification us-
ing multiple teachers and large real-world
datasets.

2. A novel method to perform KD in word-level
offensive language identification using the
Viterbi algorithm.

3. The release of a novel version of SOLID
(Rosenthal et al., 2021) with both sentence-
level labels and token-level teacher scores.

4. The release of the models made freely avail-
able to the research community, which are
high-performing and competitive with large
transformer models, yet lightweight machine
learning models for multilingual offensive lan-
guage identification2.

2 Related Work

Post-level Offensive Language Identification
There is growing interest in the development of
computational models to identify offensive content
online. Early approaches relied on feature engineer-
ing combined with traditional machine learning
classifiers, most notably, Naive Bayes and SVMs
(Xu et al., 2012; Dadvar et al., 2013; Malmasi and
Zampieri, 2018). More recently, neural networks
have proved to outperform traditional machine

2https://github.com/tharindudr/DistilOffense

learning methods on most available benchmark
datasets (Aroyehun and Gelbukh, 2018; Modha
et al., 2018). The impact of the neural networks in
offensive language identification has been signifi-
cant with the introduction of BERT (Devlin et al.,
2019). Transformer models such as BERT (Devlin
et al., 2019), and XLNet (Yang et al., 2019) have
been applied to offensive language identification
at the sentence level topping the leaderboards in
recent shared tasks (Liu et al., 2019; Ranasinghe
et al., 2019). The success of BERT models in
this task has motivated the development of high-
performing task-specific models such as fBERT
(Sarkar et al., 2021) and HateBERT (Caselli et al.,
2021).

Token-level Offensive Language Identification
Similar to the sentence-level (Sarkar et al., 2021)
transformer models have provided state-of-the-art
results at the token-level as well. This is fur-
ther confirmed by several transformer-based open-
source frameworks, such as MUDES (Ranasinghe
and Zampieri, 2021) that have been released to per-
form token-level offensive language identification.
However, even though transformers provide state-
of-the-art results, in terms of inference efficiency,
their running time is still considerably higher than
other neural network architectures. While token-
level offensive language models can assist hu-
man moderators and improve the explainability
of the sentence-level models, there are not many
datasets annotated at the token-level. As far as we
know, there are only a few English datasets with
token-level, namely HateXplain (Mathew et al.,
2021), TSD (Pavlopoulos et al., 2021), and TBO
(Zampieri et al., 2023) - the first two are used in this
research. The lack of post-level annotated data for
this task is mainly due to the fact that token-level
labels are more expensive to annotate. Therefore,
we believe that our approach to leverage unlabeled
data in token-level offensive language identifica-
tion will be beneficial to the community.

Knowledge Distillation KD enables the transfer
of knowledge from a large model to a smaller “stu-
dent” network, which is improved in the process
(Ba and Caruana, 2014). In NLP, KD has previ-
ously been used in neural machine translation (Yu
et al.), language modelling (Kim and Rush, 2016),
paraphrase detection (Tang et al., 2019) and trans-
lation quality estimation (Gajbhiye et al., 2021).
These studies have explored the effect of having
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Figure 1: Knowledge Distillation strategy with data augmentation and filtering based on teacher uncertainty.

multiple teachers (Wu et al., 2021; Liu et al., 2020)
and teacher uncertainty (Mukherjee and Awadallah,
2020). As discussed in the introduction, sentence-
level offensive language identification is essentially
a text classification problem. Previous research for
KD in text classification has used synthetic data
augmentation (Tang et al., 2019). However, pro-
ducing high quality synthetic data for social media
downstream tasks is a challenge (Rizos et al., 2019)
as social media texts are non-standard, containing
emojis, hashtags and specific words that do not ap-
pear in more standard general domain texts (e.g.
news). In this research, we address this gap by
proposing a KD process based on a non-synthetic
data augmentation process using a SOLID (Rosen-
thal et al., 2021), large offensive language identifi-
cation dataset.

3 Methods

Figure 1 summarizes our teacher and student ap-
proach. We follow two different approaches for
sentence-level and token-level described in the next
sub-sections.

3.1 Sentence-level Approach

The following components are included in the
sentence-level KD process.

Gold Datasets We used two different English
gold datasets to train the teacher models.

i OLID (Zampieri et al., 2019a) is the official
dataset of the SemEval-2019 Task 6 (OffensE-
val) (Zampieri et al., 2019b). It contains data
from Twitter annotated with a three-level hier-
archical annotation in which level A classifies
posts into offensive and not offensive. We used
the level A in OLID as our offensive language
identification task.

ii HASOC (Mandl et al., 2020) is the dataset
used in the HASOC shared task 2020. It con-
tains posts retrieved from Twitter and Facebook.

The upper level of the annotation taxonomy
used in HASOC is hate-offensive and non hate-
offensive. We used these labels as our offensive
language identification task for HASOC.

The process described next is repeated for both
gold datasets.

Training Teachers For the teacher models, we
use three pre-trained, fine-tuned transformer mod-
els: BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019) and fBERT (Sarkar et al., 2021). They
have achieved state-of-the-art results on a variety
of offensive language identification tasks. From
an input sentence, transformers compute a feature
vector h ∈ Rd, upon which we build a classi-
fier for the task. For this task, we implemented
a softmax layer, i.e., the predicted probabilities
are y(B) = softmax(Wh), where W ∈ Rk×d is
the softmax weight matrix, and k is the number of
labels. We employed a batch-size of 16, Adam op-
timiser with learning rate 2e−5, and a linear learn-
ing rate warm-up over 10% of the training data.
During the training process, the parameters of the
transformer model, as well as the parameters of the
subsequent layers, were updated. The models were
trained using only training data. Furthermore, they
were evaluated while training using an evaluation
set that had one fifth of the rows in training data.
We performed early stopping if the evaluation loss
did not improve over three evaluation steps. All the
models were trained for three epochs.

Teacher Knowledge Transfer In order to extract
the knowledge from the teacher models, we used
the tweets from another offensive language iden-
tification dataset: SOLID (Rosenthal et al., 2021).
SOLID is a recently released large dataset created
using OLID’s general annotation model but using
semi-supervised learning instead of manually anno-
tated labels containing over 1.4 million offensive
English tweets. Since HASOC follows a slightly
different annotation taxonomy (hate-offensive vs
non hate-offensive), instead of using the semi-
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supervised labels provided in SOLID, we used our
pre-trained teacher models from step 1 to predict
the labels for the tweets in SOLID. Furthermore,
this approach can provide a general KD solution to
a wide range of tasks that follows different annota-
tion taxonomies other than OLID. For each tweet
in SOLID, the teacher models predict the labels
and the confidence of the label, which is useful for
the next step. We report the results on three teacher
models. In order to compare the efficiency of us-
ing multiple teachers to a single-teacher model, we
also considered a scenario where there is only one
teacher model. We trained a BERT model on three
different random seeds and performed the same
steps mentioned above. We did not consider hav-
ing more than three teachers as training teachers
requires more computational power.

Teacher Model Configurations We used a
NVIDIA RTX A6000 48GB GPU to train the
teacher models. We divided the dataset into a train-
ing set and a validation set using 0.8:0.2 split. For
the teacher models, we used the same set of configu-
rations mentioned in Table 1 in all the experiments.
We performed early stopping if the validation loss
did not improve over 10 evaluation steps. All the
experiments were conducted for three times and
the mean value is taken as the final reported result.

Parameter Value
adam epsilon 1e-8
batch size 64
epochs 3
learning rate 1e-5
warmup ratio 0.1
warmup steps 0
max grad norm 1.0
max seq. length 256
gradient accumulation steps 1

Table 1: Teacher Parameter Specifications.

Filtering and Augmentation In this step, we
augment the gold training set with the texts from
SOLID and with the pseudo-labels provided by the
teachers for tweets in SOLID, to aid in effective
knowledge distillation. However, the benefits of
data augmentation can be hampered by noise in
teacher predictions. Therefore, we perform a filter-
ing process to filter out noisy examples in SOLID
based on teacher uncertainty. We calculated the
standard deviation of the confidence of the teacher

models for the positive class, which corresponds
to the uncertainty of the teacher models. We used
different threshold values for teacher uncertainty
to understand the behaviour of the student models
with teacher confidence. We repeated this process
for one teacher model scenario, too, where we had
three teacher models from BERT in different ran-
dom seeds.

(i) The BiLSTM student model for offensive language identifi-
cation. The labels are (a) input embeddings, (b,c) two BiLSTM
layers, (d, e) fully-connected layers; (f) softmax activation, and
(g) final probabilities.

(ii) The 1DCNN student model for offensive language identifi-
cation. The labels are (a) input embeddings, (b) 1DCNN, (c)
max pooling, (d, e) fully-connected layer; (f) with dropout, (g)
softmax activation, and (h) final probabilities.

(iii) The 2DCNN student model for offensive language iden-
tification. The labels are (a) input embeddings, (b) spatial
dropout, (c, d) four parallel 2DCNN layers with connected
pooling layers, (e) concatenation layer, (f) dropout, (g) fully-
connected layer; (h) softmax activation, and (i) final probabili-
ties.

Figure 2: Graphic representations of the student models
based on BiLSTM, 1DCNN, and 2DCNN.
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Model Parameter Value

BiLSTM
First dense layer units 256
LSTM units 64
vocab size 3,000

1DCNN

Conv1D filters 128
Conv1D kernel size 5
Dropout 0.2
First dense layer units 256
MaxPooling1D pool size 5
vocab size 3,000

2DCNN

Conv2D filters 32
Conv2D kernel sizes [(1, 2, 3, 5), 300]
Dropout 0.2
Spatial Dropout 0.4
MaxPool2D kernel size [(256, 257, 258, 260), 1]
Vocab size 3,000

Table 2: BiLSTM, 1DCNN, and 2DCNN student parameter specifications.

Training Students We trained three simple and
lightweight student networks; BiLSTM (Figure 2i),
1DCNN Figure( 2ii) and 2DCNN (Figure 2iii) on
the augmented dataset. We employed a batch-size
of 16, Adam optimiser with learning rate 1e−4,
and we used Google word2vec embeddings. The
student models were trained for ten epochs and
performed early stopping if the loss did not improve
on a validation set that had one-fifth of the rows in
training data.

Student Model Configurations We used a
NVIDIA RTX A6000 48GB GPU to train the stu-
dent models. We divided the dataset into a training
set and a validation set using 0.8:0.2 split. We per-
formed early stopping if the validation loss did not
improve over 10 evaluation steps. For all the exper-
iments we used a batch size of 64, max seq. length
of 256, learning rate of 1e-4 and 20 epochs in the
training process. Individual configuration for the
student models; BiLSTM, 1DCNN and 2DCNN
are available on Table 2. All the experiments were
conducted for three times and the mean value is
taken as the final reported result.

Baseline We also trained a lightweight trans-
former model; DistilBERT (Sanh et al., 2019) on
the augmented dataset, which we used the baseline
to compare the student models. The configuration
of the DistilBERT is similar to the teacher models.
Following Gajbhiye et al. (2021), we do not train
the large teacher models on the augmented dataset
as it can consume a lot of resources.

3.2 Token-level Approach
Gold Datasets We used two English gold
datasets to train the teacher models in at the token-
level.

i TSD was released within the scope of SemEval-
2021 Task 5: Toxic Spans Detection for English
(Pavlopoulos et al., 2021). The dataset con-
tains 10,000 posts (comments) from the pub-
licly available Civil Comments dataset (Borkan
et al., 2019). If a post is toxic, it has been
annotated for its toxic spans.

ii HateX (Mathew et al., 2021) was also used as
a gold dataset at the token level. The dataset
contains 11535 training and 3844 testing in-
stances from GAB and Twitter. We only used
the word-level annotations, where if a instance
is labelled as offensive or hatespeech, each to-
ken is labelled whether it contributes to the
sentence-level label or not.

The process described next is repeated for both
gold datasets.

Training Teachers For the teacher models in
token level, we use three pre-trained, fine-tuned
transformer models: BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019) and RoBERTa (Sarkar
et al., 2021). As mentioned before, these mod-
els have achieved state-of-the-art performance in
token-level offensive language detection. We used
the default token classification architecture of the
transformer models. All the configurations were
similar to the sentence-level teacher models.
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Figure 3: The Macro F1 scores of the student models with different teacher uncertainty levels on both datasets

Teacher Knowledge Transfer In order to extract
the knowledge from the teacher models, we used
the tweets SOLID (Rosenthal et al., 2021). While
SOLID contains sentence-level semi-supervised
labels on OLID level A, it does not have token-level
labels. Therefore, we used our pre-trained teacher
models from the previous step to predict the labels
for the tweets in SOLID. For each tweet’s token
in SOLID, the teacher models predict the labels
and the confidence of the label. As we have three
teachers, we used the mean confidence value to
represent the confidence of a single token.

Augmentation The data augmentation step in
the token-level is different from the sentence-level
because each unique combination of the output se-
quence is treated as a different category, then the
standard distillation objective is no longer appro-
priate as the number of unique combinations for a
length L sequence with offensive and non offensive
labels scale at 2L. Therefore, we followed a differ-
ent approach with k-best Viterbi decoding, which
can find the top-K sequences that are most proba-
ble. Our motivation is that the k-best Viterbi can be
repurposed to pick out the K-most probable label
sequences predicted by the teacher model. Our ap-

proach extracts information from the teacher mod-
els by drawing a set of most probable sequences,
together with the respective confidence to those
sequences. Then these sequences are augmented
to the training sets of the students. We selected
top-1 and (top-1+top-2) sequences to augment the
dataset. We repeated this process for one teacher
model scenario where we had three teacher models
from BERT in different random seeds.

Training Students We trained two simple and
lightweight student networks at token level; BiL-
STM model with (i) an input embedding layer,
(ii) a bidirectional LSTM layer with 64 units, fol-
lowed by (iii) a linear chain conditional random
field (CRF) (Lafferty et al., 2001), 1DCNN model
with (i) an input embedding layer, (ii) a bidirec-
tional CNN with a kernel size of five, followed by
(iii) a fully connected layer. We employed a batch-
size of 16, Adam optimiser with learning rate 1e−4,
and we used Google word2vec embeddings. The
student models were trained for 25 epochs and per-
formed early stopping if the loss did not improve
a validation set that had one-fifth of the rows in
training data.
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Baseline Similar to the sentence-level baseline,
we trained DistilBERT (Sanh et al., 2019) as a
token classification task on the augmented dataset.

4 Results and Discussion

4.1 Sentence-level Offensive Language
Detection

With the sentence-level experiments, we answer
the following research questions:

• RQ1 How do different student models behave
with different confidence levels of the teacher
models?

• RQ2 Can student models perform competi-
tively with teacher models at sentence-level?

Figure 3 shows the Macro F1 scores of different
teacher confidence values that were used to filter
the SOLID before augmenting with the gold train-
ing set.

As can be seen in the figure, F1 score of the
student improves with KD process. However, after
a certain teacher uncertainty value, student model
performance seems to plateau and does not further
improve despite having more training examples.
This is expected as teacher uncertainty causes noisy
training instances. This is true for both datasets.
2DCNN model provided the best results of the
three student models we considered. Dotted lines
in Figure 3 show the results of the KD with one
teacher for each student model. It is clear that our
KD approach with three teachers provided better
results than one teacher. This is also true for both
datasets we experimented with. With this analysis,
we can answer our RQ1, student models improve
only for a certain teacher uncertainty level, and
performing further KD with less confident teacher
predictions would not improve the student models.
Furthermore, having three teachers provides better
results than having one teacher in the KD process.
This corroborates the findings of previous research
involving multiple teachers (Gajbhiye et al., 2021;
Sun et al., 2019).

Table 3 shows the Macro F1 scores for the
teacher models, student models and student models
after performing KD in both gold datasets. Addi-
tionally, we also report the results for DistilBERT
with KD and without KD. The F1 scores for the
student models do not reach the performance of
Teacher models such as BERT. Smaller models
may lack representation power for modelling tasks

Type Model OLID HASOC

Teachers
BERT 0.8174 0.7585
XLNet 0.8125 0.7592
fBERT 0.8101 0.7511

Students

BiLSTM (3T) 0.7998 0.7302
1DCNN (3T) 0.8045 0.7472
2DCNN (3T) 0.8082 0.7487
BiLSTM (1T) 0.7712 0.7154
1DCNN (1T) 0.7841 0.7298
2DCNN (1T) 0.7801 0.7276
BiLSTM 0.7342 0.6562
1DCNN 0.7556 0.6971
2DCNN 0.7678 0.6914

Baseline
DistilBERT (3T) 0.7981 0.7389
DistilBERT (1T) 0.7802 0.7267
DistilBERT 0.7781 0.7189

Table 3: Macro F1 scores for models on OLID and
HASOC test sets. 3T = KD with three teachers 1T =
KD with one teacher. The best result for each dataset
for teachers and students are highlighted in bold.

such as offensive language identification. However,
KD allows student models to outperform Distil-
BERT with much less parameters and disk/ RAM
space requirements (see Table 5). This is true for
both gold datasets. Interestingly, simple student
models with KD outperform DistilBERT with KD.
We believe that DistilBERT architecture is very
similar to the teacher models, and it will not gain
more knowledge from the teacher models. With
these findings, we answer RQ2, student models per-
form competitively with the teacher models after
KD. Furthermore, student models with KD out-
perform lightweight transformer models such as
DistilBERT.

4.2 Token-level Offensive Language Detection

With the token-level experiments, we answer the
following research questions:

• RQ3 Can student models perform competi-
tively with teacher models at token-level?

• RQ4 How do student models behave with dif-
ferent values for k in k-best Viterbi?

We present the token-level KD results in Table 4
after performing KD in both gold datasets for the
teacher models, student models and student mod-
els after performing KD. For comparison purposes,
we also report the results for DistilBERT with KD
and without KD. It is clear that student models

3916



Type Model k HateX TSD

Teachers
BERT 0.6875 0.6538
XLNet 0.6779 0.6432
RoBERTa 0.6754 0.6351

Students

BiLSTM (3T) 1 0.6652 0.6352
1DCNN (3T) 1 0.6551 0.6289
BiLSTM (3T) 2 0.4567 0.4265
1DCNN (3T) 2 0.4683 0.4489
BiLSTM (1T) 1 0.6532 0.6232
1DCNN (1T) 1 0.6411 0.6101
BiLSTM (1T) 2 0.4367 0.4487
1DCNN (1T) 2 0.4488 0.4551
BiLSTM 0.5981 0.5398
1DCNN 0.5881 0.5341

Baseline

DistilBERT (3T) 1 0.6562 0.6325
DistilBERT (1T) 1 0.6557 0.6228
DistilBERT (3T) 2 0.4533 0.4216
DistilBERT (1T) 2 0.4672 0.4331
DistilBERT 0.6441 0.6132

Table 4: Macro F1 scores for models on HateX and TSD
test sets. 3T = KD with three teachers 1T = KD with
one teacher. The best result for each dataset for teachers
and students are highlighted in bold.

improve a lot after KD. For the TSD dataset BiL-
STM model was improved by 10% Macro F1 score.
Furthermore, most of the student models (apart
from k=2 models) have outperformed the Distil-
BERT after KD. With these findings, we answer
RQ3, student models perform competitively with
the teacher models after KD, and they outperform
efficient transformer models such as DistilBERT.
However, unlike sentence-level models, there is no
clear evidence that multiple teachers can provide
better results for the students. We believe that this
is mainly because we did not take teacher uncer-
tainty into account in the Viterbi algorithm.

Also, from the results, it is clear that adding the
two best instances from the Viterbi algorithm re-
duced the results of the student models drastically.
This can be due to the fact that Viterbi algorithm
adds more noisy instances by having k=2. While
augmenting with two best instances can produce
more instances overall, it is clear that it will not
improve the results of the student models. With
these findings, we answer RQ4, the results of the
student models reduce when we consider higher
values for k in the Viterbi algorithm.

Inference

Name #params Speed
(secs.)

RAM
(MiB)

Disk
(M)

BERT 561M 1.09 9,263.5 2140
fBERT 135M 0.82 1,979.2 517
XLNet 561M 1.15 9,167.7 2140

BiLSTM 6.2M 0.39 155.6 132
1DCNN 6.0M 0.35 151.8 125
2DCNN 5.9M 0.36 142.5 112

DistilBERT 66M 0.65 802.5 286

Table 5: Parameters, speed, and RAM, and disk usage
for one sentence prediction on a CPU (Intel Xeon Sil-
ver 4114 CPU @ 2.20GHz) in sentence-level offensive
language identification.

5 Computational Efficiency

Table 5 and Table 6 show the number of parameters,
memory, disk space requirements, and inference
speed for the teacher models, and student mod-
els compared to the DistilBERT baseline in both
sentence-level and token-level.

Inference

Name #params Speed
(secs.)

RAM
(MiB)

Disk
(M)

BERT 561M 1.09 9,263.5 2140
RoBERTa 432M 0.93 4,979.2 1420
XLNet 561M 1.12 9,487.6 2080

BiLSTM 4.8M 0.36 145.6 112
1DCNN 4.5M 0.33 121.8 105

DistilBERT 66M 0.68 702.5 286

Table 6: Parameters, speed, and RAM, and disk usage
for one sentence prediction on a CPU (Intel Xeon Silver
4114 CPU @ 2.20GHz) in token-level offensive lan-
guage identification.

We observe that the student models provide effi-
cient and greener models (Schwartz et al., 2020)
compared to the popular transformers models in
terms of parameters, processing speed, and infer-
ence time. The KD strategy presented in this paper
allows the student models to perform competitively,
as presented in Section 4.1.
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6 Conclusion and Future Work

In this paper, we showed that KD through a teacher-
student approach that directly distills offensive la-
bels can be effective in building lightweight offen-
sive language identification models in both sen-
tence and token-level. KD allows the lightweight
student models to outperform distilled yet large
pre-trained state-of-the-art architecture such as Dis-
tilBERT. Furthermore, they perform competitively
with large state-of-the-art architectures such as
BERT and XLNet. These students models are 15
times smaller in disk space with 100 times fewer
parameters, and 3 times faster in inference speed
demonstrating that KD can contribute to greener
computing. The search for computational effi-
ciency is in line with several initiatives such as
Green AI (Schwartz et al., 2020) and the afore-
mentioned ACL’s Efficient NLP policy. As the
KD process we used does not involve task specific
configurations, the findings of this research can be
easily expanded to different tasks involving social
media texts such as sentiment analysis and fake
news identification.

For the KD in token-level offensive language
identification, we introduced a novel method in-
volving the Viterbi algorithm to reduce the com-
plexity of the task. We showed that the student
models can be improved with taking the top 1 la-
bel sequence from the Viterbi algorithm. However,
adding more instances with top 2 etc can also re-
duce student performance. Our approach will bene-
fit multiple applications that have token-level labels.
Furthermore, our approach can be used to generate
more token-level data addressing the scarcity of
available token-level datasets.

In the future, we would like to experiment with
cross-lingual KD architectures. Transformer-based
cross-lingual approaches have been previously suc-
cessfully applied for this task (Ranasinghe and
Zampieri, 2020; Zia et al., 2022). Therefore, we
would like to explore large transformer models
such as XLM-R that can be used as teachers to
distil knowledge from resource rich languages to
resource poor languages thus benefit multiple lan-
guages around the world for which offensive lan-
guage datasets and resources are not yet available.

Limitations

We only experimented with one and three teacher
models. Training more teacher models and using
them to predict on large datasets such as SOLID

(Rosenthal et al., 2021) would require more com-
puting resources. Furthermore, we did not train
the teacher models on the augmented dataset for
the same reason following recent research in KD
(Gajbhiye et al., 2021; Sun et al., 2019).

We only conducted the experiments in En-
glish. The non-availability of large-scale offensive
language identification datasets such as SOLID
(Rosenthal et al., 2021) in languages other than En-
glish can be a challenge when expanding this KD
research beyond English.
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