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Abstract
Given a data lake of tabular data as well as
a query table, how can we retrieve all the ta-
bles in the data lake that can be unioned with
the query table? Table union search consti-
tutes an essential task in data discovery and
preparation as it enables data scientists to navi-
gate massive open data repositories. Existing
methods identify uniability based on column
representations (word surface forms or token
embeddings) and column relation represented
by column representation similarity. However,
the semantic similarity obtained between col-
umn representations is often insufficient to re-
veal latent relational features to describe the
column relation between pair of columns and
not robust to the table noise. To address these
issues, in this paper, we propose a multi-stage
self-supervised table union search framework
called AUTOTUS, which represents column
relation as a vector– column relational repre-
sentation and learn column relational represen-
tation in a multi-stage manner that can better
describe column relation for table unionability
prediction. In particular, the large language
model powered contextualized column relation
encoder is updated by adaptive clustering and
pseudo label classification iteratively so that the
better column relational representation can be
learned. Moreover, to improve the robustness
of the model against table noises, we propose
table noise generator to add table noise to the
training table data. Experiments on real-world
datasets and synthetic test set augmented with
table noise show that AUTOTUS achieves 5.2%
performance gain over the SOTA baseline.

1 Introduction

The growing availability of tabular data from
academia and industry brings new opportunities for
economic growth and social benefit, which has also
attracted considerable attentions in the natural lan-
guage processing (NLP) community. A number of
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Figure 1: The table union search example on Open Data.

work has been done, such as Table QA (Chen et al.,
2020; Zhu et al., 2021), Table fact verification (Aly
et al., 2021; Guo et al., 2022), Table summarization
(Xi et al., 2023), Table understanding (Yang et al.,
2022; Liu et al., 2022a, 2023), etc. More recently,
table union search (Nargesian et al., 2018; Bogatu
et al., 2020; Khatiwada and Fan, 2023) is proposed
to facilitate tabular dataset discovery applications
(Brickley et al., 2019; Galhotra and Khurana, 2020;
Santos et al., 2022), which can benefit the tabu-
lar data integration and analysis. The table union
search aims to find all tables in a data lake that have
the columns from the same domain as the query ta-
ble. With the help of the table union search, the un-
derstanding of the tabular data is largely improved
and it can potentially benefit other tabular-focused
NLP downstream tasks. Therefore, table union
search is a non-trival NLP research problem.

Recent literature shows that column representa-
tion methods are useful for table union search. The
basic idea is to map the column to a latent vector
space (e.g. column representations (Bogatu et al.,
2020; Chepurko et al., 2020) or token embeddings
(Zhang and Balog, 2017; Herzig et al., 2020; Fan
et al., 2022; Yang et al., 2022)) and then compute
the table unionability score based on the column
relation obtained from the similarity scores of col-
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umn pairs between query table and target tables.
However, these methods only consider the column
representation and their similarity as the column
relation to compute the table unionability score,
which is not enough to describe the relationship
between two columns and may cause incorrect pre-
diction. Figure 1 shows an example of the table
union search with a query table and a unionable
table. By looking at the second columns (in red) of
two tables, the computed column similarity score
(a scalar) from column embedding is low due to
the dissimilar token embeddings. In this case, the
column relation is not intuitive, taking only the sim-
ilarity between column embeddings to describe the
column relation is not enough to predict the table
unionability accurately. However, if we combine
each column representation and model them as an
embedding (a vector), the new representation (col-
umn relational representation) is more informative
and can better describe the unintuitive column rela-
tion to make the table unionability prediction more
accurately. Therefore, a better approach is needed,
which can make the table unionability prediction
via the column relational representation.

On the other hand, real-world table noises widely
exist (Koutras et al., 2021; Liu et al., 2022b). Tak-
ing column “CLG” in the query table and column
“POS” in the data lake table as examples, both
columns have abbreviated column names, tokens
are repeated in column values (e.g., “UCLA” be-
comes “UCUCLA”) and proximal characters in
keyboard are replaced (e.g., “Shooting Guard” be-
comes ‘Shootung Guard”). Computing column rep-
resentations or column relational representations
based on token embeddings with tabular noise intro-
duces unavoidable wrong predictions. Therefore, it
requires the table union search model to be robust
to the table noise during optimization.

To address above issues, we propose a multi-
stage self-supervised table union search framework
called AUTOTUS, which represents column re-
lation as a vector– column relational representa-
tion and learn column relational representation in a
multi-stage manner that can better describe column
relation for unionability prediction. In particular,
the large language model powered contextualized
column relation encoder is updated by adaptive
clustering and pseudo label classification iteratively
so that the better column relational representation
can be learned. Moreover, to improve the robust-
ness of the model against table noises, we pro-

pose table noise generator to add table noise to
the training table data. Extensive experiments are
conducted on three real-world datasets and show
significant performance gains compared to exist-
ing state-of-the-art methods and demonstrates the
robustness of AUTOTUS against the table noise.

Our contributions are four-folded: 1) We pro-
pose a novel framework AUTOTUS that can lever-
age column relational representation for table union
search instead of pairwise column similarity. 2) We
propose a multi-stage self-supervised method that
can update the large language model powered con-
textualized column relation encoder in a step by
step and iterative way to learn better column rela-
tional representation. 3) We propose a table noise
generator and add table noise to the training tabular
data to improve the robustness of the model against
the table noise. 4) We conduct extensive experi-
ment on real-world datasets as well as synthetic
test set augmented with table noise and demon-
strate significant performance gain of AUTOTUS
over the strong baselines and shows the robustness
of AUTOTUS against the table noise.

2 Problem Definition

Table union search discovers all tables in a set
of data lake tables that are unionable with the
query table. Specifically, we focus on the auto-
matically case where no labeled training data is
available. We define a set of data lake tables as
T . For each table T ∈ T which consists of m
columns {t1, t2, · · · , tm}. There is a column rela-
tion eij ∈ E for each pairs of columns ti, tj that
describes their relationship. We employ a contex-
tualized column relational encoder to obtain the
column relational representation zeij ∈ Z for each
column relation eij . The table unionability score
u(Ti,Tj) ∈ U is obtained by the table scorer that
goes over all column relational representations be-
tween two tables Ti, Tj . Similar to previous stud-
ies (Nargesian et al., 2018; Bogatu et al., 2020;
Khatiwada and Fan, 2023), given a query table Q,
table union search retrieves the top-y unionable
tables Q ⊆ T , where |Q| = y and ∀T ∈ Q and
T

′ ∈ T −Q, we have u(Q,T ) ≥ u(Q,T ′ ).

3 Proposed Method

In this section, we introduce the proposed AU-
TOTUS. The framework (as shown in Figure 2)
consists of following components: Multi-stage
Self-supervised Column Relational Representation
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Figure 2: Overview of AUTOTUS framework.

Learning, Table Noise Generation and Table Union-
ability Scorer. We first illustrate the motivation
for AUTOTUS: The existing column representa-
tion methods use cosine similarity to measure the
unionability of column pairs. The column encoder
in these methods is usually only trained with a bi-
nary classification task, i.e. whether two columns
are unionable. In AUTOTUS, the table encoder can
benefit from an additional task: the identification of
hidden semantic types (domains, task knowledge,
etc.) from the column pairs. In the absence of
explicit type labels, we use adaptive clustering on
column pairs and learn those hidden types. The
classification step is then used to update the ta-
ble encoder, so that the embeddings are generated
in a way that minimizes the hidden type predic-
tion errors. In short, the clustering and classifica-
tion modules learn the hidden unionable semantic
types, resulting in a better table encoder for the
table union search task.

3.1 Multi-stage Self-supervised Column
Relational Representation Learning

The Multi-stage Self-supervised Column Rela-
tional Representation Learning module aims to ex-
tract column relation as column relational represen-
tation and learn column relational representation in
multi-stage manner that can better describe column
relation for unionability prediction. As illustrated
in Figure 2, this module consists of three compo-
nents: Contextualized Column Relation Encoder,
Column Relation Encoder Updater via Adaptive
Clustering, and Column Relation Encoder Updater
via Pseudo Label Classification. The Contextual-
ized Column Relation Encoder serializes and tok-
enizes the column relations as the input and lever-
ages the pretrained BERT (Devlin et al., 2019) to
generate contextualized column relation embed-
dings. The Column Relation Encoder Updater via

Adaptive Clustering optimizes Contextualized Col-
umn Relation Encoder through relaxed constraint
to obtain better column relational representation
and generate the cluster label as the pseudo label.
The Column Relation Encoder Updater via Pseudo
Label Classification uses the generated pseudo la-
bel to further update the Contextualized Column
Relation Encoder via more strict constraint to gen-
erate improved column relational representation.
The above two updates are performed in a boot-
strapped loop that iteratively improve the language
model to generate better column representations.

Contextualized Column Relation Encoder
Contextualized Column Relation Encoder extracts
the contextualized column relation embeddings
to represent the relational features between two
columns. We leverage a large language model,
BERT (Devlin et al., 2019), to effectively encode
column relations, along with their context tabular
information.

The pre-trained large language models (such as
BERT) support an input length of up to 512 to-
kens (Devlin et al., 2019). However, columns in a
real-world table may contain thousands of tokens,
and randomly discarding tokens will lead to loss
of important semantics. Therefore, in this work,
we score the importance of each token or cell in a
column, and keep cells based on their importance.
More specifically, we adopt TF-IDF score to calcu-
late the token importance through its inverse doc-
ument frequency: log(|Y|)/{t| token ∈ t, t ∈ Y},
where t is a column and |Y| is the number of all
data lake columns. Then the cell score is calculated
by averaging the TF-IDF of all tokens within the
cell. After obtaining the importance score of each
column-level cell, the row alignment can ensure
the correctness of the table semantics, e.g.: Jimmy
Butler’s birthplace is aligned to the United States
instead of the United Kingdom. Therefore, we cal-
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culate the average score of cells in each row and
sort them in descending order. Next, we select rows
until the total token count reaches the input budget
and obtain the table: T = [t1, t2, · · · , tm].

As shown in Figure 2, we serialize the table by
column and follow the marking schema adopted in
Soares et al. (2019) to augment T with two reserved
tokens to mark the start and the end of each column.
We introduce ⟨s⟩ and ⟨/s⟩ and inject them into T :

T =
[
⟨s⟩, t1, ⟨/s⟩, · · · , ⟨s⟩, tm, ⟨/s⟩

]
, (1)

as the input token sequence for the encoder.
We denote the Contextualized Column Relation

Encoder as fθ(T, ⟨s⟩, ⟨/s⟩). Instead of using the
output of [CLS] token from BERT itself which
summarizes the whole table-level semantics, we
get the contextualize column relation semantics by
concatenating the representations ⟨s⟩ of any two
columns in different tables or in the same table, and
derive a fixed-length representation zeij ∈ R2·zR :

zeij = [c⟨sti ⟩, c⟨stj ⟩]. (2)

Column Relation Encoder Updater via Adap-
tive Clustering The Column Relation Encoder
Updater via Adaptive Clustering encourages each
low-confidence relation label distribution to be
closer to the high-confidence cluster centroids, im-
proves the confidence of the clusters, and optimizes
Contextualized Column Relation Encoder by relax-
constraints to generate better column relational rep-
resentations. In addition, the cluster label gener-
ated for each column relation could be treated as
self-supervision signal, which serves as the pseudo
label for language model update.

More specifically, after obtaining N column
relational representations Z = {z1, z2, ..., zN},
Column Relation Encoder Updater via Adap-
tive Clustering computes K cluster centroids
{ξk ∈ RhAC}Kk=1, and softly assigns all N column
relation representations to K clusters. In practice,
we first adopt standard k-means clustering among
N column relation data points RhAC to obtain K
initial cluster centroids {ξk ∈ RhAC}Kk=1. Inspired
by Maaten and Hinton (2008); Hu et al. (2020), we
leverage the Student’s t-distribution as the kernel
to measure the similarity of the embedding point
zn to each centroid ξk as:

qnk =
(1 + ||zn − ξk||2/α)−

α+1
2

∑K
k′=1(1 + ||zn − ξk′ ||2/α)−

α+1
2

, (3)

where qnk can be viewed as the probability of as-
signing column relation embedding zn to the clus-
ter k as the soft assignment and α denotes the de-
gree of the Student’s t-distribution. We set α = 1
for all experiments.

We normalize each cluster by adopting the fre-
quency as an auxiliary target distribution proposed
by Xie et al. (2016) in Equation 4 and iteratively
refine each cluster with the help of the auxiliary
target distribution:

pnk =
q2nk/fk∑
k′ q

2
nk′/fk′

, (4)

where fk =
∑N

n=1qnk, k = 1, 2, · · · ,K is the soft
cluster frequency. With the auxiliary target distri-
bution, we could encourage each cluster to learn
from its high confidence cluster assignments and
simultaneously alleviating the bias caused by im-
balanced clusters. We define KL divergence loss
between the soft assignments qn and the auxiliary
distribution pn to train the Contextualized Column
Relation Encoder as follows:

LAC = KL(P ||Q) =
∑

n

∑

k

pnklog
pnk
qnk

. (5)

We adopt the label associated with the largest prob-
ability as the pseudo label µn for the n-th column
relation:

µn = argmax
k∈K

pnk. (6)

In summary, comparing with traditional clustering
methods such as k-means, Column Relation En-
coder Updater via Adaptive Clustering adopts an
iterative, soft-assignment learning process which
encourages high-confidence assignments and uses
high-confidence assignments to improve low confi-
dence ones. Therefore, Column Relation Encoder
Updater via Adaptive Clustering is robust enough
to different cluster numbers K, thus solving the
situation that we have no prior knowledge of spe-
cific domains and the relational distributions in the
column relational representations. To mitigate the
possible negative impact of choosing a unideal ini-
tial centroid, Column Relation Encoder Updater
via Adaptive Clustering randomly re-selects a set
of K initial centroids if LAC does not decrease
after the first epoch.

Column Relation Encoder Updater via Pseudo
Label Classification Although the clustering
module forces the relational label distribution of
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low confidence to be close to the cluster centroids
of high confidence to improve the confidence of
clustering. However, the clusters may contain some
different labels, which affects the clustering pu-
rity. Therefore, we utilize the Column Relation
Encoder Updater via Pseudo Label Classification
module to classify the pseudo labels, and obtain
better column relational representations by improv-
ing the clustering purity. In practice, the Column
Relation Encoder Updater via Adaptive Cluster-
ing generates cluster labels M = {µ1, µ2, ..., µN}
for all column relations as pseudo labels. Column
Relation Encoder Updater via Pseudo Label Clas-
sification could adopt these pseudo labels as self-
supervisions derived from the corpora themselves
and use pseudo labels to guide the feature repre-
sentation learning in Contextualized Column Rela-
tion Encoder as well as column relation classifier
learning in Column Relation Encoder Updater via
Pseudo Label Classification.

The Column Relation Encoder Updater via
Pseudo Label Classification module learns to pre-
dict the pseudo labels as golden labels. More specif-
ically, we have:

ln = τϕ(fθ(T, ⟨s⟩, ⟨/s⟩)), (7)

where τϕ denotes the column relation classification
module with parameters ϕ and ln is the probability
distribution for the n-th sample over K pseudo
labels. To find the best performance parameters θ
for Contextualized Column Relation Encoder and
ϕ for the classifier, we optimize the classification
loss:

LRC = min
θ,ϕ

1

N

N∑

n=1

loss(ln, one_hot(µn)), (8)

where loss is the cross entropy loss and
one_hot(µn) returns a one-hot pseudo label as-
signment vector.

3.2 Table Noise Generator
The table noise generator module aims to improve
the robustness of the model against the table noise.
We firstly summarizes the noise types that exist
in the real-world tabular data, and introduce these
table noises to the column relations during the self-
supervised training. Specifically, we defined two
types of table noise: column value noise an col-
umn name noise. Here are some representative
column value noises: 1) Replace / insert charac-
ters with proximal characters, e.g., computer →

cimputer / coimputer. 2) Delete / repeat charac-
ters, e.g., computer → compuer / compputer. 3)
Change the numeral display format like scientific
notation, e.g., 12000 → 1.2e4. Here are some rep-
resentative column name noises: 1) Prefix column
names with table name, e.g., travel_destination
→ tourism_statistics_travel_destination. 2) Ab-
breviate column names, e.g., travel_destination →
tra_dest. 3) Drop vowels, e.g., travel_destination
→ trvl_dstntn. 4) Synonym substitution (if exists),
e.g., travel_destination → tourist_destination. 5)
Acronym, e.g., travel_destination → t_d.

For each table T in the data lake tables T , we
randomly apply above noise to the training tabular
data to improve the robustness of our model against
the table noise.

3.3 Table Unionability Scorer

The Table Scorer obtains the table unionability
score based on the column relational representa-
tions between column relations in the query ta-
ble and data lake tables, which can provide more
sufficient information to clarify whether the two
tables come from the same domain and have a
union relation. After we obtained the Contextu-
alized Column Relation Encoder with discrimina-
tive power to get the column relation embeddings
zeij = (c⟨sti ⟩, c⟨stj ⟩), we adopt the Column Re-
lation Encoder Updater via Pseudo Label Classi-
fication to assign the K relational labels to all N
column relations zn = (zeij )

n in the two tables:

ψnk = argmax
k∈K,n∈N

τϕ(z
nk), (9)

and assign the majority label κ as the predict rela-
tional label for the query table and data lake table.
We count the number of majority labels κ in the
all N column relational representations between
two tables as M , so the table unionability score is
M/N . This score no longer depends on the cal-
culation of cosine similarity between two column
features to obtain the column unionability score,
but obtains table unionability score through the col-
umn unionability scores. The higher the score, the
greater the probability of these two tables being
unionable. Instead of computational methods with
insufficient column relational information, AUTO-
TUS directly model the complex column relational
representations, which can better address the table
union search task.

3790



Test / Train # Tables # Columns Avg. # Rows Size (GB)

SANTOS Small 550 6,322 6,921 0.45
TUS Small 1,530 14,810 4,466 1
TUS Large 5,043 54,923 1,915 1.5

SANTOS Small 550 6,162 7,732 0.5
TUS Small 1,530 13,926 4,032 0.9
TUS Large 5,043 55,462 1,729 1.3

Table 1: The statistics of datasets for three benchmarks.

4 Experimental Evaluation

We conduct extensive experiments on real-world
public datasets as well as a synthetic test set aug-
mented with table noise to show the effectiveness
of our AUTOTUS on table union search task, and
give a detailed analysis.

4.1 Experimental Setups
Datasets. To evaluate our technique, three pub-
lic datasets are used : SANTOS (Khatiwada and
Fan, 2023), TUS small, and TUS large (Narge-
sian et al., 2018). These three datasets are subsets
of Open Data released by authorities such as US
Open Data1, UK Open Data2, and Canada Open
Data3 with manually labeled data. However, these
data are usually officially filtered to remove a lot
of table noise to maintain high quality. In order to
verify the robustness of the model, we synthesized
a test set with table noise, we added both column
value and column name noises to the tabular data
and obtained the synthesized SANTOSN and TUS
largeN . Note that although we add table noises,
the human-annotated labels remain unchanged. To
avoid information leakage, the manually labeled
dataset is not used during the training. We ran-
domly generated the same number of unlabeled
training tables as the labeled tables from Open Data
(Koutras et al., 2021; Khatiwada and Fan, 2023).
We give the detailed statistics of datasets for three
benchmarks in Table 1. We also give the dataset
construction details in Appendix A.

Experimental Settings and Metrics. We adopt
BERT-Base, BERT-Large (Devlin et al., 2019)
and RoBERTa-Large (Liu et al., 2019) as the
encoder and set max-length as 512. For Column
Relation Encoder Updater via Adaptive Clustering,
we adopt k-means and set K = 50 to get the initial
centroids. We stop the clustering and classification
loop when the current pseudo labels differs by less
than 10% from the previous epoch. For Column

1https://data.gov/
2https://www.data.gov.uk/
3https://open.canada.ca/en/open-data

Relation Encoder Updater via Pseudo Label Classi-
fication, we adopt the fully connected layer as τϕ
and set dropout rate as 10%, learning rate as 1e−5
and warmup as 0.1. To allow fully connected layer
to warm up, we fixed the parameters in fθ for the
first two epoches. We add one noise of column
data or column schemata to each column to ob-
tain the training dataset. We first randomly choose
whether to add noise in the column data or column
schemata, and secondly, for all replacement, ad-
dition, or deletion of noise at the token level, we
select 20% of all tokens in the cell of the column
for modification.

For evaluation metrics, following the previous
work (Bogatu et al., 2020; Khatiwada and Fan,
2023), we adopt the Mean Average Precision at
Y (MAP@Y ) and Recall at Y (R@Y ) to evalu-
ate the effectiveness of the searched top-Y table
results. Note that MAP@Y is the average value
of Precision at y (P@y), where y = 1, 2, · · · , Y .
Formally, given the query table Q and a set of data
lake tables T , we define TQ as the set of unionable
tables based on the ground truth and T ′

Q as the set
of top-Y unionable table results using the search-
ing methods. The P@Y and R@Y are calculated
as:

P@Y =
TQ ∩ T ′

Q

T ′
Q

, R@Y =
TQ ∩ T ′

Q

TQ
(10)

Note that perfect R@Y is not possible when the
ground truth contains less than Y searched table
results. We define the Mean Average Precision
MAP@Y as:

MAP@Y =
1

Y

Y∑

y=1

P@y (11)

For a fair comparison, we adopt the Y = 10 on
the SANTOS benchmarks and Y = 60 on the TUS
benchmarks to be consistent with Nargesian et al.
(2018); Khatiwada and Fan (2023).

Baseline Models. We compare AUTOTUS with
baseline models in two categories. The first cate-
gory is table union search model that adopts var-
ious column features to calculate the table union-
ability score. We adopt D3L (Bogatu et al., 2020),
SATO (Zhang et al., 2020), Starmie (Fan et al.,
2022), and SANTOS (Khatiwada and Fan, 2023)
as baselines. The second category is table pre-
trained model that leverages unlabeled tables for
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Methods
SANTOS TUS small TUS large SANTOSN TUS largeN

MAP@10 R@10 MAP@60 R@60 MAP@60 R@60 MAP@10 R@10 MAP@60 R@60

BERT-Base (Devlin et al., 2019) 79.5 53.7 74.1 16.3 63.1 13.4 69.5 46.9 55.3 9.4

TaBERT (Yin et al., 2020) 83.6 56.2 80.3 18.7 76.4 15.8 74.8 50.7 67.3 11.4
TABBIE (Iida et al., 2021) 86.3 58.5 82.4 19.2 78.7 15.3 76.9 51.6 65.2 11.8
TUTA (Wang et al., 2021) 86.7 59.2 84.5 20.1 80.5 16.9 77.9 52.3 71.6 13.2
FORTAP (Cheng et al., 2022) 88.5 60.9 87.3 20.6 81.3 17.0 78.7 52.7 72.8 12.8
TableFormer (Yang et al., 2022) 89.4 61.4 86.9 20.2 83.2 17.3 79.2 53.5 72.7 12.9

D3L (Bogatu et al., 2020) 82.8 56.3 79.5 19.7 66.3 15.2 73.5 51.0 57.8 9.7
SATO (Zhang et al., 2020) 92.7 68.2 91.7 21.5 86.7 18.4 80.1 54.5 77.3 14.5
Starmie† (Fan et al., 2022) 93.9 69.0 94.8 23.3 89.5 18.9 81.0 55.1 78.4 14.3
SANTOS(Khatiwada and Fan, 2023) 94.3 69.2 85.7 21.0 – – 81.4 55.3 – –

AUTOTUSBERT-Base 98.5±0.4 72.4±0.2 97.7±0.5 25.2±0.3 94.6±0.7 21.6±0.2 87.6±0.5 59.7±0.3 84.9±0.6 17.3±0.3

w/o Table Noise Generator 96.6±0.5 71.2±0.4 96.1±0.6 24.5±0.3 92.5±0.7 20.8±0.4 83.0±0.7 56.4±0.4 80.7±0.8 14.9±0.3

w/o Encoder Update via Adaptive Clustering 94.5±0.6 71.9±0.4 94.3±0.7 23.3±0.5 91.0±0.5 20.4±0.3 83.2±0.6 56.3±0.4 80.5±0.7 14.7±0.3

w/o Encoder Update via Pseudo Label Classification 81.8±0.6 54.7±0.4 80.9±0.9 16.8±0.4 77.3±0.7 17.0±0.4 72.1±0.8 50.2±0.6 68.5±0.7 12.2±0.2

AUTOTUSBERT-Large 99.1±0.5 73.8±0.2 98.3±0.5 26.0±0.2 95.8±0.6 22.5±0.3 89.4±0.6 61.0±0.3 86.1±0.7 17.9±0.2

AUTOTUSRoBERTa-Large 99.4±0.4 73.9±0.2 98.9±0.3 26.7±0.2 96.2±0.5 22.3±0.2 90.0±0.5 60.5±0.3 86.9±0.6 18.1±0.3

Table 2: MAP@Y and R@Y comparisons (%). Results of AUTOTUS are averaged over five runs. †means we
replace the base encoder from RoBERTa-Base to BERT-Base, and all models are based on BERT-Base for a
fair comparison. Note that perfect R@Y is not possible when the ground truth contains less than Y searched tables.

self-supervised pre-training and achieves promis-
ing results in various table related NLP tasks. We
adopt TaBERT (Yin et al., 2020), TABBIE (Iida
et al., 2021), TUTA (Wang et al., 2021), FORTAP
(Cheng et al., 2022), and TableFormer (Yang et al.,
2022) as baseline encoders to calculate the column
unionability score and adopt our Table Scorer mod-
ule to obtain the table unionability score. Although,
there are more baseline models in this category,
we just select representative and SOTA ones. The
details of baselines are introduced in Appendix B.

4.2 Results and Analysis

Overall Performance. Table 2 shows the aver-
age results on five table union search benchmarks.
The proposed AUTOTUS consistently outperforms
all baselines in MAP and R performance by lever-
aging column relational representation learning
(with student’s T test p < 0.05). More specifi-
cally, for five benchmarks, compared to the SOTA
baseline, AUTOTUS on average achieves 5.1%
higher MAP and 3.1% higher R across various
benchmarks. Compared with BERT-Base, all table
pre-trained and table union search baselines could
gain MAP and R performance improvements from
better learned tabular representations. The table
union search baselines can achieve better results
than the table pre-trained baselines by optimizing
the column representations specific to the table
union search task. AUTOTUS exploit the column
relational representations and are able to beat all
the table union search baselines. In addition, we
study the performance changes brought about by
using larger base encoders BERT-Large (Devlin
et al., 2019) and RoBERTa-Large (Liu et al., 2019).
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(a) P@K on SANTOSN
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(e) P@K on TUS LargeN

(b) R@K on SANTOSN

(d) R@K on TUS Small

(f) R@K on TUS LargeN

Figure 3: P@Y and R@Y results on different datasets.

From Figure 2, it can be concluded that leveraging
a large-scale pre-trained language model with more
parameters can lead to better MAP and R, BERT-
Large and RoBERTa-Large obtain an average boost
of 1.1% and 1.4%, respectively.

Another interesting finding is that, although all
the models have decreased performance on the
datasets with table noise, the average performance
improvement of AUTOTUS compared to SOTA is
consistent, and even increased to 6.6% on MAP
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Figure 4: Visualizing column relational representations after t-SNE dimension reduction on TUS largeN .

and 3.8% on R. We attribute the improvement of
AUTOTUS to the noisy, weak column relational
representations from the large pre-trained language
models are exploited and refined: we bootstrap the
representations obtained from noisy tabular data
via self-supervised training schema. More specifi-
cally, we give the comparison of P@Y and R@Y
as Y changes in Figure 3. We find that AUTOTUS
consistently outperforms all baseline models on
both metrics P@Y and R@Y as Y changes.

Ablation Study. We conduct ablation studies to
show the effectiveness of different modules of AU-
TOTUS. A number of variants of AUTOTUS are
considered: AUTOTUS w/o Table Noise Genera-
tion removes added table noise in the training data;
AUTOTUS w/o Column Relation Encoder Updater
via Pseudo Label Classification is AUTOTUS with-
out Column Relation Encoder Updater via Pseudo
Label Classification and only uses the Contextu-
alized Column Relation Encoder for Column Re-
lation Encoder Updater via Adaptive Clustering;
AUTOTUS w/o Column Relation Encoder Updater
via Adaptive Clustering replaces the suggested soft-
assignment clustering techniques with k-means as
a hard-assignment alternative.

The general conclusion from ablation study re-
sults shown in Table 2 is that the all three mod-
ules contribute positively to improve the perfor-
mance. More specifically, without table noise in
training data, AUTOTUS w/o Table Noise Gen-
eration gives 2.3% less MAP and R averaged on
all datasets, especially the noisy SANTOSN and
TUS largeN , the drop reaches 3.5%. If we stop
exploiting self-supervised signals for column rela-
tional features learning, AUTOTUS w/o Column
Relation Encoder Updater via Pseudo Label Clas-
sification brings 12.8% less MAP and R averaged
on all datasets. This huge performance drop fully
demonstrates the importance of learning and re-
fining column-pair representations. Column Rela-
tion Encoder Updater via Adaptive Clustering gives
3.0% MAP and R boost in average when comparing

with the hard-assignment alternative (AUTOTUS
w/o Column Relation Encoder Updater via Adap-
tive Clustering).

Visualizing Contextualized Column Relational
Embeddings. To intuitively show how clustering-
enhanced self-supervised training can exploit self-
supervised signals to obtain better contextualized
column relational representations, we visualize the
dimensionally reduced column relational represen-
tation space R2·hR using t-SNE (Maaten and Hin-
ton, 2008). We randomly choose 10 base tables
from TUS largeN dataset and sample all column
relations that belong to the corresponding base ta-
ble. We show the visualization results in Figure 4
with each column relation being colored according
to their ground-truth.

From Figure 4, we can see that AUTOTUS w/o
Column Relation Encoder Updater via Pseudo La-
bel Classification can assign meaningful semantics
to column relations from different base tables, but
these unrefined features cannot be tailored for the
table union search task. When Column Relation
Encoder Updater via Adaptive Clustering is not ap-
plied and only k-means are used, AUTOTUS w/o
Column Relation Encoder Updater via Adaptive
Clustering performs a hard assignment of features,
and the clustering results appear messy since there
are no cluster centroids with high confidence. AU-
TOTUS w/o Table Noise Generation demonstrates
that the clustered features is not tolerate to the noise
samples, resulting an unclear cluster boundaries.
AUTOTUS shows denser and well-separated clus-
ters, which verifies its powerful column relational
representation learning ability.

Parameter Analysis: when K is unknown. The
Column Relation Encoder Updater via Adaptive
Clustering provide the flexibility to explore column
relational features without knowing any prior infor-
mation about the number of clusters.This property
is attractive when the number of target clusters is
agnostic. We vary K from 10 to 200 and report the
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Figure 5: MAP@60 Score with different K.

Table Noise SANTOSN TUS largeN

Column Name Column Data MAP@10 R@10 MAP@60 R@60

% % 83.0 56.4 80.7 14.9
% ! 85.5 57.6 82.1 15.8
! % 86.9 59.2 83.8 16.4
! or ! 87.6 59.7 84.9 17.3
! and ! 88.0 60.1 84.7 17.1

Table 3: Table Noise Analysis.

MAP@60 score in Figure 5, the best result is ob-
tained when K = 25 for TUS Small and K = 50
for TUS Large, slightly larger than the number
of base tables in the two datasets, indicating that
AUTOTUS actually exploits the number of target
clusters as useful prior knowledge. Thanks to the
self-supervised training for column relational fea-
tures exploitation and the flexibility brought by
soft-assignment clustering, when we vary K from
10 to 200, AUTOTUS gets a more stable MAP@60
score than AUTOTUS w/o Column Relation En-
coder Updater via Adaptive Clustering.

Impact of Table Noise. We investigate the effect
of table noise in column value and column name.
As shown in Section 3.2, we randomly select a cor-
responding noise from two types of noises. From
Table 3, we observe that adding table noise to both
column value and column name help to improve
the performance, whereas changing column name
has a slightly larger effect (2.8% vs. 1.5%). This
improvements may related to the fact that column
name summarizes the entire column semantically,
so adding noise to the column names can make the
model more robust to table noise and thus obtain
more performance gains. However, adding more
noise did not consistently improve performance,
suggesting that the model needs to find a trade-
off between noisy data perturbation and increased
robustness to noise.

5 Related Work

5.1 Table Union Search

In dataset discovery, it is crucial to find related
tables in data lakes. The table union search task
has recently received considerable attentions (Ling
et al., 2013; Lehmberg and Bizer, 2017; Khatiwada
and Fan, 2023). The initial attempt is made by
Nargesian et al. (2018). The D3L (Bogatu et al.,
2020) categories columns into groups by column
features. Starmie (Fan et al., 2022) obtains the
column features by utilizing a contextualized pre-
trained language models. SANTOS (Khatiwada
and Fan, 2023) leverages a knowledge base to dis-
cover the unionable relations between two tables.
More recently, a number of table pre-training mod-
els have be developed to obtain the contextualized
table representation (Yin et al., 2020; Gong et al.,
2020; Dong et al., 2022). However, these methods
are not tailored to the table union search task.

5.2 Self-supervised Learning in NLP

Self-supervised learning (SSL) is a method for
building models where the output labels are al-
ready included in the input data, eliminating the
need for additional labeled data (Liu et al., 2021;
Hu et al., 2021a,b; Liu et al., 2022d,c). SSL has
been widely used in NLP domains such as sentence
generation (West et al., 2019; Yan et al., 2021),
document processing (You et al., 2021; Ginzburg
et al., 2021), natural language inference (Li et al.,
2022, 2023), and text reasoning (Klein and Nabi,
2020; Fu et al., 2020; Chen et al., 2022). BERT
(Devlin et al., 2019) is one of the most eminent
SSL methods which exploit self-supervisions from
corpus with next sentence prediction and masked
language modeling tasks. In our work, we adopt
SSL method to exploit and refine self-supervised
signals from tabular data.

6 Conclusions

In this paper, we propose a multi-stage self-
supervised table union search framework, which
represents column relation as column relational
representation and learn this representation in a
multi-stage manner that can better describe column
relation for unionability prediction. In additional,
a table noise generator is proposed to improved the
robustness of our approach against the table noise.
The conducted extensive experiments demonstrate
the effectiveness of the proposed approach.
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7 Limitations

We would like to claim our limitations from two
perspectives: technical-wise and application-wise.

Technical-wise: We currently only experiment
with BERT-Base, BERT-Large, and RoBERTa-
Large as the basic encoders. For larger language
models, due to limited resources, we have not im-
plemented them.

Application-wise: The experimental data comes
from the Open Data repository released by gov-
ernments of various countries. Although many
domains are covered, some domain-specific data,
such as biomedical, have not been considered. Fur-
thermore, our tabular data are all from English,
open data research in other languages can be con-
sidered as a future research direction.
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A Dataset Construction Details

For test data, the SANTOS Small benchmark
(Khatiwada and Fan, 2023) consists of 550 data
lake tables, which are generated from 296 open
datasets from Canada, the United Kingdom, the
United States, and Australia. The SANTOS Small
also has 50 query tables. There are two benchmarks
accessible from Nargesian et al. (2018): TUS Small
and TUS Large. The TUS Small consists of 1,530
data lake tables that are generated from 10 base ta-
ble of Canada open data. The TUS Small also has
150 query tables. The TUS Large consists of 5,043
data lake tables that are generated from 32 base
table of Canada open data. The TUS Large also
has 100 query tables. The SANTOS4 and TUS5

benchmarks and their unionable table ground truth
are publicly available. For training data, we ran-
domly generated the same number of unlabeled
training tables as the labeled tables from base ta-
bles of Open Data. Note that the public code for
generating tables is publicly available6 (Koutras
et al., 2021; Khatiwada and Fan, 2023). Since table
union search task is an unsupervised task, no dev
data is obtained.

B The Introduction of Baseline Models

We compare AUTOTUS with two categories of
baseline models. The first category of models
leverage unlabeled tables for self-supervised pre-
training and achieve promising results in the table
understanding tasks as baseline encoders to calcu-
late the column unionability score:

(1) TaBERT (Yin et al., 2020) is a pretrained
language model that simultaneously learns repre-
sentations for (semi-)structured tables and natural
language phrases. 26 million tables and their En-
glish contexts make up the vast corpus on which
TaBERT was trained.

(2) TABBIE (Iida et al., 2021) develops a
straightforward pretraining target (corrupt cell iden-
tification) that only learns from tabular data and
achieves the state-of-the-art on the table-based
tasks. TABBIE offers embeddings of all table
substructures (cells, rows, and columns), unlike
competing techniques, and it also takes far less
computing power to train.

4https://github.com/
northeastern-datalab/santos

5https://github.com/RJMillerLab/
table-union-search-benchmark

6https://delftdata.github.io/
valentine/

(3) TUTA (Wang et al., 2021) is a unified pre-
training architecture for comprehending typically
arranged tables. TUTA improves transformers with
three structure-aware techniques after realizing that
understanding a table necessitates spatial, hierar-
chical, and semantic information.

(4) FORTAP (Cheng et al., 2022) explores to
leverage rhe spreadsheet formulas for table pretrain-
ing. FORTAP adopts two self-supervised pretrain-
ing objectives, which are derived from formulas,
numerical reference prediction and numerical cal-
culation prediction.

(5) TableFormer (Yang et al., 2022) is a struc-
turally conscious table-text encoding architecture
in which learnable attention biases are used to fully
include tabular structural biases.

Of course, there are more baseline models in this
category, we just select representative and SOTA
models. The second category of models adopt vari-
ous column representations to calculate the column
unionability score:

(6) D3L (Bogatu et al., 2020) creates hash-based
indexes using the features of the items in a dataset
and maps those features to a uniform distance
space.

(7) SATO (Zhang et al., 2020) is a hybrid ma-
chine learning model that uses both the context of
the table and the values of the columns to automat-
ically identify the semantic categories of columns
in tables.

(8) Starmie (Fan et al., 2022) obtains the seman-
tic information included inside tables by utilizing a
contrastive multi-column pre-training technique.

(9) SANTOS (Khatiwada and Fan, 2023) sug-
gests a definition of unionability that takes con-
nections between columns and their semantics into
principled consideration.
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