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Abstract

The end-to-end task-oriented dialogue system
has achieved great success in recent years.
Most of these dialogue systems need to accom-
modate multi-domain dialogue in real-world
scenarios. However, due to the high cost of
dialogue data annotation and the scarcity of
labeled dialogue data, existing methods are dif-
ficult to extend to new domains. Therefore,
it is essential to use limited data to construct
multi-domain dialogue systems. To solve this
problem, we propose a novel domain attention
module. It uses distributional signatures to con-
struct a multi-domain dialogue system effec-
tively with limited data, which has strong ex-
tensibility. We also define an adjacent n-gram
pattern to explore potential patterns for dia-
logue entities. Experimental results show that
our approach outperforms the baseline mod-
els on most metrics. In the few-shot scenario,
we show our method gets a great improvement
compared with previous methods while keep-
ing a smaller model scale.

1 Introduction

Task-oriented dialogue systems (TOD) aim to as-
sist users in achieving specific goals, such as hotel
reservations or weather inquiries, through limited
dialogue turns. In contrast with chitchat systems,
task-oriented dialogues generate responses based
on a specific domain knowledge base (KB). Tradi-
tional pipeline methods (Young et al., 2013; Mrkšić
et al., 2017) suffer from error propagation and huge
cost for intermediate annotations such as dialogue
states and actions. Recently, end-to-end methods
(Madotto et al., 2018; Wu et al., 2019; Qin et al.,
2020; He et al., 2020a; Qin et al., 2021; Ou et al.,
2022) have achieved great success by taking the
sequence-to-sequence (Seq2Seq) model to gener-
ate system responses directly with dialogue history
and the specific domain knowledge base. These
approaches have the advantages that the dialogue
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I see no snow but there is a blizzard scheduled on thursday in 
downtown_chicago.

Is there a chance of snow in this weeks weather forecast?
Where do you want to know about snow for ? what city ?
Downtown_chicago please.

I have you scheduled for a reservation for 1 on sunday at 12:30.

I want to find some information on da_vinci_pizzeria.
I found da_vinci_pizzeria is a cheap restaurant in the north. Would 
you like me to make a reservation ?
Yes please. For one person at 12:30 on sunday.

Ok, I have scheduled the dinner for friday.

Schedule dinner at 3pm next_week with sister
What date next_week would you like the dinner to be scheduled ?
Friday.

Weather

Restaurant

Schedule

Name Area Food Price_range Postcode
da_vinci_pizzeria north Italian cheap cb41jy

City Date Low_temp. High_temp. Weather
downtown_chicago thursday 20f 30f blizzard

Knowledge Base

NULL

Figure 1: Example of multi-domain dialogue (including
weather, restaurant and schedule). Words with blue un-
derlines are entities. The importance of the same word
"scheduled" in different domains to dialogue semantics
is marked with different levels of red.

states and actions are latent, which alleviates the
need for intermediate annotations.

However, existing end-to-end models are still
trained on a large amount of domain-specific dia-
logue data and the corresponding knowledge base.
In practice, task-oriented dialogue systems are of-
ten applied to multiple domains. It is difficult for
end-to-end models to perform well for domains
with limited dialogue data. Hence, it is important
to explore how to use the data in the existing do-
main effectively and transfer the learned knowledge
to the new domain with limited data.

Many works are proposed for multiple domains.
These methods can be broadly divided into three
categories for dealing with different domains in the
dataset. The first type of work (Eric and Manning,
2017; Madotto et al., 2018; Wu et al., 2019; He
et al., 2020a,b; Raghu et al., 2021; Ou et al., 2022)
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Figure 2: (a) architecture of our model. (b) comparision between our method and DF-net.

does not distinguish between multi-domain data but
uses them jointly for training. The second type of
work (Wen et al., 2018; Qin et al., 2019) trains sep-
arate models for different domain data. The former
can make the model learn the shared knowledge
of dialogues in various domains and improve the
generalization ability of models. However, it can
not capture the special knowledge of each domain
effectively. The latter can model specific knowl-
edge of dialogues of different domains, but it is
challenging to extend to new domains with limited
data. The third type of work (Qin et al., 2020) pro-
poses a dynamic fusion mechanism to learn shared
and domain-independent knowledge and integrate
them with the dynamic fusion mechanism. How-
ever, the trained model cannot be flexibly extended
to new domains since the number of categories for
the domain classifier is predefined. In addition, set-
ting up separate encoders and decoders for each
domain adds additional computing overhead.

To address the above issues, we propose a novel
domain attention block, which leverages distribu-
tional signatures easily extracted from each domain
as prior knowledge. As shown in figure 1, we ob-
serve that the same word, which appears in differ-
ent domain dialogue contexts, often has different
effects on context understanding and response gen-
eration. Furthermore, the KB entities generally
have a fixed pattern when appearing in different
contexts. We adopt inverse word frequency, do-
main condition likelihood to model the former and
propose adjacent n-gram patterns to model the lat-
ter. Instead of one encoder-decoder framework for

each domain as figure 2(b), we use a single LSTM
to obtain the latent domain knowledge and bridge
the gap caused by statistic noise (Bao et al., 2020).
A domain feature fusion module is adopted to calcu-
late the similarity between context and each domain
feature and fuse the domain-specific attention ob-
tained by the prior knowledge of each domain. We
use an auxiliary domain loss to reduce the differ-
ence between semantic and signature blocks. Due
to learning from the distributional signatures of
each domain, our model can better capture general
and domain-specific knowledge of multi-domain
dialogue.

We conduct experiments on two publicly
multi-domain task-oriented dialogue datasets, In-
Car assistant(Eric et al., 2017) and Multi-WOZ
2.1(Budzianowski et al., 2018). Our model outper-
forms baseline models on most metrics. In a low
resource setting, our model outperforms the prior
state-of-the-art model by 1.4% in entity F1 and by
1.8% in BLEU on In-Car Assistant dataset.

2 Methodology

As shown in figure 2(a), given dialogue of do-
main d (d 2 D, D is the set of all domains) be-
tween user and system, our model takes the tokens
X = (x1, x2, ..., xT ) from dialogue history and the
corresponding multi-domain distributional signa-
tures Sd = (s1,d, s2,d, ..., sT,d) into semantic and
signature block respectively. Then we use the con-
text vector obtained by two blocks to initialize the
knowledge module. Finally, the decoder generates
final responses sequentially with the KB read-out
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vector and context hidden state.

2.1 Distributional Signatures

We obtain prior distributional signatures from
multi-domain dialogue data to learn the general
and domain-specific knowledge better.

Adjacent N-gram Patterns We propose adja-
cent n-gram patterns to model the fixed patterns of
dialogue data. It is calculated through the condi-
tional probability pcond of a forward or backward
adjacent n-grams x̂n in context.
8
>><
>>:

x̂n = (xi+1⇤Isign , xi+2⇤Isign , xi+n⇤Isign)

pn
d (x̂n) =

1

v

vX

xj

"

" + Pn
d (xj | x̂n)

(1)

where v is the vocab size. Isign is 1 for forward
n-gram �1 for backward n-gram.

Variable words near a fixed pattern are often re-
lated to entities. In other words, xi with larger pn

d

adjacent n-grams pattern is more likely to be an
entity in the dialogue domain as shown in figure
3. We take both forward and backward adjacent
n-grams pn

d (x̂n) as a feature of word xi. For imple-
mentation, we use nltk toolkit 1 (Bird et al., 2009)
to calculate the n-gram frequency of all dialog con-
texts.

Inverse Word Frequency Word frequency is an
important measure of the information that a word
provides in a dialog. Following Bao et al. (2020),
we reduce the weight of high-frequency words and
increase the weight of low-frequency words. We
define domain inverse word frequency iwfd.

iwfd(x) =
"

" + Pd(x)
, (2)

where " = 10�5, x is the word of domain d, and
Pd(x) is the unigram likelihood over domain d
data. The general inverse word frequency iwfg

is calculated in a similar way, in which Pd(x) is
replaced by Pg(x). Pg(x) is the unigram likelihood
over the whole dataset.

Domain Conditional Likelihood Important
words in a domain often play an essential role in the
semantics of the dialogue in that domain. There-
fore, we define a domain conditional likelihood cg

1https://github.com/nltk/nltk

set  a  schedule
would you like
forecast  for  tomorrow
give  me  address

away  from  whole_foods
away  from  webster_garage
the_westin is located
teavana is located

high pd low pd

Figure 3: Example of words with low and high pd

adjacent bi-grams. Words with red underlines is xi. The
entities are marked blue.

to estimate the role of a word in some domain.

cd(x) = P (d | x) (3)

cg(x) =
"

" + H(cd(x))
(4)

where cd(x) is determined by conditional proba-
bility instead of predicting by using a regularized
linear classifier (Bao et al., 2020). We employ an
entropy operator H to measure the uncertainty of
domain d.

In practice, we set the zero signatures mentioned
above to ". For adjacent n-gram patterns, we set
zero Pn

d (xj | x̂n) to " to calculate the final adjacent
n-gram patterns pn

d (x̂n). Finally, we use the con-
catenation of all signatures as the domain-specific
feature of a word.

2.2 Context Encoder
We divide the context encoder into two blocks to
encode the semantics and distributional signatures
of the contexts, respectively.

Semantic Block We first embed the dialogue
history tokens X = (x1, x2, ..., xT ) into a fixed-
dimensional word vector by using an embedding
matrix. Following Gangi Reddy et al. (2019), we
use the GloVe word vector to initialize the embed-
ding weight. Then, we employ a bidirectional GRU
(Cho et al., 2014) to encode the embedded dialogue
history.

hse
i = BiGRU(�emb(xi), h

se
i�1) (5)

where �emb(·) is the word embedding matrix. All
context hidden states Hse = (hse

1 , hse
2 , ..., hse

T )
are obtained by this way. Following Zhong et al.
(2018), we adopt simple self-attention over Hctx

to get the semantic attention of context.

ui = Wse,2(�(Wse,1h
se
i + bse,1)) (6)

ai =
exp(ui)P
j exp(uj)

(7)
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Figure 4: Detailed structure of encoder.

where � is an activation function. Wse,1, Wse,2,
bse,1 are trainable parameter. Finally, we get se-
mantic attention Attse = (ase

1 , ase
2 , ..., ase

n ) of the
dialogue history.

Signature Block We leverage the distributional
signatures si to capture the general and domain-
specific knowledge. However, there is much noise
in these data, which may interfere with the training
process. We take a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to bridge the gap follow-
ing Bao et al. (2020).

si,d = [iwfd(xi), iwfg(xi), cd(xi), cg(xi), p
n
d (xi)]

(8)

hsi
i,d = BiLSTM(si, h

si
i�1) (9)

where pn
d (xi) is concatenation of [p

np

d (xi)], np 2
{2, 3, 4}. Similar to the semantic block, we adopt
a self-attention layer over signatures hidden states
Hsi

d = (hsi
1,d, h

si
2,d, ..., h

si
T,d) to get signature at-

tention Attsi
d = (asi

1,d, a
si
2,d, ..., a

si
T,d). Finally, we

obtain nd signature attention and single context
attention.

Domain Feature Fusion To fuse multiple do-
main features, we propose a domain feature fusion
function based similarity between semantic atten-
tion Attse and signature attention Attsi

d as shown
in figure 4.

vd = hAttse, Attsi
d i (10)

ad =
exp(vd)P
di

exp(vdi
)

(11)

where h·i is scalar product function. We define
Pdomain = [a1, a2, ...adn ]. Then, We get the do-
main weights ad to merge all domain-specific at-
tention.

Attsi =
X

d

adAttsi
d (12)

Finally, we use the fused domain attention Attsi
d

and semantic attention Attse over Hse to get the
context vector c

cenc = Wenc[
X

i

ase
i hse

i ,
X

i

asi
i hse

i ] (13)

2.3 Knowledge Module
To obtain the knowledge needed to generate system
responses, the model needs to interact with the
knowledge base and get query results. We adopt the
memory network with the global-to-local pointer
mechanism (Wu et al., 2019) to encode and query
the external knowledge.

The external knowledge includes the correspond-
ing knowledge base Kd and dialogue history X .
The ith entity triplet ei = (ei,sub, ei,rel, ei,obj) is
represented as cm

i = BOW(Cm(e)). BOW(·)
is a bag of word function and Cm is an embed-
ding matrix for a k-hop memory network, where
m 2 {1, 2, ..., k}. We initialize the memory repre-
sentation in the encoder stage and query the mem-
ory model sequentially in the decoder stage.

Initialize Memory Representation We use the
final context vector cenc as the initial vector q1

init

to initialize the memory module. Then, we get
the global pointer gm

i through the k-hop mecha-
nism. The whole initialize process is calculated as
follows:

pm
i = Softmax(hqm

init, c
m
i i) (14)

gm
i = Sigmoid(hqm

init, c
m
i i) (15)

om
init =

X

i

pm
i cm+1

i (16)

qm+1
init = qm

init + om
init (17)

where om
init is the weighted sum over cm

i . We ob-
tain a memory read-out vector qk+1

init to initialize
the decoder. The last hop global pointer gk

i is used
to strengthen the KB entities representation that
appears in contexts in the decoder stage.

Query Memory Module We get a context vector
ct,dec in the t step of the decoder stage and use
it to query the memory module. We apply the
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global pointer to give different weights to each
entity. Then, we calculate the similarity between
context vector and entity representations based on
the dot product to obtain the copy probability of
entities.

pm
i,t = Softmax(hct,dec, c

m
i gk

i i) (18)

We define the query result as the last hop probabil-
ity P kb

t = [pk
1,t, p

k
2,t, ..., p

k
T+b,t, ]. We can select

the word for generated responses with the highest
pk

i,t.

2.4 Attention Decoder
We apply a sketch decoder to first generate a coarse
response in which sketch tags substitute all the
entities. For example, a sentence "dish_parking is
five_miles away" is written as "@poi is @distance
away". Then we use the copied entity as mentioned
in section 2.3 to replace the sketch tag.

We adopt a Bi-GRU to generate coarse responses
and use the concatenation of KB read-out vector
qk+1

init and the last context hidden states hse
T as the

initial vector (different with memory initialization
in section 2.3)

hdec
0 = Wconcat[q

k+1
init , hse

T ] + bconcat (19)

hdec
t+1 = BiGRU(�emb(xt), h

dec
t ) (20)

where xt is the generated token at t timestep of
the decoder. We adopt the attention mechanism
(Bahdanau et al., 2015) to reduce the information
loss between the encoder and decoder. In addition,
we add the coverage mechanism (See et al., 2017)
to reduce excessive attention on specific contexts.

et
i = vT tanh(Weh

se
i , Wdh

dec
t , wcc

t
i + ba) (21)

at = Softmax(et) (22)

cdec,t =
X

i

at
ih

dec
t (23)

P vocab
t = Softmax(V [hdec

t , cdec,t] + b) (24)

where cdec,t is used as a query vector to interact
with the knowledge module.

Finally, we generate the coarse responses
through the final probability P vocab

t . If a sketch
tag is in coarse responses, we use P kb

t to obtain the
corresponding entity.

2.5 Joint Training
To encourage the semantic module to learn more
from distributional signatures modules, we design

a domain feature loss Ldomain to close the gap
between the two blocks. The final loss function is
defined as:

Ldomain =
X

d

�yd log ad (25)

Lcoverage =
X

i

min(at
i, c

t
i) (26)

L = Lbasic + Ldomain + Lcoverage (27)

where yd 2 {0, 1} and Lbasic is same as GLMP
(Wu et al., 2019). The details about Lbasic can be
found in appendix A.1.

3 Experiment

3.1 Datasets
We conducted the experiments on two publicly
available task-oriented dialogue datasets, which
include two multi-domain datasets: In-Car As-
sistant (Eric et al., 2017) and Multi-WOZ 2.1
(Budzianowski et al., 2018). We follow the par-
tition as Madotto et al. (2018); Wu et al. (2019)
on In-Car Assistant and Qin et al. (2020) on Multi-
WOZ 2.1. More details about the two datasets are
presented in appendix A.2.

3.2 Experimental Settings
We set n to {2, 3, 4} for adjacent n-gram pattern
signatures. The model is trained using Adam op-
timizer (Kingma and Ba, 2015) and learning rate
starts from 1e�3 to 1e�4. We select dropout rate
from {0.2, 0.3} and batch size from {8, 16, 32}.
We also use the pre-trained GloVe vector (Penning-
ton et al., 2014) to initialize our embedding. The
words not in GloVe are initialized using Glorot uni-
form distribution (Glorot and Bengio, 2010). The
hidden units of GRU are set to the same dimension
with embedding. We adopt an exponential schedule
sampling(Bengio et al., 2015) in the decoder stage.
You can find more details about hyper-parameters
in appendix A.3.

3.3 Baselines
(1) Mem2Seq (Madotto et al., 2018) adopts a mem-
ory network to encode KB and combines the vo-
cabulary and entity probability through a hard gate.
(2) GLMP (Wu et al., 2019) applies the global-to-
local pointer mechanism to query the knowledge
module.
(3) KB-retriever (Qin et al., 2019) retrieves the
most relevant KB row and filters the irrelevant in-
formation in the whole process.
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In-Car Assistant Multi-WOZ 2.1

Model BLEU F1 Calendar
F1

Weather
F1

Navigate
F1 BLEU F1 Restaurant

F1
Attraction

F1
Hotel

F1
Mem2Seq 12.6 33.4 49.3 32.8 20.0 6.6 21.6 22.4 22.0 21.0

GLMP 13.9 60.7 54.6 56.5 53.0 6.9 32.4 38.4 24.4 28.1
KB-retriever 17.2 59.0 71.8 57.8 52.5 - - - - -

Fg2Seq 16.8 61.1 73.3 57.4 56.1 13.5 36.0 40.4 41.7 30.9
DA-HIMN 16.2 61.2 73.8 60.6 54.3 9.2 37.7 39.3 37.4 36.1

DFNet 14.4 62.7 73.1 57.9 57.6 9.4 35.1 40.9 28.1 30.6
CD-NET 17.8 62.9 75.4 61.3 56.7 11.9 38.7 41.7 38.9 36.3

Our model 18.0 63.0 72.3 55.2 61.4 12.3 39.5 41.2 45.5 37.0

Table 1: Performance of our model and baselines on the In-Car Assistant and Multi-WOZ 2.1 datasets. The best
results are bolded, and the second best results are underlined.

Model Entity F1
test �

full model 63.0
w/o Domain Loss 62.0 1.0
+ w/o Signature Block 61.4 1.6
w/o coverage attention 61.8 1.2
origin model 60.7 2.3

Table 2: Ablation study on In-Car Assistant dataset.

(4) DFnet (Qin et al., 2020) adopts a dynamic fu-
sion mechanism to learn shared knowledge and
domain-independent knowledge.
(5) Fg2Seq (He et al., 2020a) uses a flow operation
to strengthen the connection between the dialogue
history and the knowledge base.
(6) CD-NET (Raghu et al., 2021) proposes a pair-
wise similarity-based KB distillation to enhance
the relation between KB and context.
(7) DA-HIMN (Ou et al., 2022) combines request-
aware with KB-aware to better capture the latest
request of users.

We run their code for DA-HIMN to obtain the
results on Multi-WOZ2.1. For the rest of baselines,
we adopt the results reported from their paper.

3.4 Results

We adopt the micro Entity F1 and BLEU as our
evaluation metrics following (Madotto et al., 2018;
Wu et al., 2019; Qin et al., 2020). The results on the
two datasets are shown in Tabel 1. We can see that
our model outperforms baselines on most metrics.
We mainly compare our model with GLMP and
DF-net, which are similar frameworks. Our model
outperforms DF-net 0.3% and 4.4% in entity F1 on
In-Car Assistant and Multi-WOZ2.1, respectively.
We also exceed 3.3% over DF-net in BLEU on
average. In addition, our model also outperforms
GLMP 4.7% and 4.8% in entity F1 and BLEU on
average. The results indicate that the signature
block and all distributional signatures effectively

help the model to learn different domain knowledge
and mitigate the domain bias.

3.5 Analysis
We discuss the validity of the model through exper-
iments on In-Car Assistant dataset from the follow-
ing aspects. We first conduct ablation experiments
to verify the effectiveness of our model and explore
the role of different signatures. Then we evaluate
our model in a low resource setting and calculate
the model size compared with DF-net and GLMP.
Finally, we use practical cases to demonstrate the
effectiveness of the method.

3.5.1 Ablation
Ablation of Components We conduct some ab-
lation experiments on our model. The results are
shown in Table 2. (1) We first remove the domain
loss and just keep the signature block. Our model
achieves 62.0% in entity F1 with a drop of 1.0%.
The performance drop demonstrates that domain
loss is critical for instructing the semantic module.
(2) Based on (1), we remove the whole signature
block, and F1 score drops to 61.4%, indicating that
distribution signatures obviously contribute to the
model’s performance. (3) Then, we remove the
coverage context attention mechanism. The perfor-
mance of the model decreases significantly. The
covering attention mechanism indirectly affects the
performance of querying knowledge base in the
generation process by influencing the generation
process of the model.

Ablation of signatures We evaluate our model
with different signatures to explore their role in the
model. We mainly care about the relation between
word features (inverse word frequency and domain
conditional likelihood) and adjacent n-gram pat-
terns. In addition, we also study the n value of ad-
jacent n-grams. The experiment results are shown
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(a)  Navigation domain (b)  Schedule domain (c)  Weather domain (d)  Average performance

Figure 5: Main results of domain adaption on In-Car Asisstant dataset.
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Figure 6: Ablation of different signatures combinations.

in figure 6. It can be seen that model only us-
ing word features gets a good result because the
word features have a strong relationship with the
domain. Our model achieves the best performance
when n 2 {2, 3, 4}. When n set adds 1, it has a
little drop in entity F1. This may be caused by
many short patterns unrelated to entities interfering
with the learning process of the model. The per-
formance drops significantly when n set removes
4, which indicates our model suffers from the lack
of short pattern features. We also observe that
model only using adjacent n-gram patterns has bad
performance. The domain loss can not capture the
relation of different domains without word features.

3.5.2 Domain Adaption

We follow Qin et al. (2020) to conduct domain
adaption experiments. We keep two domain data
unchanged and use different ratio resources of
the last domain data. The ratio is selected from
[1%,5%,10%,20%,30%,50%]. We adopt the same
GloVe vector and dimension to DF-net and GLMP
to remove the influence of irrelevant factors. As
shown in figure 5, We can observe that our model
achieves competitive results with DF-net and has
significant improvement over GLMP in total. Par-
ticularly, our model gets 1.8% higher in BLEU than
DF-net. It is because we use the hidden states in-
stead of context vector over attention to initialize
the decoder. In addition, we find that our model

Model Model Scale Size growth
per domain

GLMP 8.68 3.8 (0)
DF-net 34.07 8.4 (4.6)

Our model 12.23 3.8 (0)

Table 3: Comparison of model size and size growth
with the number of domains (MB). Model size growth
without word embeddings is in parentheses.

performs poorly when the training set ratio is low.
It indicates that inaccurate distributional signatures
of low-ratio training set bring bias to our model.

3.5.3 Model Scale
We compare our model size with other baselines in
the same setting as shown in Table 3. Our model
has 3.6MB larger than GLMP and 21.8MB smaller
than DF-net. In addition, DF-net sets up an in-
dependent encoder and decoder for each domain.
The model size grows by 4.6MB per extra domain,
except for word embedding. However, we achieve
competitive results with a smaller model scale,
which does not change much with the increase of
the dialogue domains. It denotes that our signatures
block improves the efficiency of our model.

3.5.4 Case Study
We use some cases of dataset to analyze the ef-
fects of our method, which are given in Table 4.
We observe that our model generates more fluent
responses with right information. In case 1, our
model generates right entities compared with DF-
net and the response is more fluent than GLMP. The
question of case 2 mentions ’next’, which requires
the model to make judgments based on the time
attribute of dinners. Our model outperforms other
baselines and obtains the right information from
KB in this situation. In addition, our model can
better generate complex responses like case 3 for
which other baseline models fail to produce smooth
sentences. Our generated response is informative
and grammatically correct.
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dialog examples
KB [palo_alto_garage_r, 481_amaranta_ave, parking_garage, car_collision_nearby, 1_miles]

Question where is a nearby parking_garage ?
Response the nearest one is palo_alto_garage_r , it s just 1_miles away

GLMP [palo_alto_garage_r] is [1_miles] away. (Right info.)
DF-net [stanford_oval_parking] is [1_miles] away. (Wrong poi info.)

Our model the closest parking_garage is [palo_alto_garage_r] , it s [1_miles away]. (Right info. and fluent response)
KB [dinner, jon, the_11th, 6pm]

Question what time is my next dinner event and who will be attending ?
Response the one at 6pm with jon is on the_11th.

GLMP your next dinner is on the_11th at [5pm] with [jon]. (Wrong time info.)

DF-net you have two dinner scheduled one on the_20th with [jon] and one on the_11th with tom and one
on [6pm] with [jon]. (Wrong problem understanding)

Our model your next dinner is on the_11th at [6pm] with [jon]. (Right understanding and info.)
KB [manhattan, wednesday, high, 50f, low, 40f, hail]

Question what will be the temperature in manhattan on wednesday ?
Response it appears as if there will be a low of 40f and a high of 50f.

GLMP the temperature in manhattan will be on wednesday. (Wrong senmantics)
DF-net the weather in manhattan will be wednesday on monday. (Wrong senmantics)

Our model the temperature in manhattan will be low of [40f] , high of [50f] on wednesday. (Right temp. info.)

Table 4: Comparing the generated responses with GLMP and DF-net on examples of different domain.

4 Related Work

Existing end-to-end approaches to modeling multi-
domain datasets can be divided into three cate-
gories. The first strand of work trains the model on
the mixed data directly. Madotto et al. (2018) first
adopts end-to-end memory network (Sukhbaatar
et al., 2015) to encode KB items and dialogue
contexts. Wu et al. (2019) proposes a global-to-
local pointer mechanism to improve the accuracy
of querying KB based on the memory network.
Our model retains the main framework of Wu et al.
(2019). He et al. (2020a) uses a flow operation to
strengthen the connection between the dialogue his-
tory and the knowledge base. Raghu et al. (2021)
also propose a pairwise similarity-based KB dis-
tillation to achieve the same purpose as He et al.
(2020a). Ou et al. (2022) combines request-aware
with KB-aware to better capture the latest request
of users. Xie et al. (2022) models task-oriented
dialogues as a text-to-text task and fine-tunes the
T5 model (Raffel et al., 2020) on the mixed dataset.
These works treat data from different domains
in the same way, which ignores domain-specific
knowledge. The second strand of work trains sep-
arate models for each domain. Wen et al. (2018)
use the dialog state representation of some domain
to query the knowledge base. Qin et al. (2019)
restricts the query result from a single KB record.
They both only focus on domain-specific knowl-
edge and lack general knowledge. The third strand
of work (Qin et al., 2020) proposes a dynamic fu-
sion network to handle multi-domain dialog, which
needs multiple encoder-decoder for each domain

and lacks flexibility.

The distributional signature of text data contains
rich semantic and structural knowledge. Bao et al.
(2020) uses the distributional signature to generate
general and class-specific attention and improve
text classification performance. In our work, we
leverage the dialogue data signature of different
domains instead of classes. Following Bao et al.
(2020), we employ a Bi-LSTM (Hochreiter and
Schmidhuber, 1997) to bridge the gap caused by
statistic noise. In addition, we take inspiration
from Zhong et al. (2010), which proposes an effec-
tive pattern taxonomy model. We design adjacent
n-gram patterns to discover entities better in the
dialogue context. To our best knowledge, we are
the first to use distributional signatures to model
multi-domain task-oriented dialog.

5 Conclusion

In this work, we propose a domain attention module
with distributional signatures of dialogue corpus
to capture domain-specific knowledge. We com-
bine the features of different domains in an extensi-
ble way, and a domain loss is used to instruct our
model to learn better from signatures. In addition,
we define a adjacent n-gram pattern to mine the
KB entities in the dialogue context. We also adopt
attention with a coverage mechanism to improve
the quality of generated responses. Extensive ex-
periments have demonstrated the effectiveness of
our method.
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7 Limitation

Although our model achieves competitive results
with baseline models, some limitations are summa-
rized as follows.

1. The process of extracting data distributional
signatures is time-consuming, especially for
datasets with more diverse dialogue patterns.
The process of calculating adjacent n-grams
is slow. In addition, repeated string manipula-
tion for long texts also needs to be optimized

2. The experiment results are easily affected by
the fluctuation of hyper-parameters, especially
the signature block hidden size. There is some
noise in the distributional signatures. Under
different hyper-parameters, noise may have
different effects and directly affect experiment
results.

3. Our model performs poorly when the training
set is too small. The distributional signatures
of small data interfere with the model.

8 Ethics Statement

This paper proposes a domain attention module
with distributional signatures to better learn the
domain-specific and general knowledge. We also
define an adjacent n-gram pattern to mine the en-
tities in the context. We work within the purview
of acceptable privacy practices and strictly follow
the data usage policy. We use public datasets and
consist of their intended use in experiments. We
described our experimental setting in detail to en-
sure reproducibility. We neither introduce any so-
cial/ethical bias to the model nor amplify any bias
in the data, and our work will not have any social
consequences or ethical issues.
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A Appendix

A.1 Loss function
The terms Lbasic in loss function is same as Wu
et al. (2019).

Lbasic = Lg + Lv + Ll (28)

where Lv and Lg are the cross entropy of token
and local pointer, Ll is the binary cross entropy
of global pointer. The labels of global and local
pointer are determined by entities of responses.

ĝm =

(
0 if Object(em) 2 Y

1 otherwise
(29)

l̂t =

(
max(z) if9z, s.t. yt = Object(ez)

T + b + 1 otherwise
(30)

where Y = (y1, y2, ..., yn) is the groud truth of re-
ponses. Object(·) is function to extract the object
of triplet. The loss of three terms is calculated as:

Lg = �
b+TX

m=1

ĝm log gm + (1 � ĝm) log(1 � gm)

(31)

Ll = �
nX

t=1

�l̂t log P kb
t (32)

Lv = �
nX

t=1

�ŷt log P vocab
t (33)

Then we sum the three terms up to get Lbasic.
You can find more details about the global-to-local
pointer mechanism in Wu et al. (2019).

A.2 Dataset
We follow the partition as Madotto et al. (2018);
Wu et al. (2019) on In-Car Assistant and Qin et al.
(2020) on Multi-WOZ 2.1. The details are about
two dataset as tabel 5

Dataset In-Car Assistant
Vocab size 1651

Avg. dialog turns 2.6
Avg. length of sent. 8.1

Domain
Dialogs

Navigate Weather Schedule
1000 996 1035

Partition Train Dev Test
2425 302 304

Dataset Multi-Woz2.1
Vocab size 3725

Avg. dialog turns 4.6
Avg. length of sent. 14.4

Domain
Dialogs

Restaurant Attraction Hotel
1309 150 635

Partition Train Dev Test
1839 117 141

Table 5: Details of two multi-domain dataset.

A.3 Hyper-parameters

We set the encoder-decoder hidden size from
{100,200} and signature block from {25, 50, 100}.
We use the glove.6b word vector to initialize the em-
bedding matrix of the encoder and decoder. Then
we random initialize the embedding matrix of the
memory network. For tokens with ’_’, we first split
them into a token list and use the BOW of word
vectors. We adopt an exponential schedule sam-
pling for decoding, and the schedule is calculated
as He et al. (2020a):

tfr =
↵

↵ + e
epoch

↵ � 1
(34)

where tfr is sampling probability from ground
truth. We set ↵ from {10, 15, 20}. For adjacent
n-gram patterns, we set n from {2, 3, 4}.

A.4 Experiment details

For the main experiment results, we adopt the
reported results of baselines except DA-HIMN.

For the ablation study, we train our model on
the hyper-parameter set to get the best result of
different signatures.

For the domain adaption experiment results, we
rerun the code of DF-net and GLMP. To avoid
the influence of model dimensions and pre-trained
word vectors on the experimental results, we adopt
the same model dimensions (200d) and GloVe vec-
tors (glove.6B.200d) for our model and the baseline
model. Word vectors are used in the same way as
in A.3

For model scale, we add the Multi-WOZ2.1 dataset
based on In-Car Assistant to initialize the lang. We
calculate the model size in the same model dimen-
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sion setting and compute the size growth on aver-
age of the three domains of Multi-WOZ2.1.
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