
Findings of the Association for Computational Linguistics: ACL 2023, pages 3062–3077
July 9-14, 2023 ©2023 Association for Computational Linguistics

Improved Logical Reasoning of Language Models via Differentiable
Symbolic Programming

Hanlin Zhang1,∗Jiani Huang2,∗ Ziyang Li2 Mayur Naik2 Eric Xing1,3,4

1Carnegie Mellon University, 2University of Pennsylvania,
3Mohamed Bin Zayed University of Artificial Intelligence, 4Petuum Inc.

Abstract

Pre-trained large language models (LMs) strug-
gle to perform logical reasoning reliably de-
spite advances in scale and compositional-
ity. In this work, we tackle this challenge
through the lens of symbolic programming. We
propose DSR-LM, a Differentiable Symbolic
Reasoning framework where pre-trained LMs
govern the perception of factual knowledge,
and a symbolic module performs deductive
reasoning. In contrast to works that rely on
hand-crafted logic rules, our differentiable sym-
bolic reasoning framework efficiently learns
weighted rules and applies semantic loss to
further improve LMs. DSR-LM is scalable,
interpretable, and allows easy integration of
prior knowledge, thereby supporting extensive
symbolic programming to robustly derive a log-
ical conclusion. The results of our experiments
suggest that DSR-LM improves the logical rea-
soning abilities of pre-trained language models,
resulting in a significant increase in accuracy of
over 20% on deductive reasoning benchmarks.
Furthermore, DSR-LM outperforms a variety
of competitive baselines when faced with sys-
tematic changes in sequence length.1

1 Introduction

Complex applications in natural language process-
ing involve dealing with two separate challenges.
On one hand, there is the richness, nuances, and
extensive vocabulary of natural language. On the
other hand, one needs logical connectives, long rea-
soning chains, and domain-specific knowledge to
draw logical conclusions. The systems handling
these two challenges are complementary to each
other and are likened to psychologist Daniel Kah-
neman’s human “system 1” and “system 2” (Kah-
neman, 2011): while the former makes fast and in-
tuitive decisions, akin to neural networks, the latter

∗Equal contribution
1Code available at https://github.com/moqingyan/dsr-lm

Language Model Symbolic Reasoner

• Rapid reasoning
• Sub-symbolic knowledge
• Handling noise, ambigui-

ties, and naturalness
• Process open domain text
• Can learn in-context

• Multi-hop reasoning
• Compositionality
• Interpretability
• Data efficiency
• Can incorporate domain-

specific knowledge

Table 1: Respective advantages of language models
and symbolic reasoners.

thinks more rigorously and methodically. Consid-
ering LMs as “system 1” and symbolic reasoners
as “system 2”, we summarize their respective ad-
vantages in Table 1.

Although pre-trained LMs have demonstrated
remarkable predictive performance, making them
an effective “system 1”, they fall short when asked
to perform consistent logical reasoning (Kassner
et al., 2020; Helwe et al., 2021; Creswell et al.,
2022), which usually requires “system 2”. In part,
this is because LMs largely lack capabilities of
systematic generalization (Elazar et al., 2021; Hase
et al., 2021; Valmeekam et al., 2022).

In this work, we seek to incorporate deductive
logical reasoning with LMs. Our approach has the
same key objectives as neuro-symbolic program-
ming (Chaudhuri et al., 2021): compositionality,
consistency, interpretability, and easy integration
of prior knowledge. We present DSR-LM, which
tightly integrates a differentiable symbolic reason-
ing module with pre-trained LMs in an end-to-end
fashion. With DSR-LM, the underlying LMs gov-
ern the perception of natural language and are fine-
tuned to extract relational triplets with only weak
supervision. To overcome a common limitation
of symbolic reasoning systems, the reliance on
human-crafted logic rules (Huang et al., 2021; Nye
et al., 2021), we adapt DSR-LM to induce and fine-
tune rules automatically. Further, DSR-LM allows
incorporation of semantic loss obtained by logi-
cal integrity constraints given as prior knowledge,

3062

https://github.com/moqingyan/dsr-lm

which substantially helps the robustness.
We conduct extensive experiments showing that

DSR-LM can consistently improve the logical rea-
soning capability upon pre-trained LMs. Even if
DSR-LM uses a RoBERTa backbone with much
less parameters and does not explicitly take triplets
as supervision, it can still outperform various base-
lines by large margins. Moreover, we show that
DSR-LM can induce logic rules that are amenable
to human understanding to explain decisions given
only higher-order predicates. As generalization
over long-range dependencies is a significant weak-
ness of transformer-based language models (Lake
and Baroni, 2018; Tay et al., 2020), we highlight
that in systematic, long-context scenarios, where
most pre-trained or neural approaches fail to gen-
eralize compositionally, DSR-LM can still achieve
considerable performance gains.

2 Related Work

Logical reasoning with LMs. Pre-trained LMs
have been shown to struggle with logical reason-
ing over factual knowledge (Kassner et al., 2020;
Helwe et al., 2021; Talmor et al., 2020a). There is
encouraging recent progress in using transformers
for reasoning tasks (Zhou et al., 2020; Clark et al.,
2021; Wei et al., 2022; Chowdhery et al., 2022;
Zelikman et al., 2022) but these approaches usu-
ally require a significant amount of computation
for re-training or human annotations on reason-
ing provenance (Camburu et al., 2018; Zhou et al.,
2020; Nye et al., 2021; Wei et al., 2022). Moreover,
their entangled nature with natural language makes
it fundamentally hard to achieve robust inference
over factual knowledge (Greff et al., 2020; Saparov
and He, 2022; Zhang et al., 2022).

There are other obvious remedies for LMs’ poor
reasoning capability. Ensuring that the training
corpus contains a sufficient amount of exemplary
episodes of sound reasoning reduces the depen-
dency on normative biases and annotation arti-
facts (Talmor et al., 2020b; Betz et al., 2020; Hase
et al., 2021). Heuristics like data augmentation are
also shown to be effective (Talmor et al., 2020b).
But the above works require significant efforts for
crowdsourcing and auditing training data. Our
method handily encodes a few prototypes/tem-
plates of logic rules and is thus more efficient in
terms of human effort. Moreover, our goal is funda-
mentally different from theirs in investigating the
tight integration of neural and symbolic models in
an end-to-end manner.

Neuro-symbolic reasoning. Neuro-symbolic
approaches are proposed to integrate the percep-
tion of deep neural components and the reasoning
of symbolic components. Representative works can
be briefly categorized into regularization (Xu et al.,
2018), program synthesis (Mao et al., 2018), and
proof-guided probabilistic programming (Evans
and Grefenstette, 2018; Rocktäschel and Riedel,
2017; Manhaeve et al., 2018; Zhang et al., 2019;
Huang et al., 2021). To improve compositional-
ity of LMs, previous works propose to parame-
terize grammatical rules (Kim, 2021; Shaw et al.,
2021) but show that those hybrid models are ineffi-
cient and usually underperform neural counterparts.
In contrast to the above works, DSR-LM focuses
on improving LMs’ reasoning over logical propo-
sitions with tight integration of their pre-trained
knowledge in a scalable and automated way.

3 Methodology

3.1 Problem Formulation

Each question answering (QA) example in the
dataset is a triplet containing input text x, query
q, and the answer y. Figure 1 shows an instance
that we will use as our running example. The input
text x is a natural language passage within which
there will be a set of entities, possibly referenced
by 3rd person pronouns. The sentences hint at
the relationships between entities. For example,
“Dorothy went to her brother Rich’s birthday party”
implies that Rich is Dorothy’s brother and Dorothy
is Rich’s sister. The query q is a tuple of two enti-
ties, representing the people with whom we want to
infer the relation. The expected relation is stored in
the answer y, which will be one of a confined set of
possible relationsR, allowing us to treat the whole
problem as an ∣R∣-way classification problem. We
focus only on the problems where the desired rela-
tion is not explicitly stated in the context but need
to be deduced through a sequence of reasoning.

3.2 Methodology Overview

The design of DSR-LM concerns tightly integrat-
ing a perceptive model for relation extraction with
a symbolic engine for logical reasoning. While we
apply LMs for low-level perception and relation
extraction, we employ a symbolic reasoning mod-
ule to consistently and logically reason about the
extracted relations. With a recent surge in neuro-
symbolic methods, reasoning engines are made
differentiable, allowing us to differentiate through

3063

Loss

Predicted Query Output

0.01::kin(sister, A, D)
0.02::kin(father, A, D)
...
0.84::kin(niece, A, D)

kin(r3, x, z) :- co(r1, r2, r3),
 kin(r1, x, y), kin(r2, y, z).
kin(r, y, x) :- sym(r), kin(r, x, y).
...

0.99::co(son, son, grandson)
0.01::co(father, sister, son)
...
0.98::co(brother, son, nephew)

Input Text

0.92::kin(daughter, K, R)
0.05::kin(sister, K, R)
...
0.03::kin(father, K, A)
0.89::kin(sister, K, A)
...
0.95::kin(uncle, J, B)

Language
Model

Differentiable Symbolic Reasoner

Rich's daughter Kelly made
dinner for her sister Kim.
Dorothy went to her brother
Rich's birthday party. Anne
went shopping with her
sister Kim. Julia decided to
call her uncle Benjamin on
his birthday. Frank took his
son Charles and daughter
Rachel out for pizza.

Ground Truth Query Output

kin(niece, A, D)

Query

kin(r, A, D)?

forall(a, b: kin(father, a, b) =>
 kin(son, b, a) ∨ kin(daughter, b, a))

Semantic Loss (weighted sum)

Question

How is Dorothy
related to Anne?

Probabilistic Input Facts

Figure 1: Overview of DSR-LM with a motivating example where “Anne is the niece of Dorothy” should be
logically inferred from the context. We abbreviate the names with their first initials in the relational symbols.

the logical reasoning process. In particular, we em-
ploy Scallop (Huang et al., 2021) as our reasoning
engine. We propose two add-ons to the existing
neuro-symbolic methodology. First, some rules
used for logical deduction are initialized using lan-
guage models and further tuned by our end-to-end
pipeline, alleviating human efforts. Secondly, we
employ integrity constraints on the extracted rela-
tion graphs and the logical rules, to improve the
logical consistency of LMs and the learned rules.

Based on this design, we formalize our method
as follows. We adopt pretrained LMs to build re-
lation extractors, denotedMθ, which take in the
natural language input x and return a set of prob-
abilistic relational symbols r. Next, we employ
a differentiable deductive reasoning program, Pϕ,
where ϕ represents the weights of the learned logic
rules. It takes as input the probabilistic relational
symbols and the query q and returns a distribution
over R as the output ŷ. Overall, the deductive
model is written as

ŷ = Pϕ(Mθ(x), q). (1)

Additionally, we have the semantic loss (sl) de-
rived by another symbolic program Psl computing
the probability of violating the integrity constraints:

lsl = Psl(Mθ(x), ϕ) (2)

Combined, we aim to minimize the objective J
over training set D with loss function L:

J(θ, ϕ) = 1∣D∣ ∑(x,q,y)∈Dw1L(Pϕ(Mθ(x), q), y)
+w2Psl(Mθ(x), ϕ),

(3)
where w1 and w2 are tunable hyper-parameters to
balance the deduction loss and semantic loss.

3.3 Relation Extraction

Since pre-trained LMs have strong pattern recog-
nition capabilities for tasks like Named-Entity-
Recognition (NER) and Relation Extraction (RE)
(Tenney et al., 2019; Soares et al., 2019), we adopt
them as our neural components in DSR-LM. To
ensure that LMs take in strings of similar length,
we divide the whole context into multiple windows.
The goal is to extract the relations between every
pair of entities in each windowed context. Con-
cretely, our relation extractorMθ comprises three
components: 1) a Named-Entity Recognizer (NER)
to obtain the entities in the input text, 2) a pre-
trained language model, to be fine-tuned, that con-
verts windowed text into embeddings, and 3) a
classifier that takes in the embedding of entities
and predicts the relationship between them. The
set of parameters θ contains the parameters of both
the LM and the classifier.

We assume the relations to be classified come
from a finite set of relations R. For example in
CLUTRR (Sinha et al., 2019), we have 20 kin-
ship relations including mother, son, uncle, father-
in-law, etc. In practice, we perform (∣R∣ + 1)-
way classification over each pair of entities, where
the extra class stands for “n/a”. The windowed
contexts are split based on simple heuristics of
“contiguous one to three sentences that contain at
least two entities”, to account for coreference res-
olution. The windowed contexts can be overlap-
ping and we allow the reasoning module to deal
with noisy and redundant data. Overall, assum-
ing that there are m windows in the context x,
we extract mn(n − 1)(∣R∣ + 1) probabilistic re-
lational symbols. Each symbol is denoted as an
atom of the form p(s, o), where p ∈ R ∪ {n/a}
is the relational predicate, and s, o are the two
entities connected by the predicate. We denote

3064

the probability of such symbol extracted by the
LM and relational classifier as Pr(p(s, o) ∣ θ). All
these probabilities combined form the output vector
r =Mθ(x) ∈ Rmn(n−1)(∣R∣+1).
3.4 Differentiable Symbolic Inference

The symbolic inference modules Pϕ and Psl are
responsible for processing the extracted relations to
deduce 1) an expected output relation inR, and 2) a
semantic loss encoding the probability of constraint
violation. There are two main objectives for these
modules. First, they need to logically reason about
the output relation and the semantic loss based on
the extracted relational symbols r, the query q, and
the rule weights ϕ. Second, they need to compute
the gradients of ŷ and lsl with respect to θ and
ϕ, namely ∂ŷ

∂θ , ∂ŷ
∂ϕ , ∂lsl

∂ϕ , and ∂lsl
∂θ , in order for the

fine-tuning and rule learning to happen.

Logical deduction. Logic rules can be applied
to known facts to deduce new ones. For example,
below is a horn clause, which reads “if b is a’s
brother and c is b’s daughter, then c is a’s niece”:

niece(a, c) ← brother(a, b) ∧ daughter(b, c).
Note that the structure of the above rule can
be captured by a higher-order logical predicate
called “composite” (abbreviated as comp). This
allows us to express many other similarly struc-
tured rules with ease. For instance, we can
have comp(brother, daughter, niece) and
comp(father, mother, grandmother) . With
this set of rules, we may derive more facts based on
known kinship relations. In fact, composition is the
only kind of rule we need for kinship reasoning. In
general, there are many other useful higher-order
predicates to reason over knowledge bases, which
we list out in Table 2.

Predicate Example
transitive transitive(relative)

symmetric symmetric(spouse)
inverse inverse(husband,wife)
implies implies(mother, parent)

Table 2: Higher-order predicate examples.

Probability propagation. We seek to have the
deduced facts to also be associated with probabili-
ties computed using probabilities predicted by the
underlying relation extractorMθ. This is achieved
by allowing the propagation of probabilities. For

example, we have the proof tree with probabilities:
0.9 ∶∶ brother(D,R) 0.8 ∶∶ daughter(R,K)

0.72 ∶∶ niece(D,K)
In practice, there could be multiple steps in the
proof tree (multi-hop) and one fact can be derived
by multiple proof trees. We employ the inference
algorithms based on approximated weighted model
counting (WMC) presented in (Manhaeve et al.,
2018) to account for probabilistic inference under
complex scenarios. Since the WMC procedure is
augmented for differentiation, we can obtain the
gradient ∂ŷ

∂r . From here, we can obtain ∂ŷ
∂θ = ∂ŷ

∂r
∂r
∂θ ,

where the second part can be automatically derived
from differentiatingMθ.

Rule learning. Hand-crafted rules could be ex-
pensive or even impossible to obtain. To allevi-
ate this issue, DSR-LM applies LMs to help au-
tomatically extract rules, and further utilizes the
differentiable pipeline to fine-tune the rules. Each
rule such as comp(brother, daughter, niece)

is attached a weight, initialized by prompting an
underlying LM. For example, the prompt we use
for extracting comp(r,p,q) is “one’s r’s p is their
<q:mask>”. Given that the relations r, p, q ∈ R,
DSR-LM automatically enumerates r and p fromR while querying for LM to unmask the value of q.
LM then returns a distribution of words, which we
take an intersection withR. The probabilities com-
bined form the initial rule weights ϕ. This type of
rule extraction strategy is different from existing ap-
proaches in inductive logic programming since we
are exploiting LMs for existing knowledge about
relationships.

Note that LMs often make simple mistakes an-
swering such prompt. In fact, with the above
prompt, even GPT-3 can only produce 62% of
composition rules correctly. While we can edit
prompt to include few-shot examples, in this work
we consider fine-tuning such rule weights ϕ within
our differentiable reasoning pipeline. The gradient
with respect to ϕ is also derived with the WMC
procedure, giving us ∂ŷ

∂ϕ . In practice, we use two
optimizers with different hyper-parameters to up-
date the rule weights ϕ and the underlying model
parameter θ, in order to account for optimizing
different types of weights.

Semantic loss and integrity constraints. In gen-
eral, learning with weak supervision label is hard,
not to mention that the deductive rules are learnt as
well. We thereby introduce an additional semantic

3065

loss during training. Here, semantic loss is derived
by a set of integrity constraints used to regular-
ize the predicted entity-relation graph as well as
the learnt logic rules. In particular, we consider
rules that detect violations of integrity constraints.
For example, “if A is B’s father, then B should be
A’s son or daughter” is an integrity constraint for
relation extractor—if the model predicts a father
relationship between A and B, then it should also
predict a son or daughter relationship between B
and A. Encoded in first order logic, it is

∀a, b, father(a, b)⇒ (son(b, a) ∨ daughter(b, a)).
Through differentiable reasoning, we evaluate the
probability of such constraint being violated, yield-
ing our expected semantic loss. In practice, arbi-
trary number of constraints can be included, though
too many interleaving ones could hinder learning.

4 Experiments

We evaluate DSR-LM on both CLUTRR and
DBpedia-INF. We show that DSR-LM has accurate
and generalizable long-range reasoning capability.

4.1 Datasets

CLUTRR (Sinha et al., 2019) consists of kinship
reasoning questions. Given a context that describes
a family’s routine activity, the goal is to deduce
the relationship between two family members that
is not explicitly mentioned in the story. Although
the dataset is synthetic, the sentences are crowd-
sourced and hence there is a considerable amount
of naturalness inside the dataset. The family kin-
ship graph is synthetic and the names of the family
members are randomized. For ablation study, we
manually crafted 92 kinship composition rules as
an external symbolic knowledge base. This yields
the following symbolic information for each data-
point: 1) the full kinship graph corresponding to
the story, 2) the symbolic knowledge base (KB),
and 3) a query representing the question. The
CLUTRR dataset is divided into different difficul-
ties measured by k, the number of facts used in
the reasoning chain. For training, we only have
10K data points with 5K k = 2 and another 5K
k = 3, meaning that we can only receive supervi-
sion on data with short reasoning chains. The test
set, on the other hand, contains 1.1K examples with
k ∈ {2, . . . ,10}.

DBpedia-INF is a curated subset of the evalua-
tion dataset used in RuleBert (Saeed et al., 2021).
Similar to CLUTRR, it is generated synthetically

to test the reasoning capability of LMs. Given a
synthetic passage describing the relation between
entities, and soft deductive logic rules, we aim to
deduce the relationship between any two entities.
The symbolic program of DBpedia-INF consists
of 26 predicates, 161 soft rules mined from DB-
pedia, and 16 rules defining the negation and sym-
metricity between the predicates. The difficulty
of the questions is represented in terms of reason-
ing length from k ∈ {0, . . . ,5}.2 Larger k implies
harder question. Compared to the exact dataset
used in Rulebert, we clean it in order to ensure the
question-answer pairs are logically consistent and
probabilistically correct.

4.2 Experimental Setup
Implementation. We employ Scallop (Huang
et al., 2021) as the differentiable symbolic infer-
ence module. We show the program used for
CLUTRR reasoning task in Figure 2. It comprises
relation type declarations, deductive rules for kin-
ship reasoning, and integrity constraints for com-
puting semantic loss (attached in the Appendix).
The program used for DBpedia-INF is written in
a similar manner with additional high-order predi-
cates listed in Table 2.

Pre-trained LMs for fine-tuning. We used the
HuggingFace (Wolf et al., 2019) pre-trained w2v-
google-news-300, RoBERTa-base, and DeBERTa-
base as the pretrained language models. We fine-
tune RoBERTa-base and DeBERTa-base during
training with binary cross entropy loss. Our rela-
tion extraction module is implemented by adding
an MLP classifier after the LM, accepting a con-
catenation of the embedding of the two entities and
the embedding of the whole windowed context.

Our model. Our main model, DSR-LM, uses
RoBERTa as the underlying LM. The relation clas-
sifier is a 2-layer fully connected MLP. For training,
we initialize ϕ by prompting the LM. To accelerate
the learning process, we use multinomial sampling
to retrieve 150 rules for symbolic reasoning. Dur-
ing testing, we will instead pick the top 150 rules.
We use two Adam optimizer to update θ and ϕ,
with learning rate 10−5 and 10−2 respectively.

For ablation studies, we present a few other mod-
els. First, we ablate on back-bone LMs. Specifi-
cally, we have DSR-LM-DeBERTa which uses De-

2A length of 0 means that the hypothesis can be verified
using the facts alone without using any rules.

3066

// Relation declaration
type kinship(rela: String, subject: String, object: String)
type query(subject: String, object: String)
type composite(r1: String, r2: String, r3: String)
// Rules to derive the final answer
rel kinship(r3,a,c) = kinship(r1,a,b), kinship(r2,b,c), composite(r1,r2,r3), a != c
rel answer(r) = query(s, o), derive(r, s, o)
// Integrity constraints (6 for kinship graph and 2 for rule learning)
rel violation(!r) = r := forall(a, b: kinship(FATHER, a, b) =>

kinship(SON, b, a) or kinship(DAUGHTER, b, a)) // Other constraints are omitted...

Figure 2: The Scallop program used in the CLUTRR reasoning task.

BERTa as the back-bone LM. DSR-w2v-BiLSTM,
on the other hand, uses as back-bone the word2vec
(Mikolov et al., 2013) model for word embedding
and BiLSTM (Huang et al., 2015) for sequential en-
coding. For DSR-LM-with-Manual-Rule we treat
the logic rules as given, meaning that we provide
92 composition rules for CLUTRR and around 180
rules for DBpedia-INF. In this case, we set ground
truth rules to have 1.0 weight and therefore ϕ is
not learnt. Then, we have DSR-LM-without-IC
which does not have integrity constraints and se-
mantic loss. Lastly, we have DSR-without-LM that
takes ground truth structured entity relation graph
as input. This way, we do not need the underlying
relation extractor and only ϕ needs to be learned.

Baselines. We compare DSR-LM with a spec-
trum of baselines from purely neural to logically
structured. The baselines include pretrained large
language models (BERT (Kenton and Toutanova,
2019) and RoBERTa (Liu et al., 2019)), non-LM
counterparts (BiLSTM (Hochreiter and Schmid-
huber, 1997; Cho et al., 2014) and BERT-LSTM),
structured models (GAT (Veličković et al., 2018),
RN (Santoro et al., 2017), and MAC (Hudson and
Manning, 2018)), and other neuro-symbolic mod-
els (CTP (Minervini et al., 2020), RuleBert (Saeed
et al., 2021)). The structured models include those
models with relational inductive biases, while the
neuro-symbolic model uses logic constraints.

Baseline setup. We highlight a few baselines we
include for completeness but are treated as unfair
comparison to us: GAT, CTP, and GPT-3 variants.
All baselines other than GAT and CTP take as input
natural language stories and the question to produce
the corresponding answer. GAT and CTP, on the
contrary, takes entity relation graph rather than
natural language during training and testing.

The model sizes are different across baselines as
well. Model size generally depends on two parts,
the backbone pre-trained LM, and the classifica-

tion network built upon the LM. GPT-3 contains
175B parameters, and RoBERTa uses 123M param-
eters. The classification model of our method has
2.97M parameters (assuming using embeddings
from RoBERTa). With extra 10K parameters for
rule weights, our DSR-LM framework has around
127M parameters.

For GPT-3 variants, we conduct experiments on
CLUTRR with GPT-3 under the Zero-Shot (GPT-3
ZS), GPT-3 Fine-Tuned (GPT-3 FT), and Few(5)-
Shot (GPT-3 5S) (Brown et al., 2020), as well as
Zero-Shot-CoT (GPT-3 ZS-CoT) (Kojima et al.,
2022a) settings. For fair comparison, we also in-
clude the ground truth kinship composition knowl-
edge in GPT-3 zero shot (GPT-3 ZS w/ Rule), and 5
shot (GPT-3 5S w/ Rule). We include the prompts
we used and additional details in Appendix A.

DSR-L
M

DSR-w
2v

-B
iLS

TM

GPT-3
ZS

GPT-3
5S

GPT-3
ZS-C

oT

GPT-3
FT

GPT-3
ZS

w/ R
ule

GPT-3
5S

w/ R
ule

RoB
ERTa

BERT

BERT-L
STM

MACRN

BiLS
TM-M

ea
n

BiLS
TM-A

tt

0

20

40

60
60.98

40.39

28.630.9
25.6

34.3

26.4

33.134.5

19.5

34.8
38.539.9

34.937

28.630.9
25.6

34.3

26.4

33.134.5

19.5

34.8
38.539.9

34.937

A
cc

ur
ac

y
(%

)

Figure 3: DSR-LM’s performance on CLUTRR comp-
ared with various baselines

4.3 Experimental Results
DSR-LM systematically outperforms a wide
range of baselines by a large margin. We eval-
uate DSR-LM and baselines on both CLUTRR and
DBpedia-INF, as reported in Figure 3 and Table 3.

In the CLUTRR experiment, DSR-LM achieves
the best performance among all the models (Fig-
ure 3). Next, we examine how models trained on
stories generated from clauses of length k ≤ 3 and

3067

Test Length DSR-LM RuleBert
Overall 95.87 72.59

0 100.0 98.40
1 100.0 54.80
2 98.4 75.20
3 89.2 64.00
4 88.1 69.89
5 100.0 72.29

Table 3: DBpedia-INF generalization evalu-
ation under different test reasoning length.
Models are trained on 10K reasoning length
k = 0 sequences, and tested on sequences of
reasoning length k = [0,5].

Confidence Learnt Rules
1.154 mother(a,c)← sister(a,b) ∧ mother(b,c)
1.152 daughter(a,c)← daughter(a,b) ∧ sister(b,c)
1.125 sister(a,c)← daughter(a,b) ∧ aunt(b,c)
1.125 father(a,c)← brother(a,b) ∧ father(b,c)
1.123 granddaughter(a,c)← grandson(a,b) ∧ sister(b,c)
1.120 brother(a,c)← sister(a,b) ∧ brother(b,c)
1.117 brother(a,c)← son(a,b) ∧ uncle(b,c)
1.105 brother(a,c)← daughter(a,b) ∧ uncle(b,c)
1.104 daughter(a,c)← wife(a,b) ∧ daughter(b,c)
1.102 mother(a,c)← brother(a,b) ∧ mother(b,c)
.

Table 4: The learnt top-10 confident logic rules over CLUTRR.

2 4 6 8 10

25

50

75

100

k, length of reasoning chain

A
cc

ur
ac

y
(%

)

Ours BiLSTM-Mean BERT RoBERTa

RN BiLSTM-Att BERT-LSTM MAC

(a) Comparison to common baselines

2 4 6 8 10

25

50

75

100

k, length of reasoning chain

A
cc

ur
ac

y
(%

)

Ours GPT-3 ZS GPT-3 ZS-CoT GPT-3 ZS w/ Rule

GPT-3 FT GPT-3 5S GPT-3 5S w/ Rule

(b) Comparison to GPT-3 related baselines

Figure 4: Systematic generalization performance comparison on CLUTRR dataset. Models except GPT-3-ZS*,
GPT-3-FS are trained (or fine-tuned) on k ∈ {2,3}. All models are tested on k ∈ {2, . . . ,10}.
evaluated on stories generated from larger clauses
of length k ≥ 4. A fine-grained generalizabil-
ity study reveals that although all models’ perfor-
mances decline as the reasoning length of the test
sequence increases, pure neural-based models de-
crease the fastest (Figure 4a and 4b). It manifests
the systematic issue that language models alone
are still not robust for length generalization (Lake
and Baroni, 2018). On the other hand, the perfor-
mance of DSR-LM decreases much slower as test
reasoning length increases and outperforms all the
baselines when k ≥ 4.

In the DBpedia-INF experiment, DSR-LM out-
performs RuleBert by 37% in terms of overall per-
formance (Table 3), showing that DSR-LM has
much more robust generalization. Recall that Rule-
Bert aims to improve the logical reasoning of LMs
by straightforward fine-tuning with soft rules and
facts. Our results show that augmenting data alone
for fine-tuning do not effectively improve system-
aticity. Meanwhile, DSR-LM imbues reasoning
inductive biases throughout training and learns use-
ful rules to generalize to longer reasoning lengths.

Learning interpretable logic rules. DSR-LM is
capable of producing explicit logic rules as part of

the learning process. For presentation, we show the
top-10 rules learnt from DSR-LM model in Table 4.
We compare the top-92 most likely prompted and
fine-tuned rules against the 92 hand-crafted rules,
and 70 of them match. Additionally, we find that
our rule weight fine-tuning helps correct 11 of the
incorrect rules produced by LM. Through this qual-
itative analysis, it is clear that DSR-LM provides
an interface to probe and interpret the intermediate
steps, enhancing the interpretability.

GPT-3 variants are inferior in long-range rea-
soning. Interestingly, ZS scores 28.6% accuracy
on CLUTRR while ZS-CoT scores 25.6%, sug-
gesting that the chain-of-thought prompting might
not work in long-range reasoning (Figure 3). In
fact, there are many cases where GPT-3 favors
complication over simplicity: GPT-3 frequently an-
swers “stepdaughter”, “stepmother”, and “adopted
son”, while the real answers are simply “daugh-
ter”, “mother”, and “son”. Additionally, GPT-3
could derive the correct result for the wrong rea-
son, e.g. “Jeffrey is Gabrielle’s son, which would
make William her grandson, and Jeffrey’s brother.”
While we count the final answer to be correct
(William is Jeffrey’s brother), there is a clear in-

3068

consistency in the reasoning chain: William cannot
be Gabrielle’s grandson and Jeffrey’s brother si-
multaneously, given that Jeffrey is Gabrielle’s son.
Lastly, we observe that, both GPT-3 FT and many
other methods have an accuracy drop as k becomes
larger (Figure 4b), ZS and ZS-CoT stay relatively
consistent, suggesting that the size of context and
the reasoning chain may have a low impact on GPT-
3’s performance.

4.4 Analyses and Ablation Studies
Symbolic reasoner consistently improves LMs
and word embeddings. Since DSR-LM has
a model agnostic architecture, we study how
the choice of different LMs impacts the reason-
ing performance. As shown in Table 5, the
two transformer-based models have on-par perfor-
mance and outperform the word2vec one. However,
note that the word2vec-based model still has bet-
ter performance than all other baselines. Besides
higher final accuracy, the pre-trained transformer-
based language model also accelerates the train-
ing process. Both DSR-LM-RoBERTa and DSR-
LM-DeBERTa reach their best performance within
20 epochs, while it takes DSR-w2v-BiLSTM 40
epochs to peak.

Model Accuracy (%)
DSR-LM (RoBERTa) 60.98 ± 2.64
DSR-LM-DeBERTa 60.92 ± 2.72
DSR-w2v-BiLSTM 40.39 ± 0.06

Table 5: Ablation study about neural backbones of
DSR-LM. We compare the CLUTRR performance of
DSR-LM using different LMs.

Incorporate domain knowledge. DSR-LM al-
lows injecting domain specific knowledge. In DSR-
LM-with-Rule, we manually crafted 92 rules for
kinship reasoning to replace the learnt rules. As
shown in Table 6, it obtained a 0.36% performance
gain over DSR-LM. The fact that the improvement
is marginal implies our method extracts useful rules
to obtain on-par performance with manually crafted
ones. DSR-LM-without-IC, our model without in-
tegrity constraints specified on predicted relations
and rules, performs worse than DSR-LM, suggest-
ing that logical integrity constraints are essential
component for improving the model robustness.

The impact of the relation extractor. To under-
stand what causes the failure case of DSR-LM, we
study the performance of our relation classification
model separately. We isolate the trained relation

Model Accuracy (%)
DSR-LM 60.98 ± 2.64

DSR-LM-without-IC 51.48 ± 0.57
DSR-LM-with-Manual-Rule 61.34 ± 1.56

Table 6: Ablation study. We compare our model’s per-
formance on CLUTRR with different setups.

extractor and found that it reaches 84.69% accu-
racy on the single relation classification task. For
comparison, we train a relation extractor using all
the intermediate labels in the training dataset, and it
reaches 85.32% accuracy. It shows that even using
only weak supervision (i.e., the final answers to
multi-hop questions), our approach can reach on-
par performance as supervised relation extraction.

Reasoning over structured KBs. To understand
the rule learning capability of our approach, we de-
sign our ablation model DSR-without-LM to take
as input ground-truth KBs instead of natural lan-
guage. In this case, rule weights are not initialized
by LM but randomized. As shown in Table 7, our
model outperforms GAT and CTP which also op-
erates on structured KBs. It demonstrates that our
differentiable rule learning paradigm learns rules
to reason about KBs consistently.

Model Accuracy (%)
GAT 39.05
CTP 95.57

DSR-without-LM 98.81

Table 7: DSR-without-LM compared against GAT and
CTP on reasoning with ground truth KBs. For this
comparison we train on k ∈ [2,3] and test on k ∈ [4,10].
Failure cases of DSR-LM. We showcase in Ap-
pendix Table 8 that even state-of-the-art large LMs
are prone to logical fallacies. On the other hand,
the failure case of our method usually occurs in the
stage of relation extraction. For example, for the
following sentence “Christopher and Guillermina
are having a father-daughter dance”, our RoBERTa
based relation extractor fails to recognize the father-
daughter relationship but rather thinks C and G
have a husband-wife relationship. We require most
of the relation extraction to be correct in order to
avoid cascading error. As the error rate on individ-
ual relation extraction accumulates, it leads to the
observed drop in accuracy as k becomes larger.

5 Concluding Remarks

We investigate how to improve LMs’ logical rea-
soning capability using differentiable symbolic rea-

3069

soning. Through extensive experiments, we demon-
strate the effectiveness of DSR-LM over challeng-
ing scenarios where widely deployed large LMs
fail to reason reliably. We hope our work can lay
the groundwork for exploring neuro-symbolic pro-
gramming techniques to improve the robustness of
LMs on reasoning problems.

Limitations

The primary limitation of DSR-LM is the need for a
confined problem space. It requires a well-defined
relational schema to perform logical reasoning, and
thus will not be suited for an open-ended problem
setup. Nevertheless, DSR-LM is suitable for many
domain specific problems within Natural Language
Understanding and Reasoning, allowing domain
experts to freely inject domain-specific knowledge
in a structured and logical manner.

References
Gregor Betz, Christian Voigt, and Kyle Richardson.

2020. Critical thinking for language models. arXiv
preprint arXiv:2009.07185.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurIPS.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. Advances in Neural Information Processing
Systems, 31.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov,
Rishabh Singh, Armando Solar-Lezama, Yisong Yue,
et al. 2021. Neurosymbolic Programming.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder for
statistical machine translation. In EMNLP.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.
Transformers as soft reasoners over language. In
IJCAI.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language

models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, Eduard Hovy, Hinrich Schütze, and
Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. TACL.

Richard Evans and Edward Grefenstette. 2018. Learn-
ing explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmid-
huber. 2020. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zor-
nitsa Kozareva, Veselin Stoyanov, Mohit Bansal, and
Srinivasan Iyer. 2021. Do language models have be-
liefs? methods for detecting, updating, and visualiz-
ing model beliefs. arXiv preprint arXiv:2111.13654.

Chadi Helwe, Chloé Clavel, and Fabian M. Suchanek.
2021. Reasoning with transformer-based models:
Deep learning, but shallow reasoning. In AKBC.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel,
Mayur Naik, Le Song, and Xujie Si. 2021. Scallop:
From probabilistic deductive databases to scalable
differentiable reasoning. NeurIPS.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Drew A Hudson and Christopher D Manning. 2018.
Compositional attention networks for machine rea-
soning. In ICLR.

Daniel Kahneman. 2011. Thinking, fast and slow.
Macmillan.

Nora Kassner, Benno Krojer, and Hinrich Schütze. 2020.
Are pretrained language models symbolic reasoners
over knowledge? CoNLL.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. NeurIPS.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022a. Large
language models are zero-shot reasoners. NeurIPS.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022b. Large
language models are zero-shot reasoners. NeurIPS.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In ICML.

3070

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. NeurIPS.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. 2018. The neuro-
symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision. In ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
NeurIPS.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
Edward Grefenstette, and Tim Rocktäschel. 2020.
Learning reasoning strategies in end-to-end differen-
tiable proving. In ICML.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. NeurIPS.

Tim Rocktäschel and Sebastian Riedel. 2017. End-to-
end differentiable proving. NeurIPS.

Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and
Paolo Papotti. 2021. Rulebert: Teaching soft rules to
pre-trained language models. In EMNLP.

Adam Santoro, David Raposo, David G Barrett, Ma-
teusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. 2017. A simple neural net-
work module for relational reasoning. NeurIPS.

Abulhair Saparov and He He. 2022. Language models
are greedy reasoners: A systematic formal analysis of
chain-of-thought. arXiv preprint arXiv:2210.01240.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In ACL.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. Clutrr: A
diagnostic benchmark for inductive reasoning from
text. EMNLP.

Livio Baldini Soares, Nicholas Fitzgerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In
ACL.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020a. olmpics-on what language
model pre-training captures. TACL.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020b. Leap-of-thought:
Teaching pre-trained models to systematically reason
over implicit knowledge. NeurIPS.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2020. Long
range arena: A benchmark for efficient transformers.
In ICLR.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In ACL.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In ICLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. EMNLP.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Broeck. 2018. A semantic loss function for deep
learning with symbolic knowledge. In ICML.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
2022. Star: Bootstrapping reasoning with reason-
ing. NeurIPS.

Hanlin Zhang, Yi-Fan Zhang, Li Erran Li, and Eric
Xing. 2022. The impact of symbolic representations
on in-context learning for few-shot reasoning. arXiv
preprint.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Rama-
murthy, Bo Li, Yuan Qi, and Le Song. 2019. Effi-
cient probabilistic logic reasoning with graph neural
networks. In ICLR.

Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiao-
dan Liang, Maosong Sun, Chenyan Xiong, and Jian
Tang. 2020. Towards interpretable natural language
understanding with explanations as latent variables.
NeurIPS.

3071

A Implementation Details

Reasoner details. The learning of rules and
the fine-tuning of the underlying LM should hap-
pen separately with different learning rates – fine-
tuning LM is an intricate process that requires a
very small learning rate, while rules should be
learned with larger learning rates since gradients
are directly back-propagated onto the weights. This
can be realized by employing two separate optimiz-
ers, one for fine-tuning and the other for rule learn-
ing. During training time, we rotate training the
two parts by toggling one and the other optimizer
for every 10 batches of data points.

Rule learning training setup. For rule learning,
we can initialize the transitivity tensor using the
language model provided composite rules. Since
the CLUTRR dataset consists of 20 different rela-
tions and a transitivity relationship is defined over
3 relations, there are 8K possible transitivity facts
over these relations. Specifically, we give every
predicted composite rule by the GPT with a 0.5
weight, while initializing the other rules with a
range such as [0,0.1], since otherwise, an insen-
sible transitive fact may be getting a random high
weight while it effectively does nothing for rea-
soning. The learning process encourages the rules
that yield the correct query result and suppresses
the rules that lead to wrong answers. To avoid the
exponential blow-up caused by injecting all the 8K
rules in the reasoning engine, we sample 200 rules
according to their weights during the training time
and deterministically use the top 200 learned rules
during the test time. For the QA-No-Rule setup,
the confidence score of rules, the MLP classifier
for relation extraction, and the underlying LM are
learned and updated simultaneously during train-
ing. To account for their difference, we employ two
Adam optimizers ARL and ARE. ARE is used for
optimizing models for relation extraction, and thus
will take as parameters the MLP classifier and the
underlying LM. It has a low learning rate 0.00001
since it needs to fine-tune LMs. ARL, on the other
hand, will take as a parameter the confidence score
tensor for the transitive rules, and is set to have
a higher learning rate of 0.001. For the integrity
constraints, we set the result integrity violation loss
with the weight 0.1, and set the rule integrity con-
straint violation loss with the weight 0.01. We set
the batch size to 16 and train for 20 epochs.

To obtain the initial rule weights for the compo-
sition rule in our CLUTRR experiment, the prompt

we use is “Mary’s P’s Q is her <mask>.” where P
and Q are enumerations of all possible relationships,
and the unmasked value is treated as the answer
R, producing composite(P, Q, R). For the
other rule templates we used, the prompts are

1. transitive: “is R’s R one’s R? <mask>”;
the probability of the unmasked word be-
ing “yes” is treated the rule weight for
transitive(R).

2. symmetric: “does A is R of B means B is R
of A? <mask>”; the probability of the un-
masked word being “yes” is treated the rule
weight for symmetric(R).

3. inverse: “A is R of B means B is <mask>
of A”; the unmasked value is treated as the
answer P, producing inverse(R, P).

4. implies: “does R imply P? <mask>”; the
probability of unmasked value being “yes” is
treated as the rule weight for implies(R,
P).

GPT-3 Prompt Setups. For Zero-Shot, we
use the prompt “So B is A’s:” for the query pair(A,B) to ask GPT-3 to complete the relationship
between A and B. We pick the phrase in the first
line or before the first period from the completed
text and compare it directly with the ground truth
relation. For the Few(5)-Shot setting, we randomly
select 5 examples from the training dataset used for
other models (k ∈ [2,3]) to serve as examples. We
use the same prompt for Few-Shot and Fine-Tuned
as the Zero-Shot and the automated GPT-3 fine-
tuning setup for our training dataset, trained for 4
epochs. To add in the transitive KB, we simply in-
clude 92 hand-crafted rules in natural language as
a part of the prompt, and we performed Zero-shot
with KB, and Few(5)-shot with KB experiments.
For the Zero-Shot-CoT setting, we use the prompt
“Who is B to A? Let’s think step by step” to sug-
gest GPT-3 to auto-complete while working out a
reasoning chain. Under this setup, it is impossible
to compare the answer to the ground truth automat-
ically. Therefore, we manually check through the
whole test dataset of CLUTRR.

B Additional Experimental Results

In Table 8, we showcase the failure cases of large
LMs for logical inference, where Zero-shot-CoT
denotes zero-shot chain-of-thoughts (Kojima et al.,
2022b).

3072

k Prompt GPT-3 CoT Output Ground Truth
2 Jeffrey asked his brother William if he would come help him fix

his car next weekend. Gabrielle was delighted to see her grandson,
William, at her birthday party. Who is Jeffrey to Gabrielle? Let’s
do it step by step:

Jeffrey is Gabrielle’s grandson.
William is Jeffrey’s brother.

grandson

3 Elliott felt lonely when his wife Marian was gone to see her mother
Molly. Elliott and his daughter Karen took a day off school to go to
the zoo. Who is Karen to Molly? Let’s do it step by step:

Karen is Elliott’s daughter. Molly
is Elliott’s wife’s mother. There-
fore, Karen is Molly’s grand-
daughter.

granddaughter

4 Frank took his daughter Julia to the park. Beverly, Emilie´s sister
went with them. Kimberley was excited because today she was
going to the zoo with her uncle Frank. Jenny spent a great day
shopping with her daughter, Kimberley. Who is Beverly to Jenny?
Let’s do it step by step:

Beverly is Jenny’s sister-in-law. niece

5 Melissa and her father, Stephen, went to the marina. Stephen’s
daughter, Margaret, had purchased a boat, and they were eager to
see it. Annie and her aunt, Evelyn, went to the deli. They got a half
a pound of corned beef, and two pounds of salami. Melissa and
her sister Annie were arguing over a toy. While they were fighting,
Melissa’s sister Margaret grabbed the toy, and ran off to play with
it by herself. Who is Evelyn to Melissa? Let’s do it step by step:

Melissa’s father is Stephen.
Stephen has a daughter, Margaret.
Margaret is Annie’s aunt. There-
fore, Evelyn is Annie’s aunt, and
Melissa’s great-aunt.

aunt

6 James took his grandson Davis to the baseball game. Sharon and
her son Brian went out to lunch together yesterday. Brian and his
brother Oliver went to the park to play basketball. Davis played
scrabble with his mother Sharon and his brother Oliver. Davis
asked his brother Oliver if he would come help him fix his car next
weekend. Who is James to Oliver? Let’s do it step by step:

James is Davis’s grandfather, so
he is Oliver’s great-grandfather.

grandfather

7 George rushed to the hospital to find out that his wife and already
given birth to a boy and had named him David. Larry was playing
checkers with his brother Craig. Larry’s sister Jean was waiting to
play. Judy made mixed drinks for her son Craig. Judy’s daughter
Jean was jealous because she was n’t offered one. Jean planned a
trip to the zoo for her brother, Craig. They had a great time. George
was having trouble with his divorce because he only got to see his
daughter Jean a few times a week. Who is David to Craig? Let’s
do it step by step:

George’s wife gave birth to a boy
and named him David. David is
Craig’s nephew.

brother

8 Anthony went to the bakery with his uncle Roger to pick up some
bread for lunch. Anthony loved going to the store with his mom
Mary. She always bought him snacks Charles would n’t let his son
Floyd go to the park by himself. Floyd’s brother Anthony offered
to go with him. Faye was hoping to travel out of state to visit her
son Cecil. Ellie’s brother, Charles, was doing his best to find the
best flight. Mary and her son Anthony went out to lunch together
yesterday. Cecil took her sister, Christine, out to dinner for her
birthday. Who is Roger to Christine? Let’s do it step by step:

Cecil is Faye’s son, so Faye is
Christine’s mother-in-law. Chris-
tine is married to Faye’s son, so
Christine is Faye’s daughter-in-
law. Charles is Ellie’s brother,
so Charles is Christine’s brother-
in-law. Anthony is Charles’s son,
so Anthony is Christine’s nephew.
Roger is Anthony’s uncle, so
Roger is Christine’s brother-in-
law.

uncle

9 Gino bought gifts for his lovely sister, Jami. Michele and William
left that evening to go bowling. Ethel and her son, Gordon, went
to the park, and had a wonderful time. Manuel’s father, Kenneth,
thought his son was a monster. Meanwhile Michele thought her son
Manuel was a little angel. Gino, Kenneth’s other son, agreed with
his dad. William asked his brother Larry if he would come help
him fix his car next weekend. Joseph was so happy for his brother,
Larry, getting a promotion. Gordon and his uncle Joseph went to
the movies Sunday after church and got popcorn and candy while
they were there. Who is Jami to Ethel? Let’s do it step by step:

1. Jami is Gino’s sister. 2. Ethel
is Gino’s mother. 3. Therefore,
Jami is Ethel’s daughter-in-law.

niece

Table 8: Qualitative analysis of GPT-3 Zero-Shot-CoT on the CLUTRR dataset. The novelty comes from the
sentence marked in orange. Queries that are of interest are marked in blue. Correct answer in the output is marked
green and incorrect ones are marked red.

3073

Confidence Rule
1.154 mother(A,B) ← sister(A,C) ∧ mother(C,B)
1.152 daughter(A,B) ← daughter(A,C) ∧ sister(C,B)
1.125 sister(A,B)← daughter(A,C) ∧ aunt(C,B)
1.125 father(A,B)← brother(A,C) ∧ father(C,B)
1.123 granddaughter(A,B) ← grandson(A,C) ∧ sister(C,B)
1.120 brother(A,B) ← sister(A,C) ∧ brother(C,B)
1.117 brother(A,B) ← son(A,C) ∧ uncle(C,B)
1.105 brother(A,B) ← daughter(A,C) ∧ uncle(C,B)
1.104 daughter(A,B) ← wife(A,C) ∧ daughter(C,B)
1.102 mother(A,B)← brother(A,C) ∧ mother(C,B)
1.102 brother(A,B) ← father(A,C) ∧ son(C,B)
1.096 sister(A,B) ← mother(A,C) ∧ daughter(C,B)
1.071 sister(A,B)← father(A,C) ∧ daughter(C,B)
1.071 son(A,B)← son(A,C) ∧ brother(C,B)
1.070 uncle(A,B)← father(A,C) ∧ brother(C,B)
1.066 daughter(A,B) ← son(A,C) ∧ sister(C,B)
1.061 brother(A,B)← brother(A,C) ∧ brother(C,B)
1.056 grandson(A,B) ← husband(A,C) ∧ grandson(C,B)
1.055 sister(A,B)← son(A,C) ∧ aunt(C,B)
1.053 grandmother(A,B) ← sister(A,C) ∧ grandmother(C,B)
1.050 granddaughter(A,B) ← granddaughter(A,C) ∧ sister(C,B)
1.050 grandmother(A,B)← brother(A,C) ∧ grandmother(C,B)
1.047 grandson(A,B)← granddaughter(A,C) ∧ brother(C,B)
1.046 grandfather(A,B)← mother(A,C) ∧ father(C,B)
1.036 son(A,B)← daughter(A,C) ∧ brother(C,B)
1.035 sister(A,B)← brother(A,C) ∧ sister(C,B)
1.029 grandmother(A,B)← mother(A,C) ∧ mother(C,B)
1.027 grandfather(A,B) ← sister(A,C) ∧ grandfather(C,B)
1.019 brother(A,B)← mother(A,C) ∧ son(C,B)
1.017 granddaughter(A,B) ← wife(A,C) ∧ granddaughter(C,B)

Table 9: Showcase of the learnt logic rules with top@30 confidence of DSR-LM rule learning.

3074

// question :: (sub, obj) represents a question asking about relation
// between `sub` and `obj`
type question(sub: String, obj: String)

// context :: (rela, sub, obj) represents there is a `rela`
// between `sub` and `obj`
type kinship(rela: usize, sub: String, obj: String)

// Composition rule :: (r1, r2, r3) represents compositing r1 and r2 yields r3
type composite(r1: usize, r2: usize, r3: usize)

// Constants used for defining relation properties
const DAUGHTER = 0, SISTER = 1, ..., MOTHER_IN_LAW = 19
const MALE = 0, FEMALE = 1

type gender(r: usize, gender_id: i32)
rel gender = {(DAUGHTER, FEMALE), (SISTER, FEMALE), ..., (MOTHER_IN_LAW, FEMALE)}

type gen(r: usize, gen_id: i32)
rel gen = {(DAUGHTER, -1), (SISTER, 0), ..., (MOTHER_IN_LAW, 1)}

// Composition
rel kinship(r3, x, z) = composite(r1, r2, r3),
kinship(r1, x, y), kinship(r2, y, z), x != z

// Answer
rel answer(r) = question(s, o), kinship(r, s, o)

// Integrity constraints on results
rel violation(!r) = r := forall(a, b: kinship(GRANDFATHER, a, b) =>

(kinship(GRANDSON, b, a) or kinship(GRANDDAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(GRANDMOTHER, a, b) =>

(kinship(GRANDSON, b, a) or kinship(GRANDDAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(FATHER, a, b) =>

(kinship(SON, b, a) or kinship(DAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(MOTHER, a, b) =>

(kinship(SON, b, a) or kinship(DAUGHTER, b, a)))
rel violation(!r) = r := forall(a, b: kinship(HUSBAND, a, b) => kinship(WIFE, b, a))
rel violation(!r) = r := forall(a, b: kinship(BROTHER, a, b) =>

(kinship(SISTER, b, a) or kinship(BROTHER, b, a)))

// Integrity constraints on rules
rel violation(!r) = r := forall(r1, r2, r3:

composite(r1, r2, r3) and gender(r2, g) => gender(r3, g))
rel violation(!r) = r := forall(r1, r2, r3:

composite(r1, r2, r3) and gen(r1, g1) and gen(r2, g2) => gen(r3, g1 + g2))

Figure 5: Full Scallop program including deductive rules and integrity constraints

3075

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3076

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

3077

