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Abstract

With a growing focus on morphological inflec-
tion systems for languages where high-quality
data is scarce, training data noise is a serious
but so far largely ignored concern. We aim at
closing this gap by investigating the types of
noise encountered within a pipeline for truly
unsupervised morphological paradigm comple-
tion and its impact on morphological inflec-
tion systems: First, we propose an error tax-
onomy and annotation pipeline for inflection
training data. Then, we compare the effect of
different types of noise on multiple state-of-the-
art inflection models. Finally, we propose a
novel character-level masked language model-
ing (CMLM) pretraining objective and explore
its impact on the models’ resistance to noise.
Our experiments show that various architec-
tures are impacted differently by separate types
of noise, but encoder-decoders tend to be more
robust to noise than models trained with a copy
bias. CMLM pretraining helps transformers,
but has lower impact on LSTMs.

1 Introduction

Neural morphological inflection has shown impres-
sive results for a huge variety of languages (Cot-
terell et al., 2016; Kodner et al., 2022). Perfor-
mance is impressive even for languages with very
little supervised inflection data, and often general-
izes to unseen lemmas. However, the language
settings that arguably stand to benefit the most
from these tools, those with extremely sparse nor-
malized texts, are less likely to have clean, gold-
standard data. Despite this, inflection training data
noise is rarely addressed nor evaluated in popular
benchmarks. Noise, like incorrect annotations, or
mixed dialects or orthographies, can arise in inflec-
tion data from web-scraping issues (Gorman et al.,
2019; McCarthy et al., 2020a), human error or
changes in writing standards in field data (Moeller
et al., 2020), or system errors when bootstrapping
silver-standard data in an unsupervised fashion
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(Kann et al., 2020; Erdmann et al., 2020; Wiemer-
slage et al., 2022). Unsupervised systems are also
prone to over-regularization, where the dataset con-
tains few or no irregular samples. Datasets derived
from FSTs or textbook examples can also display
over-regularization (Vylomova et al., 2020).

In this work, we investigate the impact of noise
on inflection generation systems. We build an auto-
matic pipeline for annotating inflection noise and
explore the noise distribution that arises in an unsu-
pervised system for bootstrapping inflection data.
We measure the impact of noise on several state-
of-the-art neural inflection generation systems that
we benchmark on the SIGMORPHON 2017 shared
task development set (Cotterell et al., 2017). Fi-
nally, we explore a novel character-level masked
language modeling (CMLM) pretraining objective
to mitigate the impact of noise during training.
By this, we aim to shed light on which architec-
tures and training methods are how robust to noise,
which types of inflection noise should be targeted
in filtering approaches, and how conservatively un-
supervised systems should sample inflection pairs.

We find that noise related to slot alignment is-
sues is more common, but also less impactful than
noise related to paradigm induction issues. Archi-
tectures with an inductive bias towards copying
from the lemma are more effective on datasets that
lack sample diversity, but more typical encoder-
decoder models are more robust to noise. Standard
encoder-decoders display better performance on
noisy data when pretrained with CMLM, which is
especially effective for the Transformer. Our code
and data are publicly available.'

2 Noisy Training Data

Our data comprises four languages: Icelandic, Ger-
man, Swedish, and Russian. We describe the
source of training data below.

1https ://github.com/Adamits/
morphological-inflection-noise
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| Deu Isl Rus Swe
Original 40956 32225 128326 59814
Annotated 6444 4735 14171 6054

Table 1: Size of training set for each language before
and after filtering out pairs that cannot be annotated.

tUMPC We focus on training data based on
Wiemerslage et al. (2022), who propose a system
for truly unsupervised morphological paradigm
completion (tUMPC). Starting with the Bible cor-
pus (McCarthy et al., 2020b) for a given language,
tUMPC first clusters data into paradigms using
the system from McCurdy et al. (2021). Sec-
ond, paradigms are clustered into parts-of-speech.
Finally, tUMPC aligns similarly inflected forms
across paradigms that belong to the same POS. The
result is a dataset of paradigms for which each type
is marked with its inflectional slot. We take all pos-
sible pairs of words from the tUMPC paradigms
to form inflection training data. This dataset is
likely to contain noise due to errors in the learning
process. In §4, we discuss this noise in detail.

UniMorph tUMPC relies on frequency thresh-
olds to find productive inflection transformations,
which makes it likely that morpho-phonological
variations and irregular inflections may not be well-
attested in the data. To control for the potential
lack of sample diversity in our training data, we
create a second training dataset wherein all samples
marked as correct are replaced by a pair sampled
from UniMorph (Sylak-Glassman et al., 2015; Bat-
suren et al., 2022), a database of morphological
paradigms covering hundreds of languages. We
sample pairs from the same MSDs as the tUMPC
correct samples. Following recent results (Liu
and Hulden, 2022; Goldman et al., 2022; Kodner
et al., 2022), we also ensure that the lemma over-
lap with the evaluation set is the same as in the
original tUMPC data. The resulting dataset has
higher lemma diversity, without introducing miss-
ing MSDs, and maintains lemma overlap with the
evaluation set. We combine this data with the noisy
training data from tUMPC to investigate the impact
of noise when sample diversity is less pervasive.

Slot Mapping tUMPC slots are arbitrary iden-
tifiers with no grammatical meaning. In order to
compare tUMPC to UniMorph, and because we
evaluate on a benchmark sampled from UniMorph,
we need to map each tUMPC slot to a unique Uni-

Morph slot. UniMorph slots are bundles of mor-
phological tags that express categories like person
or tense. We refer to these bundles as morpho-
syntactic descriptions (MSDs). Since the tUMPC
training pairs have low overlap with UniMorph,
we require a morphological analyzer to get ground
truth morphological tags of tUMPC types. Here,
we use morphological analyzers from Apertium
(Forcada et al., 2011), which we map to UniMorph
MSDs. Then, we apply the mapped Apertium to all
tUMPC types, resulting in ground truth MSDs for
every training sample in tUMPC. We also want the
slots predicted by tUMPC expressed as UniMorph
MSDs during training. For this, we compare the
unsupervised slot and gold MSD of all tUMPC
types and find the alignment that maximizes their
overlap following the evaluation metric from Jin
et al. (2020). Every training sample can then be
assigned the (noisy) MSD from this alignment. For
more details see Section A.1 in the appendix.
Many inflection pairs created by tUMPC could
not be reliably annotated by our pipeline and are
thus filtered out. Table 1 shows the amount of
training data before and after filtering. These are
inflection pairs that are not in the Apertium lexi-
con, but are also not determined to be noise. We
additionally filter pairs containing a form with an
Apertium analysis that we could not reliably map to
UniMorph due to disagreements between the two
resources. We compare the distribution of morpho-
logical tags for our dataset according to Apertium
before and after applying this filtering step, and
find no systematic difference. We conclude that re-
moving forms due to mapping errors does not bias
our data towards certain inflections. These filter-
ing steps remove a majority of data, but still leave
reasonably sized training sets for each language.

3 Related Work

Morphological Inflection Morphological inflec-
tion is the task of generating a word form given
a lemma and target MSD. For example, given the
verb laugh and the MSD expressing past tense,
the goal is to generate laughed. Encoder-decoder
neural approaches have largely dominated morpho-
logical inflection in recent years (Faruqui et al.,
2016; Kann and Schiitze, 2016), where the the full
target string is decoded from a neural network. But
neural models that bias the task towards transduc-
ing input strings have been shown to be successful
in low-resource data settings (Aharoni and Gold-
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berg, 2017; Makarov et al., 2017; Makarov and
Clematide, 2018; Sharma et al., 2018). Shared
tasks on morphological inflection (Cotterell et al.,
2016) have spurred large interest in the task, and
also serve as an evaluation benchmark.

Learning from Noisy Data Several approaches
have been proposed for mitigating the impact
of noise in machine learning, for example: con-
fidence weighting (Rebbapragada and Brodley,
2007), loss correction (Patrini et al., 2017), and
noise-contrastive estimation (Gutmann and Hyviri-
nen, 2010). For a recent survey on noise robust
neural networks, see Song et al. (2022). Most
approaches consider classification, framing noise
as label corruption. However, there is also work
exploring noise in tasks like machine translation
(Khayrallah and Koehn, 2018; Michel and Neubig,
2018), as well as morphological disambiguation
(Zalmout et al., 2018). We focus on morphological
inflection, a conditional generation problem.

Morphological Inflection with Training Noise
Morphological inflection with noisy data has
largely been unexplored. Moeller et al. (2020) re-
port gains in performance after manually cleaning
training data that were bootstrapped from interlin-
ear glossed texts. Nicolai and Silfverberg (2020)
find that exposing an inflection model to its own
mistakes leads to better generalizability. Our work
explores the impact of different types of noise that
occur in the training data in detail.

4 Noise Taxonomy

We develop an automated pipeline to annotate each
inflection pair from a taxonomy of noise, primar-
ily relying on rule-based morphological analyzers
for each language from Apertium. Here we de-
scribe each type of noise in our taxonomy, which
we organize into three categories: lemma errors,
paired errors, and MSD errors. For a description
of how each type of noise is detected, see Section
Appendix A.2 in the appendix.

4.1 Lemma Errors

We first describe noise in which a training sample
includes lexical items that should not be in the in-
flection training data at all. Lemma noise arises due
to issues inherent to the corpus (e.g. misspellings,
etc), or issues in which lexical items that were
sampled from the corpus (e.g. punctuation is not

B Correct -
Slot

mmm POS Pair

mmm POS

B Paradigm
Emm Lexicon

Rus

Isi Swe Deu

Figure 1: tUMPC noise distribution for all languages.

inflection data). We describe two types of noise
that fall into this category.

Lexicon Noise Any word type that is not in the
standard vocabulary of a given language is con-
sidered lexicon noise. We expect this noise to
come from archaisms, borrowings, and biblical
references. This means that lexicon noise could
follow the regular inflections of a language, and in
that case may have a low impact on downstream
inflection systems. It could also have a positive
impact by increasing training data size, likely with
higher lemma diversity. However, lexicon noise
could also entail archaic or borrowed inflections,
which would introduce non-existent transforma-
tions. In general, lexicon noise could also occur
due to language, dialect, or orthography mixing —
though we expect this to be somewhat rare in the
Bible corpora that we build upon.

POS Noise Not all parts of speech inflect, and
this varies by language. However, tUMPC some-
times induces spurious inflection pairs from words
that do not inflect, like conjunctions in most lan-
guages. Any word of a POS that does not inflect in
the given language is thus considered POS noise.
This is detected with the Apertium POS, but ul-
timately these samples will be assigned an MSD
from UniMorph with a POS that does inflect. See
Table 5 for the POS that inflect according to this
study.

While inflection pairs with POS noise may some-
times have real transformations, it is highly likely
that these add spurious inflections to the training
data. For this reason, we expect POS noise to con-
sistently cause mistakes in each system.

4.2 Paired Errors

Next we describe noise types in which valid lexical
items erroneously form an inflection pair. These
types of noise occur due to issues in the paradigm
induction algorithm that produced the inflection
data.
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POS Pair Noise Two words from different POS
forming an inflection pair constitutes POS pair
noise. This can occur when tUMPC puts two com-
pletely unrelated words in the same paradigm, but
this could also arise due to valid derivations. The
latter case could be considered a morphological
transformation that our model should learn. There
is debate around whether or not there is a clearly de-
fined distinction between inflection and derivation
(Haspelmath, 2023), but since our goal is to evalu-
ate on SIGMORPHON shared task data that does
not include derivation, we consider this noise in
our pipeline. POS pair noise should have a similar
impact as POS noise, except that due to derivations
we expect several of the induced transformations to
appear much more commonly in languages where
productive derivation is pervasive.

Paradigm Noise Pairs of forms that do not be-
long to the same paradigm but share a POS con-
stitute paradigm noise. An example in English is
warp — wraps, where wraps comes from a dif-
ferent paradigm than warp. Because paradigm
noise should contain target words expressing a
valid inflection, it is possible that it will not have
much negative impact on an inflection system’s de-
coder. However, since paradigm noise also contains
source forms that the target is not actually inflected
from, the full transformation from source to target
has the potential to be spurious. For instance, in
the warp — wraps example above, consider the
apparent a, r metathesis. This could cause models
relying on a bias towards transduction to struggle
more with paradigm noise than models relying pre-
dominantly on a decoder.

4.3 MSD Errors

Finally we describe noise consisting of assigning
the wrong MSD to an inflection. We have only a
single noise type here. It occurs due to issues in
the slot alignment algorithm.

Slot Noise When the target word in an inflection
pair has an incorrect MSD, we mark this as slot
noise. For example, consider an inflection cry —
cried, which is a valid inflection pair, but if, for
example, cried is incorrectly marked as the third
person present, this would be slot noise. Our train-
ing setup makes use of only the target slot — if only
the source form has an incorrect slot then a pair
is not marked as slot noise. This error results in
a mismatch of MSDs and inflectional transforma-
tions. So, for some paradigms, the output form for

an inflection can be thought of as swapped with
another output form in the same paradigm. If these
two forms are different, this is likely to confuse the
inflection system by presenting counter-evidence
to the correct inflection. Additionally, it is possible
that there are few to no correctly tagged instances
of rare or irregular inflection classes, causing a sys-
tem to confidently learn that, e.g., the past tense
inflection is the third person present tense.

4.4 Analysis

Figure 1 presents the noise distribution in the train-
ing data for each language according to our an-
notation pipeline. In German and Russian, there
is more correct data than noise, but in Icelandic
and Swedish, there is more noise than correct data.
We can also consider noise by its source of error
in tUMPC: either resulting from an error in slot
alignment, i.e. slot noise; an error in the corpus,
i.e. lexicon noise; or a paradigm induction error,
i.e. all other noise. Slot alignment issues are the
most common source of noise, though, for German
and Swedish, there are nearly as many paradigm
induction errors. More specifically, POS pair noise
is the most common noise type after slot noise, and
lexicon noise is the least common, most of which
occurs in Swedish.

S Experiments

5.1 Models

We compare four neural inflection generation sys-
tems. We implement a bidirectional LSTM with
attention (Kann and Schiitze, 2016, LSTM), a Trans-
former (Wu et al., 2021, Trm), a pointer generator
LSTM (Sharma et al., 2018, PtrGen), and we
use the Dynet implementation of (Makarov and
Clematide, 2018, M&C): a transducer optimized
with minimum risk training. For all other models,
our implementation is based on yoyodyne,2 which
is built on pytorch (Paszke et al., 2019). All models
follow the hyperparameters reported in the original
papers, with minor increases in epochs to ensure
that they converge. Explicit hyperparameters are
listed in the appendix in Table 6.

This gives us two classes of models: general
encoder-decoders (LSTM and Trm), which may
struggle for low-resource scenarios and under a
lack of sample diversity; and transducer-like mod-
els with a bias towards copying from the lemma
(Pt rGen and M&C), which are known to perform

21’1ttps ://github.com/CUNY-CL/yoyodyne
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Lang | MsC LSTM PtrGen Trm
Deu 28.38 23.14 31.34 21.42
Isl 2190 16.60 19.03 16.27
Rus 38.92 31.20 33.07 32.67
Swe | 3588 2234 26.05 25.68
Avg \ 31.27 2332 27.37 24.01

Table 2: Accuracy for the tUMPC training data.

Lang | M&C LSTM PtrGen Trm
Deu | 40.12 4598 42.06 34.75
Isl 31.28 28.64 30.00 32.00
Rus | 61.80 65.58 61.96 67.23
Swe | 54.20 49.32 47.57 53.43
Avg | 46.85 47.38 45.40 46.85

Table 3: Accuracy for the UniMorph training data.

better in low-resource scenarios by relying on mod-
eling character transduction. For all results that we
report, we train five of each model on the same five
random seeds and report the mean.

5.2 Evaluation

We evaluate on development sets from the SIG-
MORPHON 2017 shared task (Cotterell et al.,
2017). During training, we reuse the target MSDs
found through the mapping described in §2, which
match the SIGMORPHON target MSDs. Though
our training setup considers reinflection, we eval-
uate on inflection from a lemma. This small mis-
match in task has a minor negative impact on accu-
racy (Cotterell et al., 2016).

5.3 Experiment 1: Training on Noisy Data

We first benchmark each model on all four lan-
guages when trained on the full noisy dataset.

tUMPC In Table 2 we present the results when
models are trained on all data that we were able
to classify in our annotation pipeline, cf. Table 1.
M&C performs best on average, with Pt rGen per-
forming second best. Notably, both of these models
are designed with an inductive bias towards copy-
ing from the lemma. LSTM and Trm, which both
rely on an encoder-decoder that generates from the
vocabulary at every time-step, perform similarly to
one another. The largest training dataset, Russian,
is the most accurate for every model, and Icelandic,
the smallest dataset, is the least accurate.

UniMorph Table 3 shows a large increase in ac-
curacy for every language and model when com-
pared to tUMPC. This indicates that the tUMPC

data lacks diversity. Accuracy is similar for all
models on average, but LSTM’s accuracy is highest,
and Pt rGen’s is lowest. In a second experiment,
we sample UniMorph pairs from the tUMPC word-
length distribution in order to control for the fact
that many UniMorph words tend to be uncharac-
teristically long. This lowers the type frequency
of the dataset compared the the original UniMorph
sampling — which we interpret as reducing the
diversity — and results in a very small increase in
performance compared to training on the tUMPC
dataset. For results on UniMorph, we focus on the
initial, more diverse dataset.

5.4 Experiment 2: Quantity of Noise

We investigate how introducing randomly sampled
noise into a training dataset affects model perfor-
mance as the amount of noise increases. This char-
acterizes the behavior of models as each dataset
becomes noisier, and it also shows us at which
quantities noise becomes most problematic. We
first train models on data comprising only samples
that were annotated as correct in order to bench-
mark performance in the absence of noise. We then
partition all of the noisy samples into ten equally
sized splits. The x-axis in Figure 2 represents the
number of partitions that have been added to a
given dataset, so, at 10, we get the results in Tables
2 and 3, and, at 0, we have the results when all
noise is removed. Notice that the amount of noisy
data in a given partition depends on the language,
and represents one tenth of the total noise — we
focus our analysis on trends more so than perfor-
mance at any particular point. Here we analyze the
dotted lines, the solid lines represent the results of
Experiment 4 on CMLM.

tUMPC Every architecture is negatively im-
pacted by noise in German, with a huge negative
impact on M&C. Pt rGen behaves sporadically, in-
creasing performance when the last few noise par-
titions are introduced, and L.STM suffers the least
from noise. In Swedish, Icelandic, and Russian,
model performance tends to increase as noise is
introduced. This is consistent in Trm and LSTM
and not always true for M&C and Pt rGen.

The negative impact of noise on M&C in German,
and the somewhat sporadic behavior of Pt rGen
indicate that the classic encoder-decoder may be
more robust to noise. However, the ranking of mod-
els by accuracy does not tend to change over differ-
ent amounts of noise, demonstrating that they un-
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Figure 2: Change in accuracy as each dataset is augmented with noise. One tenth of the noisy data for a given
dataset is added to the dataset at each point, until all noise is added at point 10.

derperform on tUMPC. We see consistent increases
in performance in Swedish for all models. One ex-
planation for this could be that the large amount
of lexicon noise in Swedish tends to contain real
inflections that our models learn from. We addition-
ally see several other cases where LSTM and Trm
increase in accuracy as more noise is added. This
may simply be because they suffer from a lack of
sample diversity and more data helps even though
it is noisy.

UniMorph In the UniMorph dataset, M&C per-
formance steadily, and sometimes drastically, de-
creases as noise is introduced for every language.
In German, Pt rGen behaves sporadically again,
and both Trm and LSTM decrease in performance
as noise is added, with LSTM decreasing very
slowly. The same is true for Swedish and Icelandic,
where Trm and LSTM are less impacted by noise
than the copy models. All models besides M&C
seem relatively robust to noise in Russian.

This suggests that LSTM may be the most robust
to noise in our data on average, and that the models
with an inductive bias towards copying from the
lemma are less robust. In all languages but Rus-
sian, there is a distinct downward trend as noise is
added for every architecture. Russian is the largest
dataset and has more correct than noisy data. This
suggests that, with sufficient correct training data,
noise is less of a problem. Additionally, a large por-
tion of Russian noise are slot and paradigm noise,
which could feasibly have a less negative impact
on learning. This also shows that filtering out noisy
samples is most useful for M&C, and the negative
impact of noise is more severe for models trained
on higher sample diversity.

5.5 Experiment 3: Type of Noise

We investigate the impact of each noise type in our
annotation schema to see if certain noise types are
more important than others and if they affect ar-
chitectures differently. We produce k training data
sets, where each set comprises all of the correct
data and all of the samples that have been anno-
tated with one particular annotation so that we can
measure that annotation’s impact in isolation. Thus,
the impact of each annotation is both a function of
the errors entailed by it and the frequency of sam-
ples with that annotation. Because noise types can
co-occur on a single training sample, we consider
the unique combination of noise types as a single
annotation. Figure 3 presents the percent change
in accuracy over training on only the correct data
for each dataset, averaged over all languages. To
represent the effect of data size, we add the red line
to track the average training set size when a given
annotation is included.

tUMPC MsC, the best performing model, is most
negatively impacted by any single noise type in
both the tUMPC and the UniMorph dataset, which
supports the findings of the previous experiments.
POS noise, especially in combination with slot
noise has the largest negative impact. One explana-
tion for this is that M&C is trained to learn a policy
over edits on the input, framing inflection as a true
string transduction task. Since POS noise is likely
to add inflections that are not actually meaning-
ful, this may result in an edit policy that generates
made-up words.

Every model besides M&C gets better when the
slot annotation is included in the tUMPC dataset.
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Figure 3: Impact of noise by type. Each bar shows the % increase in accuracy when samples with the corresponding
annotation are added to a training set comprising only correct data. The red line represents the training data size

after adding those samples.

This may be due to the fact that there are a huge
number of slot annotations to learn from, meaning
each model is trained on a larger training set. Addi-
tionally, M&C may be less sensitive to slot errors as
it has a bias towards copying from the lemma — per-
haps the best M&C model trained on tUMPC ignores
some parts of the MSD. However, Pt rGen, which
also has a bias towards copying from the lemma,
increases in accuracy when any noise, especially
lexicon noise, is added to the data.

UniMorph Ms&C behaves similarly here, ex-
cept the slot annotations have a negative impact.
PtrGen still learns from some noise types, but
is generally less affected by any single noise type.
LSTM is almost completely unaffected by any sin-
gle noise type, which corroborates Experiment 2.
Trm behaves similarly to M&C, though the impact
on accuracy is smaller. This indicates that with suf-
ficiently diverse training data, LSTM is more robust
to noise than other models, and that Trm learns an
inductive bias that resembles M&C.

5.6 Experiment 4: CMLM Pretraining

We experiment with a simple character masked lan-
guage modeling (CMLM) pretraining objective as
a method for improving noise-robustness of each
model. Auto-encoding without masking has been
shown to impart a helpful inductive bias towards
copying from the lemma in low-resource morpho-

25 J I .
0 - = ——
-5 I UniMorph
-7.5 UniMorph corrects
M&C

I tUMPC
-12.5 Il tUMPC corrects

-15

LSTM Ptr Gen Trm

Figure 4: % change in accuracy from pretraining.

logical inflection (Kann and Schiitze, 2017). Mask-
ing can be thought of as additionally adding a de-
noising objective to auto-encoding, which may con-
tribute to more robust learning from noisy training
samples. We experiment with CMLM for every
model and analyze its effect on noisy training.

Implementation We follow the BERT masked
language modeling objective (Devlin et al., 2019)
with only minor adjustments. First, we mask char-
acters rather than subwords. Second, our sequences
will be shorter on average than BERT, so we in-
crease the mask probability from 0.15 to 0.2. In
practice, we follow RoBERTa (Liu et al., 2019)
and generate a new mask for each sample dynami-
cally at each epoch. Every unique type in a given
training set, without their MSDs, comprise the pre-
training dataset. We do not include additional types
in order to test whether CMLM itself is effective,
rather than the addition of data. Each model is
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otherwise trained in the exact same way as fine-
tuning with the same hyperparameters other than
number of epochs. The only exception is that we
train Pt rGen with a warm-up scheduler in order
to avoid over-fitting to copying the lemma. Exact
hyperparameters are in the appendix in Table 7.

Results Figure 4 shows the average percent
change in accuracy for each model in both datasets
when adding the pretraining objective. We find that
it has little effect for Pt rGen on average, and actu-
ally has a negative impact on M&C. We attribute this
to the fact that these models have an inductive copy
bias, which may be a large part of what CMLM
adds to the models. M&C might additionally be neg-
atively impacted if the imitation learning objective
overfits to the edits during pretraining. More experi-
mentation with pretraining objectives are needed to
understand this negative result, however. Our focus
is on the impact of pretraining on noise robustness.

LSTM is barely affected by pretraining on aver-
age. Trm, however, increases in accuracy in both
datasets when pretrained. It additionally increases
in accuracy when training on correct data only, sug-
gesting that CMLM may be generally beneficial to
Trm, not just in noisy settings. We note, however,
that the increase in accuracy is greater when noise
is included in both datasets.

CMLM by Noise Quantity We also reproduce
Experiment 2 in order to look more closely at the
impact of pretraining. We focus on the solid lines
in Figure 2, and compare them to the dotted lines
that represent the models that were not pretrained.

tUMPC For M&C, we see the negative impact
of pretraining is especially strong in German and
Swedish, and pretraining has little effect in other
languages. Pretraining benefits all other architec-
tures in Swedish and Icelandic, especially as noise
is added. In German and Russian, pretraining is not
beneficial to Pt rGen, but still helps Trm and, at
small amounts of noise, LSTM. Pretraining is also
beneficial when there is no noise in the dataset, but
to a lesser extent and not in every language.

UniMorph Ms&C shows performance increases in
German under small amounts of noise only. But in
every other language pretraining still impacts M&C
negatively. Similar to the tUMPC data, pretraining
benefits all other models in Icelandic and Swedish.
Even without noise, LSTM and Trm increase in
performance in Icelandic and to some extent in

Swedish and Russian. In German, Trm increases
massively in accuracy from pretraining, including
when there is no noise. All other architectures also
benefit from pretraining in German, but largely
only at small amounts of noise. Still, pretrained
LSTM is the best overall model for German in the
UniMorph dataset. In Russian, Trm is the only
pretrained architecture that performs better as noise
is introduced. Pretraining benefits LSTM in Russian
noise when there is no noise, however.

Trm is the only architecture for which CMLM
pretraining helps in every language and dataset.
Overall, pretraining is also clearly beneficial to
LSTM, and sometimes to Pt rGen. Pretraining is
particularly effective for these three architectures
in Swedish and Icelandic, especially as noise is
introduced to the datasets. Combined with the fact
that these two languages have more noisy than cor-
rect data, this implies that pretraining is effective
for noise-robust learning. Still, in many cases pre-
training leads to a gain in accuracy when there is
no noise in the dataset, implying that this learning
strategy is generally beneficial, especially for Trm.

6 Discussion

We find that low sample diversity has a strong im-
pact on performance of all models. The tUMPC
training setup favors architectures with a copy bias,
and demonstrates that models can learn from noisy
training samples when the dataset is not diverse.
We find that the low LSTM and Trm performance
is largely explained by low sample diversity. On the
other hand, they seem to be more robust to noisy
data, particularly LSTM, which has stable perfor-
mance as noise is added to the UniMorph dataset.
Pretraining with CMLM leads to further gains in
performance for LSTM, but the largest gains from
CMLM are for Trm. On average, Trm pretrained
with CMLM is the best performing model under
noise, when we have sufficient sample diversity.
When we look at specific noise in the data, we find
that slot alignment issues in tUMPC tend to have
low impact on every model. This could be for sev-
eral reasons: slot noise should be irrelevant under
high amounts of syncretism, which is abundant in
German, Icelandic, and Swedish. Additionally, as
models become more corrupted by noise, they may
rely on a bias towards copying from the source
form — which is unaffected by the slot.

We find that certain noise that results from errors
in paradigm induction are particularly impactful for
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M&C. This is especially true for POS noise, which
may motivate better POS induction in unsupervised
morphology systems. Under greater sample diver-
sity, Trm is similarly impacted by paradigm in-
duction errors. This suggests that Trm begins to
learn an inductive bias similar to M&C on noisy data.
The addition of almost any single noise annotation
leads to an increase in accuracy in Pt rGen, and
removing noise from the training data often im-
pacts Pt rGen negatively. However, Experiment 2
suggests that Pt rGen is not as robust to increas-
ing amounts of noise as other models. A lot of
reduction in accuracy may come from combina-
tions of different noise types, which is not captured
by Experiment 3. Future work could investigate
noise distributions by type with particular focus
on PtrGen behavior. We additionally find that
Mé&C is negatively impacted by CMLM pretraining.
We believe this may be due to overfitting its copy
bias and learning spurious transductions from the
masking objective. However, future work should
consider alternate pretraining strategies for M&C.
Overall this implies that, although copy mod-
els are preferred for training on low sample diver-
sity, classic encoder-decoders are a good choice
for noisy datasets with more diversity. Our results
indicate that POS and paradigm induction compo-
nents are more important for training data quality
than slot alignment in unsupervised systems and
that bootstrapping inflection pairs should prioritize
lemma diversity, even if it may induce noise.

7 Conclusion

We have investigated the impact of noise on state-
of-the-art neural morphological inflection models.
We find that the noise that arises in an unsuper-
vised system for bootstrapping inflection pairs is
frequently related to slot alignment errors, but that
those also have less impact on the models. We
have also compared two inflection architectures
with a copy bias to two typical encoder-decoder
models. We find that, though copy bias is helpful
under low sample diversity, the encoder-decoders
are more robust to noise. Finally, we find that a sim-
ple masked pretraining objective makes encoder-
decoders, and especially Transformers, more accu-
rate under noise.

8 Limitations

The largest limitation of this study is that our anno-
tation pipeline is automated. This makes it possible

that there are errors in the noise annotations that
we base our analysis on. Additionally, since we
capture a naturally occurring noise distribution, our
findings are coupled to the datasets we study here.
Our findings may not generalize to distributions of
noise in other datasets.
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A Appendix

A.1 Slot Mapping Details

We begin with each type processed by tUMPC,
which has a slot: an arbitrary identifier for its
POS and inflection category, and a (not disam-
biguated) morphological analysis from Apertium.
For example, given the German verb tragt, we
have a tUMPC slot 2. We additionally have the
analysis from Apertium with two possibilities:
an imperative plural verb (<vblex><imp><pl>)
or a second person present indicative plural verb
(<vblex><pri><p2><pl>).

Each possibility in the Apertium analysis is then
mapped to a UniMorph MSD via a mapping we
create that translates each tag one at a time. For
example, the tag <vblex> becomes V, in order to
match the UniMorph schema. After some language
specific post-processing heuristics, we get a set of
UniMorph MSDs from every Apertium analysis.

We can use these mapped analyses to align
tUMPC slots with UniMorph MSDs. Consider
our example above, fragt, where we would end
up with two possible MSDs: V;IMP;2;PL and
V;IND;PRS;2;PL. This forms a mapping from the
slot 2, to both of these MSDS. Due to tUMPC er-
rors, we may also erroneously get a mapping from
slot 2 to N;ACC;PL via some other word. This
gives us a mapping from three differing UniMorph
MSDs to one tUMPC slot. Over all such mappings,
this forms a bipartite graph between tUMPC slots
and UniMorph MSDs, where the same UniMorph
MSD may correspond to multiple tUMPC slots.
However, one tUMPC slot represents exactly one
MSD. We thus follow Jin et al. (2020) and attain a
one-to-one mapping from tUMPC slots to MSDs
by finding the matching that maximizes the overlap
of word types with an aligned slot and MSD. Like
them, we use the algorithm from Karp (1980) to
optimize this matching. Finally, the slot for ev-
ery training sample can be mapped to it’s MSD
according to this matching.

A.2 Noise Detection

Here we describe how our annotation pipeline de-
tects each type of noise. We rely on Apertium for
the entire pipeline. Though most noise is found
with original Apertium analysis, the analyses that
have been mapped to UniMorph MSDs are used
for detecting slot noise. .

3362


https://doi.org/10.18653/v1/N18-1087
https://doi.org/10.18653/v1/N18-1087

Language [ C LEX PDGM POS POS Pair SLOT [ Lemma Overlap MSD Overlap  Tag Overlap
deu 61.37 152 0.68 8.07 8.60 19.75 3.84 24.32 83.33

isl 3795 3091 2.11 15.59 8.17 32.27 3.24 60.61 95.65
rus 50.77 098 6.01 4.21 4.25 33.79 3.31 68.18 100.0
swe 27.90 11.36 5.48 8.39 15.66 31.20 1.94 69.33 93.1

Table 4: Statistics for each language’s training data. The % of samples with a given annotation (left). The % overlap
with the evaluation set for lemmas, MSDs, or individual tags (right).

Isl verb adjective noun

Deu | verb adjective noun prn

Rus | verb adjective noun prn numeral
Swe | verb adjective noun

Table 5: Parts of speech that inflect in our annotation
schema.

| M&C PtrGen LSTM Trm

Epochs 60 60 60 800

Batch size 1 32 20 400
Optimizer AD  adam AD adam

LR 1.0 0.001 1.0 0.001
Scheduler - - - inv. sqr root
Warmup - - - 4000

Total Params | 260k 1.1M 370k 7.4M

Table 6: Hyperparameters for each architecture. All
other hyperparameters follow their respective publica-
tions exactly. AD=ADADELTA.

Lexicon Noise We use three resources to form
the lexicon of each language: Apertium, Wikipedia,
and a python spellchecker3 based on hunspell4.
Any word not in any of these three is lexicon noise.

POS Noise Here we produce lists of POS that in-
flect for each language. Any word whose Apertium
analysis does not contain any valid POS according
to this list is considered POS noise. The valid POS
for each language are listed in Table 5.

POS Pair Here we consider all POS from Aper-
tium analysis of both words in a pair. If they have
no POS in common, then it is POS pair noise.

Paradigm For a given inflection pair, if both
words have no overlapping lemmas of the same
POS (but do have a shared POS) according to
Apertium, we consider them to be from separate
paradigms, and thus paradigm noise.

Slot  Slot noise occurs when the slot assigned to a
word by tUMPC is not in the set of slots from Aper-
tium analysis. We rely on the version of tUMPC

3https:// github.com/dvwright/phunspell
*http://hunspell.github.io/

|[M&C PtrGen  LSTM Trm
Pretrain epochs |40 40 40 200
Pretrain scheduler |- inv. sqr root - inv. sqr root
Pretrain warmup |- 100 - 1000

Table 7: Hyperparameters for each architecture during
pretraining.

and Apertium slots that have been mapped to Uni-
Morph for this part of the annotation. Slot noise
considers only the predicted and gold MSD for a
slot, so it can can co-occur on a single sample with
any other noise in the taxonomy.
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