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Abstract

Well pre-trained contextualized representations
from pre-trained language models (PLM) have
been shown helpful for enhancing various natu-
ral language processing tasks, surely including
neural machine translation (NMT). However,
existing methods either consider encoder-only
enhancement or rely on specific multilingual
PLMs, which leads to a much larger model or
give up potentially helpful knowledge from tar-
get PLMs. In this paper, we propose a new
monolingual PLM-sponsored NMT model to
let both encoder and decoder enjoy PLM en-
hancement to alleviate such obvious inconve-
nience. Especially, incorporating a newly pro-
posed frequency-weighted embedding transfor-
mation algorithm, PLM embeddings can be
effectively exploited in terms of the represen-
tations of the NMT decoder. We evaluate our
model on IWSLT14 En-De, De-En, WMT14
En-De, and En-Fr tasks, and the results show
that our proposed PLM enhancement gives sig-
nificant improvement and even helps achieve
new state-of-the-art.

1 Introduction

Pre-trained language models (PLM) such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019)
and XLNET (Yang et al., 2019) have significantly
improved a wide range of natural language pro-
cessing (NLP) tasks. However, neural machine
translation (NMT) tasks often require big models
and large scale of training data, which leads to
fine-tuned PLMs easily forgetting supposed-not-to-
be-forgotten knowledge. As a result, NMT model
cannot yield promising results only by fine-tuning
PLMs according to extensive studies (Zhu et al.,
2020; Yang et al., 2020).

To make effective use of PLMs in NMT, there
has been a series of explorations. Yang et al. (2020)

∗∗Corresponding author. This work was supported by the
Key Projects of National Natural Science Foundation of China
(U1836222 and 61733011).

proposed CTNMT based on asymptotic distilla-
tion to keep reminding the NMT model of BERT
knowledge and dynamic switching gate to combine
the encoded embedding from BERT and the en-
coder of NMT model. Zhu et al. (2020) proposed
BERT-fused model using BERT as context-aware
embedding for NMT, which exploits the representa-
tion from BERT and feeds it into every layer of the
encoder. AB-Net (Guo et al., 2020) incorporates
adapter layers into each BERT layer to conduct
non-auto-regressive and auto-regressive decoding
of sequence-to-sequence models for improvement.
Weng et al. (2022) propose a framework to fuse
BERT into NMT model using a layer-wise coordi-
nation structure with a partitioned multi-task learn-
ing method. In this paper, we also focus on incor-
porating BERT into NMT model.

These works do achieve improvement on NMT
tasks with PLMs more or less while leaving huge
challenges behind. For example, Yang et al. (2020);
Zhu et al. (2020) simply put PLMs as a plugin
for NMT model, which leads to oversized mod-
els. To avoid forgetting PLMs knowledge, Guo
et al. (2020) completely abandon fine-tuning by
simply freezing PLM parameters. Besides, Zhu
et al. (2020); Weng et al. (2022) show that using
monolingual PLMs for decoder initialization may
hurt NMT performance so that NMT decoder can-
not conveniently benefit from PLM enhancement.

In existing NMT models using PLMs (Yang
et al., 2020; Zhu et al., 2020; Guo et al., 2020;
Weng et al., 2022), NMT is enhanced by PLMs
in the same way as other NLP tasks: PLMs offer
representations first and then the model makes a
prediction based on such representations. How-
ever, the behavior of NMT differs from other NLP
tasks in a small but vital detail. Most NLP tasks
simply perform in a strict pipeline of first-encoding-
then-decoding way, while NMT models cannot per-
form similarly as other tasks in which the NMT
decoder has to encode predicted target words and

3602



Encoder DecoderPLM

(a) (Yang et al., 2020)

Encoder DecoderPLM

(b) (Zhu et al., 2020)

Encoder
PLM

Decoder

(c) (Guo et al., 2020)

PLM DecoderCoordinator

Encoder

(d) (Weng et al., 2022)

PLM

Coordinator
DecoderEncoder

PLM

(e) Our PLM-sponsored NMT model.

Figure 1: Structures of some existing autoregressive models and our model. All structures shown in figures are used
for prediction. Note that the model in Figure 1(c) is an autoregressive model (Guo et al., 2020).

predict target sequence simultaneously. It means
that the NMT decoder has to take the responsi-
bility of encoding target words at the same time.
Therefore, there is not so strict a first-encoding-
then-decoding pipeline in NMT models like other
NLP tasks, which makes fine-tuning PLM for NMT
decoder hardly achieve success (Guo et al., 2020).

In light of such an observation on the difference
between NMT and other NLP tasks, we propose
a novel design to let both encoder and decoder
of NMT model enjoy the empowerment of PLM
for the first time. For the decoder part, we re-
organize the decoder by replacing all self-attention
sub-layers with PLMs to encode predicted target
sentences and moving all cross-attention sub-layers
to a novel Coordinator. Our decoder consisting
of self-attention sub-layers has the same structure
as the encoder which can be replaced with PLMs
completely without any structure change and fo-
cuses on encoding the representations of predicted
words. The novel coordinator views the encoder
and decoder as equal and combines representations
from the encoder and decoder for the prediction
of unknown words. In our model, the encoder and
decoder can be replaced by PLMs completely and
the coordinator is randomly initialized, the same as
other downstream tasks in which randomly initial-
ized parameters are light and the PLMs are heavy.
Our model design facilitates PLMs of source and
target to focus on encoding source and target sen-
tences respectively which are the original roles of
PLMs.

We evaluate our model on four NMT tasks. Ex-
perimental results show that our model can achieve
improvement of all tasks significantly using PLMs.

Our model achieves 37.5 BLEU score on IWSLT14
German-English task outperforming other works,
31.0 and 44.5 BLEU score on WMT14 English-
German and English-French tasks with fewer pa-
rameters compared to other works. We also give
some ablations to evaluate the effectiveness of dif-
ferent methods in our models, and ablations show
that PLMs indeed achieve the performance of the
NMT model from both sides of the encoder and
decoder.

2 Our Model

In this section, we introduce the architecture of
our PLM-sponsored NMT model and the training
objective.

2.1 Background
2.1.1 Transformer
As the state-of-the-art NMT model, Trans-
former(Vaswani et al., 2017) is the first self-
attention-based model and is based on scaled dot-
product attention:

Attention(Q,K, V ) =softmax(
QTK√

dk
) · V, (1)

where Q,K, V , and dk are the query, key, value
vectors, and dimension of the model respectively.

The encoder is composed of a stack of N iden-
tical layers. An encoder layer consists of a self-
attention sub-layer and a feed-forward sub-layer.
The model employs a residual connection (He et al.,
2016) around each of the two sub-layers followed
by layer normalization (Ba et al., 2016).

The decoder of Transformer is also composed
of a stack of N identical layers while a decoder
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layer has another cross-attention sub-layer follow-
ing self-attention to incorporate source representa-
tions into representations of target sentence. The
decoder uses masking in the self-attention to ensure
that the predictions cannot use unknown outputs.
Without recurrence for the order of sequence, the
Transformer uses position encoding (Gehring et al.,
2017) to mark the position.

2.1.2 Modes of Incorporating PLMs
Figure 1(a), 1(b), 1(c), and 1(d) show structures
of some existing works. They show that existing
works focus on incorporating PLMs into the en-
coder and randomly initialize the decoder which
makes the model focus on training parameters in
the decoder. Zhu et al. (2020) is different from
other works in which representations from PLMs
are incorporated into both encoder and decoder
while it can only encode source language. Besides,
these works show that the encoding of target words
depends on the encoding of source words because
decoders must use representations from the encoder
to generate representations for prediction. It also
makes a heavy randomly initialized part and a light
PLM.

2.2 PLM-sponsored Architecture
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Figure 2: The proposed PLM-sponsored model.

Focus on the self-attention sub-layer in the top

decoder layer and we can regard the previous de-
coder layers as a language model to generate the
representation of the predicted target sentence. Fur-
thermore, focus on the cross-attention sub-layer
and we can regard the encoder and other decoder
layers as two language models to generate repre-
sentations of source and target language. With
only one decoder layer, the model can be split into
three parts: encoder for the source sentence, self-
attention sub-layer for the predicted target sentence,
and cross-attention sub-layer to combine represen-
tations of source and target sentences.

Based on the analysis above, we re-organize the
decoder in which all self-attention sub-layers are
split into our new decoder and all cross-attention
sub-layers are split into our new coordination struc-
ture. Figure 2 shows the architecture of our model.
Our decoder is a stack of self-attention sub-layers
to encode predicted words with the same struc-
ture as the encoder, and the coordination structure
called coordinator is a stack of cross-attention sub-
layers. Different from existing works, our model
can replace both encoder and decoder with PLMs
and fine-tune all parameters.

Inspired by He et al. (2018), we adopt the coor-
dinator which uses coordination as cross-attention
to combine the source and target representations.
Given source sentence S = {s1, ..., sm} and target
sentence T = {t1, ..., tn}, the representations of S
and T generated by PLMs are rS and rT , respec-
tively. rS and rT are fed to every coordinator layer
as equal input. The j-th coordinator layer generates
representation rj by the coordination:

rinput = concat(rS , rT ),

rall = concat(rinput, rj−1),

hj = Attention(rj−1, rall, rall) + rj−1,

rj = LN(FFN(hj) + hj).

(2)

In the first layer, we directly use rT as r0. To mark
the position, we add position embeddings to r0.

Although we can use BERT to initialize parame-
ters of the decoder, the prediction in our model is
still uni-directional same as Transformer decoder.
To ensure the word can only access known words,
we use a special mask M ∈ Rn×(m+2n) to pro-
cess the attention-matrix generated by Attention().
The first part of the mask is MS ∈ Rn×m and used
for RS , and all values in MS are 0. The second and
third part MT ,Mh ∈ Rn×n are upper triangular
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matrices. The M is generated by

M = concat(MS ,MT ,Mh) (3)

We use M to mask the attention matrix by setting
values to −∞ if the value in the corresponding
position of M is 1.

Existing works only fine-tune parameters of the
encoder while have to train the parameters of the de-
coder from the randomly initialized, which makes
a light PLM and heavy randomly initialized param-
eters. In our model, both encoder and decoder are
initialized by PLMs and fine-tuned, which makes
the training more balance compared to other works.
Our coordinator views source and target PLMs as
equal, which learns the cross-lingual knowledge
and fine-tunes the source and target PLMs to re-
duce the negative effect of fine-tuning source PLMs.
Besides, because we can incorporate PLMs into
the encoder and decoder without structure change,
we can train the decoder with MLM loss to learn
knowledge from monolingual training data similar
to the encoder.

2.3 Half-layers Knowledge Distillation

The catastrophic forgetting problem, which is
caused by fine-tuning PLMs with a large scale of
training data, makes the model forget linguistic
knowledge in PLMs and hurts the performance. To
alleviate such a drawback, we adopt knowledge
distillation training by following Yang et al. (2020)
for the encoder.

Different from Yang et al. (2020) which trains
all layers with distillation, we only train the first
half of the encoder layers to learn knowledge of
BERT which can also make the other layers learn
knowledge from training data. Same as Yang et al.
(2020), the training objective of the distillation of
our model is to penalize the mean-squared-error
loss between the hidden states of the first half of
the layers and the representations from BERT:

Lkd = −||rplm − hM/2||2, (4)

where M is the number of layers, rplm is the rep-
resentation generated by BERT, and hM/2 is the
hidden state of the first half of encoder layers. To
balance different training objectives during train-
ing, we use the same strategy as Yang et al. (2020)
to train the model:

L′
NMT = α · LNMT + (1− α) · Lkd, (5)

where LNMT is the sum of other losses, α is a
hyper-parameter setting to 0.9 in this paper. BERT
to generate rplm is frozen as the teacher model and
will not be used for evaluation.

Different from Yang et al. (2020); Zhu et al.
(2020) which incorporates representations from a
parallel BERT, we incorporate hidden states of the
first half of layers into the final representations us-
ing gate and FFN:

gS =Sigmoid(concat([hSM , hSM/2])W ),

hS =gS · hM + (1− gS) · hM/2,

rS =LN(FFN(hS) + hS),

(6)

where W ∈ R(2dm)×dm is parameter matrices and
dm is the dimension of the representation. With our
method, the model can extract representations of
BERT from the encoder directly instead of BERT.
The frozen BERT can be removed from the model
during evaluation to decrease the number of param-
eters.

2.4 Frequency-weighted Embedding
Transformation

Both current PLMs and NMT models usually adopt
subword tokenization for word segmentation, for
which BPE (Sennrich et al., 2016) style segmenta-
tion has been popularly adopted so far. Although
previous works use embeddings of PLMs in NMT
models directly, we argue that it is necessary to
pay attention to the differences between embed-
dings of PLMs and NMT models. To use PLMs
in the NMT model without considering the effect
of different segmentation of sentences, we design
a frequency-weighted embedding transformation
(FWET) algorithm to represent NMT embeddings
from PLM embeddings according to contextual-
ized subword frequency by comparing sequence
segmentation. Note that BPE segmentation indeed
performs over words, however, our proposed algo-
rithm has to exploit contextualized statistics over
sentences to build the transformation vector. Algo-
rithm 1 shows the algorithm of our method. This
method is a pre-processing method which means
that it will not influence the training.

2.5 Training Objective

Given a source sentence S = {s1, ..., sm} as input,
the NMT model needs to predict the target sentence
T = {t1, ..., tn} from left to right by using repre-
sentations of S. The training objective of NMT is
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Algorithm 1 Frequency-weighted Embedding
Transformation
Input: Corpus S = {S1, ..., Sk}, PLM Embedding
EP

Output: NMT Embedding E

1: Create real value vector dicN and let all values
in dicN to 0.

2: for Sentence Sj in S do
3: Tokenizing Sj for NMT model, SN

j =

{sNj,1, ..., sNj,x}
4: Tokenizing Sj for PLMs, SP

j =

{sPj,1, ..., sPj,y}
5: while len(SN

j ) > 0 and len(SP
j ) > 0 do

6: if sNj,1 == sPj,1 then
7: dicN (sNj,1, s

P
j,1)+ = 1

8: Remove sNj,1 and sPj,1 from SN
j and SP

j

respectively.
9: else if sNj,last == sPj,last then

10: dicN (sNj,last, s
P
j,last)+ = 1

11: Remove sNj,last and sPj,last from SN
j and

SP
j respectively.

12: else
13: Break
14: end if
15: end while
16: if len(SP

j ) == 0 or len(SN
j ) == 0 then

17: Continue
18: end if
19: Let weight w = len(SP

j )/len(S
N
j )

20: for SN
j,l in SN

j do
21: for SP

j,q in SP
j do

22: dicN (sNj,l, s
P
j,q)=dic

N (sNj,l, s
P
j,q) + w

23: end for
24: end for
25: end for
26: for k in set of dicN do
27: EN (k)=Softmax(dicN (k))EP (k)
28: end for
29: RETURN Embedding E=EN

to minimize the negative log-likelihood as:

LNMT = −
n∑

j

log(p(tj |t1, ..., tj−1, s1, ..., sm))

(7)
Existing NMT models often use the loss in Eq 7 to
train the model to predict unknown words. How-
ever, using PLMs in the NMT model requires other
losses to fine-tune the model. The encoders of the

NMT model can be viewed as language models
which can generate representations with linguistic
information of the corresponding language. There-
fore, we can also train encoders using the same way
as PLMs to learn corpora. We use two different
training objectives for the encoder and decoder:

Masked language model (MLM) (Devlin et al.,
2019) for the encoder. The encoder has the same
structure as BERT which makes the encoder learn
lingual information from corpora using MLM. To
avoid hurting the performance of NMT tasks, we
use the masked sentences for MLM and the original
sentence for NMT tasks.

Unknown word prediction MLM PLM for the
decoder is supposed to predict the unknown word
using the known contextual representation without
source representation. Given a target sentence T =
{t1, ..., tn}, the loss for the unidirectional encoder
is to minimize the negative log-likelihoods as

LT = −
n∑

j

log(p(tj |t1, ..., tj−1)) (8)

To avoid overfitting of PLM in the decoder, we
choose only 10% words to calculate LT .

The training function of the model is

L = (α·LNMT +(1−α)·Lkd)+LMLM+LT (9)

3 Experiment

3.1 Datasets
Our model is evaluated on four tasks, IWSLT14
English-German (IWSLT En-De), German-English
(De-En), WMT14 English-German (WMT En-De),
and English-French (En-Fr).

IWSLT14 dataset contains 153K training sen-
tence pairs. We use script1 to preprocess the dataset,
and use 7K data from the training set as valida-
tion set and the combination of dev2010, dev2012,
tst2010, tst2011 and tst2012 as test set with 7K
sentences.

WMT14 En-De dataset contains 4.5M sentence
pairs for training. We use 7K from training set as
validation set, and newstest2014 as test set. We
use script2 to preprocess En-De dataset. The sen-
tences longer than 250 are removed from the train-
ing dataset.

1https://github.com/pytorch/fairseq/blob/master/examples/
translation/prepare-iwslt14.sh

2https://github.com/pytorch/fairseq/blob/master/examples/
translation/prepare-wmt14en2de.sh
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Models
WMT14 IWSLT14

En-De En-Fr #Param % En-De De-En #Param %
TF-base (Vaswani et al.) 27.3 38.9 66M 22% 28.5 34.1 39M 17%
TF-big (Vaswani et al.) 28.3 41.1 220M 75% - - - -
BERT-fused (Zhu et al.) 30.7 43.8 500M 172% 30.5 36.1 500M 208%
CTNMT (Yang et al.) 30.1 42.3 330M 113% - - - -
AB-Net (Guo et al.) 30.6 43.6 420M 144% 30.0♭ 36.7♭ 266M 111%
Weng et al. 30.2♭ 43.3♭ 370M 127% 29.0♭ 35.0♭ 266M 111%
PLM-sponsored Model 31.0∗♭ 44.5∗♭ 291M 100% 30.2∗♭ 37.5∗♭ 240M 100%

Table 1: Comparison of our PLM-sponsored NMT model and other existing works on IWSLT14 and WMT14 tasks.
AB-Net is the model with an auto-regressive decoder same as Guo et al. (2020). Results with ♭ indicate the results
obtained by our implementation. Results with ∗ present statistically significant differences (p < 0.05). Note that TF
is short for Transformer.

WMT14 En-Fr dataset contains 36M sentence
pairs for training. We use 26K data from training
set as validation set, and newstest2014 as test set.
We use script 3 for En-Fr. The sentences longer
than 250 are removed from the training dataset.

For languages using embeddings of PLMs, we
tokenize words into wordpiece tokens using the
same vocabulary as BERT, and the vocabularies
sizes for English and German are 30K. For lan-
guages using embeddings and FWET, we use BPE
algorithm (Sennrich et al., 2016) to process words
into subwords, and the number of subword tokens
is 10K, 30K and 40K for IWSLT14, WMT14 En-
De and WMT14 En-Fr.

3.2 Model Configurations

The PLMs used for our two encoders are
bert-base models with 12 layers, 12 self-
attention heads, 768 dimensions of embedding
size, and 3072 dimensions of feed-forward
layers. On IWSLT14 tasks, the PLM for En-
glish and German are bert-base-uncased
and dbmdz/bert-base-german-uncased re-
spectively. On WMT14 En-De task, we
use bert-base-cased for English and
bert-base-german-cased for German. On
WMT14 En-Fr task, we use bert-base-cased for
English and bert-base-multilingual-cased
for French. All PLMs are from huggingface4.

The coordinator layer of our model always has
the same model configuration as Transformer-base
on three tasks. Especially, the coordinator has 12
layers in the model with PLMs. The dropout for

3https://github.com/pytorch/fairseq/blob/master/examples/
translation/prepare-wmt14en2fr.sh

4https://huggingface.co/

PLMs is 0.5 and 0.3 on IWSLT14 and WMT tasks.

3.3 Training Settings

Our model5 is implemented based on fairseq-0.9.06

and transformers7 (Wolf et al., 2020). Our models
are trained on one CPU (Intel i7-5960X) and two
nVidia RTX 3090 GPUs.

We follow the Transformer and use Adam op-
timizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98, ϵ = 10−9 for our model. For all
tasks, we use the learning rate setting strategy im-
plemented by fairseq. The initial learning rate
and label smoothing rate are 10−7 and 0.1. For
IWSLT14 and WMT14 tasks, the learning rates are
0.0005 and 0.0007, the update steps are 100,000
and 2,000,000, and the warmup steps are 4000 and
8000 respectively. The batch size is 4096 for all
tasks.

To evaluate our model, we use the beam search
decoder for IWSLT14 tasks with beam width 5. For
WMT14 task, we follow the Transformer and use
the beam search decoder with beam width 4 and
the length penality α = 0.6. We use the token-
zied case-insensitive BLEU scores for IWSLT14
tasks and tokenized case-sensitive BLEU scores for
WMT14 task. BLEU scores is tested by bootstrap-
hypothesis-difference-significance.pl8. We use
Transformer as the baseline model. For fair compar-
ison, we re-implement AB-Net (Guo et al., 2020)
on IWSLT14 tasks and Weng et al. (2022) on all
tasks, and compare our model with other existing

5Paper code: https://github.com/akibcmi/PLM-NMT
6https://github.com/facebookresearch/fairseq
7https://github.com/huggingface/transformers
8https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/analysis/bootstrap-hypothesis-difference-
significance.pl
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Figure 3: The BLEU score of the Transformer-big and
our model on the WMT14 En-De.

works.

3.4 Results

Table 1 shows the results of our model on four
NMT tasks. The baseline is Transformer (Vaswani
et al., 2017). Our model gets 30.2 and 37.5 BLEU
scores on IWSLT14 En-De and De-En tasks, re-
spectively, which outperforms the baseline 1.7 and
3.4 BLEU scores improvements. It shows that
our model does improve the performance of poor-
resource NMT tasks using PLMs. Our model also
gets 31.0 and 44.5 BLEU scores on WMT14 En-De
and En-Fr tasks respectively, which outperforms
the baseline 2.7 and 3.4 BLEU scores improve-
ments. It shows that our model can also improve
the performance of rich-resource NMT tasks with
PLMs.

Compared to other models, our model can out-
perform other works on IWSLT14 De-En with
37.5 BLEU points and get comparable results on
IWSLT14 En-De, WMT14 En-De, and WMT14
En-Fr. However, our model uses only monolin-
gual BERTBASE (except for the French) while
other works often use BERTLARGE with more pa-
rameters or multilingual BERT with multilingual
knowledge. It shows that the improvement of per-
formance achieved by our model is mainly from
the structure and method instead of the amount
of parameters, which shows the effectiveness of
our model. Figure 3 compares the BLEU scores
between our model and the Transformer-big and
shows that our model can achieve the same results
quicker than the Transformer-big.

Models De-En Param En-De Param
TF-base 34.1 43M 27.3 66M

Our model 34.3 43M 27.2 67M

Table 2: The results of our model without PLMs on
IWSLT14 De-En and WMT14 En-De tasks.

4 Ablation

In this section, we perform ablation experiments
over a number of facets of our model on IWSLT14
De-En and WMT14 En-De tasks. To finish our
ablation experiments with limited resources, the
update steps for De-En and En-De are 100,000
and 400,000 respectively, and the coordinator for
En-De has 6 layers only to speed up the training.

4.1 Effectiveness of Structure

For the effectiveness of our structures, we evaluate
our model without PLMs. In this experiment, our
model uses the same configuration as Transformer-
base. We only use LNMT to train our model. We
only use representations generated by the top en-
coder layer and self-attention decoder layer to feed
to coordination layers. Table 2 shows that our
model can achieve comparable results compared
to the baseline, which shows that our model ar-
chitecture does not hurt the performance, and the
improvements are from PLMs and our training ob-
jectives.

4.2 Effectiveness of Training Objectives

For the effectiveness of different training objectives,
we evaluate our models with different losses. In dif-
ferent experiments, we remove different losses to
train our model and evaluate on two tasks. Table 3
shows the results of our model on IWSLT14 De-En
and WMT14 En-De with different losses for train-
ing. Our model performs worst with LNMT only.
Table 3 shows that MLM is more important for the
model compared with knowledge distillation on the
encoder. It also shows that all our training objective
is necessary for our model. We also replace our
half-layers knowledge distillation with a full-layers
knowledge distillation and show the result in the
last line in Table 3 which shows that our half-layers
method is better than a full-layers method.

4.3 Effectiveness of Embedding
Transformation

Table 5 shows the results of our model using
PLM embedding directly and using embedding pro-
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Models De-En En-De
Our Model 37.5 30.5
-LMLM 36.8 30.1
-LT 36.7 29.9
-Lkd 36.9 30.2
-LMLM&Lkd 36.6 29.5
-LMLM&LT&Lkd 36.2 28.8
+Lfkd-Lkd 36.8 29.9

Table 3: The results of our model with different losses
on IWSLT14 De-En and WMT14 En-De.

Models De-En En-De
Our Model 37.5 30.5
No PLM (Encoder) 35.0 28.9
No PLM (Decoder) 36.5 29.2
No PLM 34.7 28.6
TF-base 34.1 27.3
TF-big - 28.3

Table 4: The results of our model by removing PLMs
from the encoder or decoder on IWSLT14 De-En and
WMT14 En-De.

cessed by our FWET. It shows that the performance
of our model drops significantly on WMT14 En-
De without embedding transformation while the
performance of IWSLT14 De-En drops 0.5 BLEU
scores. It shows that the embedding transformation
does improve the performance of NMT tasks while
it also means that the embedding transformation is
more important for rich-resource NMT tasks.

Models De-En En-De
PLM Embedding 37.0 29.5
+FWET 37.5 30.5

Table 5: The results of our model with embedding trans-
formation on IWSLT14 De-En and WMT14 En-De.

4.4 Effectiveness of PLMs in the Different
Components

For the effectiveness of PLMs in different parts
of our model, we evaluate our model by remov-
ing PLMs from the encoder or decoder. Table 4
shows the results of the evaluation. It shows that
the performance of our model drops significantly
on both tasks by removing PLMs from one part,
and our model performs worst without PLMs in the
encoder and decoder. It also shows that the model
without PLMs in the decoder performs better than
the model without PLMs in the encoder, which

shows that the PLMs are more important for the
encoder than the decoder.

5 Related Work

Various pre-trained language models (Peters et al.,
2018; Devlin et al., 2019; Dai et al., 2019; Liu
et al., 2019; Lan et al., 2020) have improved the
performance of various NLP tasks, which makes
designing and training PLM a popular task. It is
common to train a PLM for NMT tasks. Conneau
and Lample (2019) proposed two methods to learn
cross-lingual language models to provide improve-
ments on cross-lingual classification and NMT
tasks. Liu et al. (2020) proposed mBART which is
a multilingual seq2seq Transformer based denois-
ing auto-encoder and can achieve improvement of
performance on poor and medium resources NMT
tasks. Chen et al. (2021) proposed SixT model
to directly translate unseen languages using two-
stage training schedules. Xu et al. (2021) proposed
BiBERT which is a bilingual pre-trained language
model and can improve the performance on several
different NMT tasks. Weng et al. (2019) trained
a bi-directional self-attention language model to
generate representations and proposed two differ-
ent mechanisms to fuse representations into the
encoder and decoder respectively. Some works
also incorporate representations of PLM into NMT
model for improvements of performance. Imamura
and Sumita (2019) proposed a two-stage optimiza-
tion to fine-tune BERT for NMT model. Yang et al.
(2020) proposed a framework of knowledge distilla-
tion and dynamic switch to incorporate BERT into
NMT model. Zhu et al. (2020) proposed a BERT-
fused model which uses BERT as contextual em-
bedding to extract representations for sentences and
incorporate representations into each layer of the
encoder and the decoder through attention mecha-
nisms. Weng et al. (2022) proposed a framework to
deep fuse the representations into NMT by replac-
ing the encoder with BERT and using a layer-wise
coordination structure. AB-Net (Guo et al., 2020)
is based on a parallel sequence decoding algorithm
to improve the performance of non-autoregressive
and autoregressive NMT model.

6 Conclusion

To improve NMT by incorporating pre-trained
contextualized representations from PLM during
training, we propose a new monolingual PLM-
sponsored NMT model to enhance both encoder
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and decoder by replacing the randomly initialized
encoder and decoder with BERT. Besides, we also
propose a frequency-weighted embedding transfor-
mation algorithm to effectively exploit PLM em-
beddings in terms of the representations of NMT
decoder. All parameters including PLMs can be
trained together with MLM on both encoder and de-
coder instead of training PLM using NMT data first.
We evaluate our model on four NMT tasks,and the
experiment results show that our model with PLMs
can improve the performance of NMT model. Com-
pared to other works, our model can outperform
or achieve comparable results using smaller and
monolingual BERT with fewer parameters, which
also shows the effectiveness of our model. We also
evaluate our model with different model configura-
tions and study the characteristic of our model.

7 Limitations

Although our model can achieve better results com-
pared to other works, there are some limitations of
our model:

• Our model cannot use shared dictionary and
embedding on the encoder and decoder.

• Though the encoder and decoder can use
PLMs, the coordinator cannot use PLM.

• The half-layers knowledge distillation still
uses additional frozen BERT.
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