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Abstract

Research on abusive content detection on social
media has primarily focused on explicit forms
of hate speech (HS), that are often identifiable
by recognizing hateful words and expressions.
Messages containing linguistically subtle and
implicit forms of hate speech still constitute an
open challenge for automatic hate speech de-
tection. In this paper, we propose a new frame-
work for generating adversarial implicit HS
short-text messages using Auto-regressive Lan-
guage Models. Moreover, we propose a strat-
egy to group the generated implicit messages
by their complexity levels (EASY, MEDIUM,
and HARD categories) characterizing how chal-
lenging these messages are for supervised clas-
sifiers. Finally, relying on (Dinan et al., 2019;
Vidgen et al., 2021), we propose a “build it,
break it, fix it”, training scheme using HARD
messages showing how iteratively retraining on
HARD messages substantially leverages SOTA
models’ performances on implicit HS bench-
marks.

1 Introduction

The spread of offensive content and hate speech
(HS) is a severe and increasing problem in on-
line social communities. While in the last years
numerous studies in the Natural Language Pro-
cessing community have proposed computational
methods to address the spread of malicious con-
tent, they tend to over-rely on overt and explicit
forms of HS, neglecting more implicit and veiled
ones (e.g., "I’m either in North Florida or Nige-
ria sometimes I can’t tell the difference." from the
White Supremacy Forum Dataset (WSF) (de Gibert
et al., 2018)). Implicit HS contains expressions of
coded or indirect language that does not immedi-
ately denote hate but still disparages a person or
a group based on protected characteristics such as
race, gender, cultural identity, or religion (ElSh-
erief et al., 2021). Implicitness goes beyond word-
related meaning, implying figurative language such

as irony and sarcasm, generally hiding the real
sense, making it more challenging to grasp some-
times even for humans. From a computational per-
spective, current SOTA models fail to properly de-
tect implicit and subtle HS messages, as peculiar
features connected to sentiment, inference, context
and irony, as well as complex syntactic structures,
cannot be properly understood (ElSherief et al.,
2021; Ocampo et al., 2023).

In order to improve the automated detection of
HS messages, a few recent studies focus on obtain-
ing more targeted diagnostic insights for current
NLP models by systematically providing means of
creating HS adversarial examples (Röttger et al.,
2021; Kirk et al., 2022; Hartvigsen et al., 2022) and
more guided training strategies aiming to identify
veiled HS implications (Dinan et al., 2019; Vid-
gen et al., 2021; Nejadgholi et al., 2022; Sarwar
and Murdock, 2022). However, most of these ap-
proaches obtain implicit adversarial instances i)
scraping posts from the web, causing data dispro-
portion and spurious hate correlations, ii) perform-
ing perturbations of input sentences neglecting text
variety for training, and iii) manually creating such
messages, which require high-annotation costs and
experienced crowdsourcers.

In this work, we propose a new framework for
generating on-scale close-to-human-like adversar-
ial implicit HS texts using the pre-trained language
model (PLM) GPT3 (Brown et al., 2020), which
is known to output biased and hateful content
(Sheng et al., 2019; Gehman et al., 2020). Al-
though such hateful messages pose real threats,
we use this inadmissible behavior to improve exist-
ing hate classifiers, pushing forward the research
to systematically neutralize implicit hateful mes-
sages. While the proposed approach follows the
ALICE model (Hartvigsen et al., 2022), that com-
bines demonstration-based prompting and already
trained HS classifiers to generate adversarial mes-
sages, in our work we go beyond it further develop-
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ing a generation framework for implicit HS detec-
tion, that implements a variant of constrained beam
search decoding through novel soft-constrains ap-
proaches. We rely on auto-regressive PLMs that
play the role of a bully challenging a HS classifier
on implicit messages. Given an implicit hateful
prompt, we encourage generations to be more im-
plicit and adversarial by i) guiding generation with
demonstration-based prompts and implicit mes-
sages, ii) soft-constraining the generation proba-
bilities in such a way that the output text is “sim-
ilar” to the demonstration examples occurring in
the prompt, iii) minimizing classification scores of
implicit hate detectors, iv) weighting generation if
offensive or implicit words of an HS lexicon are
used, and v) determining the optimal number of
input sentences to generate instances that are hard
to classify.

Additionally, we present a build it, break it, fix
it approach inspired by (Dinan et al., 2019; Vid-
gen et al., 2021), grouping implicit HS adversarial
examples into three categories: EASY, MEDIUM,
and HARD, according to their challenging level.
Then, we incrementally retrain SOTA models on
implicit HS detection on these three groups show-
ing how HARD generated messages improve SOTA
models’ performances substantially on ISHate, a
collection of HS benchmarks annotated with im-
plicit HS labels (Ocampo et al., 2023).1

NOTE: This paper contains examples of lan-
guage which may be offensive to some readers.
They do not represent the views of the authors.

2 Related Work

In the following, we first report on the most sig-
nificant research work on abusive language and
hate speech detection carried out in the Natural
Language Processing (NLP) community, and then
on works describing the generation of adversarial
examples to analyze and improve NLP model.

2.1 Explicit and Implicit HS Detection

Many resources and computational methods to de-
tect HS have been proposed in the latest years, such
as lexicons (e.g., (Wiegand et al., 2018; Bassignana
et al., 2018)), HS datasets and benchmarks (e.g.,
(Zampieri et al., 2019; Basile et al., 2019; David-
son et al., 2017; Founta et al., 2018)), supervised

1The generated messages, and the accompanying software
can be found at https://github.com/benjaminocampo/
implicit_hate_generator

classifiers (e.g., (Park and Fung, 2017; Gambäck
and Sikdar, 2017; Wang et al., 2020; Lee et al.,
2019)). These studies have set strong basis to ex-
plore the issue of HS and abusive language, in par-
ticular in social media messages. However, most
of these works do not consider subtle and elusive
hateful instances (that use for instance circumlo-
cution, metaphor, or stereotypes), that can be as
harmful as overt ones (Nadal et al., 2014; Kanter
et al., 2017).

To fill this gap, implicit HS detection has re-
cently caught the interest of the NLP community,
and benchmarks containing implicit HS messages
have been proposed (Sap et al., 2020; Caselli et al.,
2020; ElSherief et al., 2021; Hartvigsen et al., 2022;
Wiegand et al., 2021a, 2022; Ocampo et al., 2023).
As for the computational approaches, (Kim et al.,
2022) tackle cross-dataset underperforming issues
on HS classifiers and propose a contrastive learn-
ing method that encodes implicit hate implications
close in representation space. (Nejadgholi et al.,
2022) use Testing Concept Activation Vectors from
computer vision to provide a metric called degree of
explicitness and update HS classifiers with guided
data augmentation. (Han and Tsvetkov, 2020) pro-
pose a pipeline to surface veiled offenses without
compromising current performances on explicit HS
forms. Finally, (Jurgens et al., 2019; Waseem et al.,
2017; Wiegand et al., 2021b) explain why explicit-
ness, and implicitness are sub-notions of abusive-
ness and motivate researchers to devise ad-hoc tech-
nologies to address them.

2.2 Adversarial Generation

An adversarial example is an input designed to fool
a machine learning model. Among the works inves-
tigating robustness of NLP models to adversarial
examples, (Nie et al., 2020) develops the textattack
framework that unifies multiple adversarial meth-
ods made available by the NLP community (e.g.,
(Alzantot et al., 2018; Jia et al., 2019; Li et al.,
2020)) into one system, facilitating their use.

In the context of HS detection, both manually
created offensive instances (Röttger et al., 2021;
Kirk et al., 2022), or examples generated with au-
toregressive PLM models (Hartvigsen et al., 2022;
Cao and Lee, 2020; Gehman et al., 2020; Sheng
et al., 2019) have been used as adversarial attacks.
Adversarial instances can be used in multiple ways
to grow wisdom over handling models’ misclas-
sification. In our paper, we focus on dynamic
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Figure 1: Generation framework for adversarial hate speech generation.

adversarial data collection (DADC) (Dinan et al.,
2019; Kiela et al., 2021; Vidgen et al., 2021; Wal-
lace et al., 2022), where humans create challeng-
ing examples to fool SOTA models over many
rounds with a stream of ever-improving models-
in-the-loop. This process ideally covers most task-
relevant phenomena, leading to more robust mod-
els. As the main limitations of these strategies are
the expensive text creation and validation by hu-
man annotators, we challenge language models to
carry out this task with similar performances.

3 Proposed Framework

As introduced before, most of the existing meth-
ods to detect abusive language in short text mes-
sages rely on supervised approaches that strongly
depend on labeled datasets for training. But as ob-
served by (ElSherief et al., 2021; Hartvigsen et al.,
2022), most of the available datasets mainly con-
tain explicit forms of HS, ignoring abusive con-
tent expressed in more implicit or subtle ways.
This results in the current methods’ poor detection
performance on the implicit HS class as the train-
ing datasets are highly imbalanced (Ocampo et al.,
2023). To mitigate this issue, we propose a frame-
work to generate on-scale close-to-human-like ad-
versarial implicit HS texts using the pre-trained
language model GPT3 (Brown et al., 2020).

Our generation framework is composed by four
components (Figure 1): i) a demonstration-based
prompt, ii) a search method, iii) a goal func-
tion, and iv) a set of constraints. From a starting
demonstration-based prompt, the PLM completes
the prompt with a possible next token at a time in
such a way that the final output minimizes a goal

function (i.e., indicating whether a message is chal-
lenging) and satisfies the constraints. Each next
token is obtained through a search method that de-
termines which of those possible next tokens are
the most suitable to produce a challenging mes-
sage. Except for the prompt, the other components
depend on the classifier we aim to attack, to tar-
get its weaknesses. In the following, we describe
each component of our framework, as illustrated in
Figure 1.

3.1 Prompt Construction
Prompts are text fragments passed as input to the
PLM to allow the generator to identify the context
of the problem to be solved. Then, depending on
how the prompt is written, the returned text will at-
tempt to match the pattern accordingly. While there
are several methods for prompting, a promising
strategy is demonstration-based prompting (Gao
et al., 2021), where example statements are injected
into the prompt to push the PLM to generate simi-
lar messages. Figure 2 shows a use-case example
where five implicit HS messages (shots) against
migrants are used as prompts. Before the shots, an
instruction is added to provide the PLM with more
context on the output to generate. The quality of the
generation will generally depend on the suitability
of the instructions and the shot examples.

3.2 Search Method
Demonstration-based-prompting alone consistently
produces HS statements against minority groups
(Hartvigsen et al., 2022). However, there is no
guarantee that those messages would be challeng-
ing for a specific classifier. Therefore, we provide
a variant of constrained beam search (CBS) (An-
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Figure 2: Example prompt and model output using five
shot examples against migrants.

derson et al., 2017; Hokamp and Liu, 2017) that
implements constraints on the probabilities during
beam search. The CBS maximizes at every step the
following formula:

λ1 log pL(wi+1|w0...wi) + (1)

λ2 log(1− pCImp(w0...wi+1)) + (2)

λ3 logFLex(wi+1) + (3)

λ4 log similarity

(
1

n

n∑
i=i

S(si), S(w0...wi+1)

)
(4)

CBS, among all the possible following words wi+1,
considers those which maximize the above expres-
sion and use top-k decoding to proceed with the
next word. λ1, ..., λ4 are hyperparameters that de-
termine how much each term contributes to the
sum. Going into the details:

• (1) denotes the classical generation beam search
approach where pL(wi+1|w0...wi) estimates the
conditional probability of the next word wi+1

given the previous ones, w0...wi, as context.

• (2) challenges C by calculating
pCImp

(w0...wi+1), the probability of the
newly generated sentence to be Implicit HS.
The closer to 0 it is, the harder for the classifier
to detect it. At the same time, as C is a 3-label
classifier, the above is equivalent to maximizing
1 − pCImp

(w0...wi+1), the probability of the
generated sentence being either Non-HS or
Explicit HS.

• (3) weights generation by using an HS lexicon
Lex, i.e., a set of pondered words between 0 and
1. We define FLex as the function that, given an
input word w, assigns its weighted score in Lex
provided that it belongs to the set. Otherwise, it
returns 0. Note that this option can be used with

any HS lexicon that matches a word with a score
between 0 and 1.

• (4) calculates the mean embedding of the shots
in the prompt 1

n

∑n
i=i S(si) and the embedding

of the candidate sentence S(w0...wi+1) to obtain
the cosine similarity between these two. There-
fore, we expect the newly created instance to be
semantically similar to the shots. Note that S can
be any text embedding that encodes a statement
into a representation space.

3.3 Goal Function and Constraints
A goal function takes as input a text message and
returns a score specifying how challenging that text
is with respect to a classifier. In our case, we opt
for a variant of the Targeted Classification goal
function (Morris et al., 2020), where we maximize
the chances of an input statement being an incorrect
label. That constraint is soft-added to the search
method of our approach and used to measure if
the final generated example is adversarial. For
an input message x, a HS classifier should return
three probabilities specifying how likely x is to be
labeled as Non-HS, Explicit HS, or Implicit HS.
Following (2), the higher 1−PCImp

(x) is, the more
challenging x is. Therefore, we consider this math
expression as our adversarial metric.

As for the constraints, we apply automatic fil-
tering to discard the generated messages with in-
completed texts, very short messages (less then 5
tokens), and non-ASCII characters.

4 Generation of Implicit HS Adversarial
Messages

In this section, we report and analyze the experi-
mental results to demonstrate the effectiveness of
the proposed framework. First, we list the targeted
research questions (Section 4.1), then, we describe
the dataset we use in our experiments (Section 4.2),
the experimental setting (Section 4.3), and finally
we discuss the obtained results (Section 4.4).

4.1 Research Questions
We target the following research questions:

• RQ1: Can we generate implicit HS messages
with demonstration examples that attack only one
protected group (OPG)?

• RQ2: Can we generate implicit HS messages
with demonstration examples that attack multi-
ple protected groups (MPG)?
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• RQ3: How does each of the weighting terms
(expressions (1) to (4)) perform?

• RQ4: Does changing the prompt instructions
impact on generation?

• RQ5: Is there an optimal number of demonstra-
tion examples to use?

4.2 The ISHate Dataset

To test our framework, we use the ISHate dataset
(Ocampo et al., 2023), a newly created resource
that collects messages from 7 available datasets
for HS detection covering different topics and
different social media platforms (i.e., the White
Supremacy Forum Dataset (de Gibert et al.,
2018), HatEval (Basile et al., 2019), Implicit
Hate Corpus (ElSherief et al., 2021), ToxiGen
(Hartvigsen et al., 2022), YouTube Video Com-
ments Dataset (Hammer, 2017), CONAN (Chung
et al., 2019) and Multi-Target CONAN (Fanton
et al., 2021)). Messages in ISHate have been
enriched with the following three-layer annota-
tion: HS/non HS, Explicit/Implicit HS and
Subtle/Non Subtle HS, obtaining an Inter Anno-
tator Agreement (IAA) of Cohen’s Kappa=0.793
for the implicit labels and 0.730 for the subtle ones.
In our experiments we focus on the following anno-
tations: Non-HS, Explicit HS, and Implicit HS
because of the availability of more implicit HS
messages for training data, grounded on a clearer
and well-founded definition of implicit content in
the literature. Moreover, ISHate collects messages
with their corresponding target group. The great
majority of the messages are annotated with one
target group only. For messages targeting more
than one group with offensive content (as Asians
and Migrants, or Jews and Women), the label cor-
responding to the predominant target is selected.
Tables 1 (a) and (b) show the ISHate data distribu-
tion and statistics on the targeted groups.

4.3 Experimental Setting

In our experiments, we rely on the text com-
pletion model GPT3 (Brown et al., 2020), the
text-curie-001 version. While this is the second
best version of GPT3 after text-davinci-003, it
is known for being extremely powerful, with a
much faster response time.

The HS classifier we challenge with adversar-
ial attacks is the model considered as SOTA on
the ISHate dataset, namely HateBERT. HateBERT

Label Train Val Test
Non-HS 12508 2680 2681
Exp HS 7007 1501 1501
Imp HS 866 186 186

(a) Label distribution on the train, val, and test sets.
Target Train Val Test
Muslims 100 17 20
Migrants 68 12 15
Jews 105 25 35
Black People 65 15 11
Women 33 8 3
White People 91 15 13
Asian 26 3 5

(b) Number of implicit messages per target group.
Classifier Label P R F1

Non-HS .903 .896 .899
Exp HS .827 .827 .827HateBERT
Imp HS .502 .559 .529

(c) Classification results of the SOTA model HateBERT on
the ISHate dataset (Ocampo et al., 2023).

Table 1: ISHate statistics.

is a re-trained BERT model using over 1 million
posts from banned communities on Reddit (Caselli
et al., 2021) and then fine-tuned on the ISHate
dataset. HateBERT obtained very promising results
on the benchmarks HatEval, OffensEval (Zampieri
et al., 2019), and AbusEval (Caselli et al., 2020).
Table 1 (c) reports on the classifier’s results on
the ISHate dataset (Ocampo et al., 2023). As for
the sentence similarity model, used by the search
method to compute the cosine similarity between
the generated text and the shot examples (point (4),
Section 3.2), we used all-MiniLM-L6-v22 from
sentence-transformers. It has been trained on a
1B sentence pairs dataset to be used for information
retrieval, clustering, and sentence similarity tasks.

Regarding the HS lexicon used by the search
method to calculate the weights (point (3), Section
3.2), we opted for weighting the ISHate vocabulary,
inspired by the HATE score proposed in (de Gibert
et al., 2018), which relies on the Pointwise Mutual
Information (PMI). PMI calculates the correlation
of each expression concerning the categories they
belong. However, unlike their approach, we use
ISHate’s Explicit HS and Implicit HS labels to
calculate the correlation of ISHate terms to those
categories. We aim to assign words a weight con-
cerning their implicitness. Then in CBS, a candi-
date’s next word, which is used in more implicit
contexts, should score higher in our framework
than in explicit contexts. Equation 5 shows the dif-

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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ImpScore ImpScore
resister .974 maga .028
paint .974 deport .045
lucky .974 fuck .049
plot .970 fucking .051
economically .965 potus .063
offices .965 alien .065
honour .965 burn .066
shirt .965 bunch .067
colonized .965 death .076
eggs .965 invasion .082
orchestrated .965 illegals .085
google .965 sick .104
handed .965 deserve .105
correctness .959 kill .114
celebrate .959 millions .118

Table 2: Most positive and most negative implicit words
of the ISHate dataset.

ference between the PMI value of a word w and the
category implicit, and the PMI of the same word w
and the category explicit, resulting in the implicit
hate score of w.

ImpScore(w) = PMI(w, ImpHS)− PMI(w, ExpHS) (5)

After that, we apply a sigmoid function to scale
the weights between our required range. Table 2
shows that the least ranked words are derogatory
and refer to targeted HS groups. On the other hand,
the most rated tokens are neutral and can be found
on whichever document on the web.

Concerning the research questions listed above,
to answer to RQ1, we group the messages directed
towards the most attacked targets in the ISHate
dataset (see Table 1), namely Muslims, Migrants,
Jews, Black People, Women, White People, and
Asians. From these groups, we randomly select
demonstration shots to be used to make a prompt,
as shown in Figure 2. This prompt is passed as
input to the generator in order to produce implicit
adversarial examples. We generated a total of 20
instances per target group, obtaining 140 messages
using only GPT3 without any constraint. Each
run was manually validated by the same annota-
tors of (Ocampo et al., 2023) following the ISHate
annotation scheme and guidelines, in order to iden-
tify how many of these messages i) are actually
implicit (% Implicit), ii) maintain the same tar-
get group (% Target), and iii) fool HateBERT
(% Attacks). Additionally, we calculated how
similar the generations were to the prompts in aver-
age (x Similarity) and we equally separated the
messages into three groups (% Easy), (% Medium),
and (% Hard) according to the goal function score
defined in Section 3.3.

For RQ2, we repeat the same procedure without
grouping per HS target. Implicit HS shot examples
are selected from the ISHate dataset, and used as
input prompts, so as to generate 140 adversarial
examples. Each generated example is manually
validated to calculate the metrics for RQ2 listed
above and compare them with the metrics for RQ1.

As for RQ3, we carry out an ablation study
adding to GPT3 each of the restrictions of our
framework presented in Section 3.2, and then cal-
culating the performances in order to compare the
impact of the proposed strategies.

To answer RQ4, we repeat the same experiment
we carried out to validate RQ3, but varying the
instructions that appeared before the shots in the
prompt (see Figure 2):

• I1 = "These are some examples against <TAR-
GET>. Write one more similar example."

• I2 = "Implicit Hate Speech against <TARGET>."

• I3 = Empty instruction.

I1 details the task we want the language model to
perform. I2 uses only the name of the label and the
target we are attacking. I3 is tested to evaluate the
model performance when no instructions are given.
We rely on the results of the ablation study carried
out to validate RQ4 to select the best generation
approach, meaning the one that generates more
implicit and adversarial examples according to the
manual validation.

To answer RQ5 the best-performing generator is
tested varying the number of shots in the prompt.

Based on pilot generations and in line with
(Hartvigsen et al., 2022), we run our experiments
with five shots examples in the prompt to an-
swer from RQ1 to RQ4, together with the fol-
lowing hyperparameters: the number of beams
num_beams = 10, and λi = 0.5 for all i = 1, ..., 4
giving the same relevance to each constraint.

4.4 Obtained Results and Discussion
Table 3 shows the generation results for GPT3 us-
ing instruction I1, while Tables 5a and 5b those us-
ing I2 and I3. Regarding RQ1, we can see that the
generation has very good results when the demon-
stration examples given as input focus on one target
per query, obtaining 72% of implicit HS messages
and maintaining the same target group as the one
in the prompt. However, it decreases drastically
when multiple targets per query are used (RQ2).
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Generator (%) Implicit (x) Similarity (%) Target (%) Easy (%) Medium (%) Hard (%) Attacks
MPG:(1) .170 .331 - .167 .042 .792 .833
OPG:(1) .727 .491 .917 .031 .187 .781 .802
OPG:(1)+(2) .532 .450 .933 .013 .040 .946 .986
OPG:(1)+(2)+(3) .624 .449 .966 .023 .034 .943 .977
OPG:(1)+(2)+(3)+(4) .703 .507 .959 .083 .021 .897 .907

Table 3: Generation results with GPT3 using I1

Target (%) Implicit (x) Similarity (%) Target (%) Easy (%) Medium (%) Hard (%) Attacks
Muslims .864 .594 1.00 0 0 1.00 1.00
Migrants .783 .531 1.00 0 0 1.00 1.00
Jews .894 .450 .941 .235 .118 .647 .706
Black People .643 .535 1.00 0 0 1.00 1.00
Women 1.00 .561 1.00 0 0 1.00 1.00
White People .765 .568 1.00 0 0 1.00 1.00
Asian .750 .339 .8 .267 0 .733 .733

Table 4: Generation results with GPT3 using I1 and OPG:(1)+(2)+(3)+(4)

MPG:(1) is the method that performs the worst with
only 17% of HS implicit messages obtained, the
lowest similarity to the shots, and among these 17%
messages, 83% led to concrete misclassification at-
tacks. Also, during manual validation, most of the
generated messages resulted in neutral or explicit
cases with swear words and offensive words to-
wards one of the groups mentioned in the prompts.
Possible reasons might be the inherent complexity
for GPT3 to “understand” implicit messages, to-
gether with our starting premise for using this PLM,
i.e., its social bias against HS groups. Therefore,
providing one particular target per query might
trigger a specific social bias toward that target and
better guide GPT3 toward generating an implicit
message. For that reason, we proceed from now
using OPG as the prompt construction strategy.

To answer to RQ3, once we consider the clas-
sifier’s information with OPG:(1)+(2), almost all
the obtained implicit cases were hard and caused
an attack on HateBERT. However, it compromises
the number of implicit HS cases we might ob-
tain. OPG:(1)+(2)+(3)+(4) ends up being the
more balanced approach overall, as it can equate
with OPG:(1) in terms of the number of implicit
instances, improving sentence similarity and still
challenges HateBERT. Additionally, Table 4 shows
how OPG:(1)+(2)+(3)+(4) is capable of generat-
ing implicit challenging examples across the seven
experimented target groups.

To answer to RQ4, the same generation ex-
periments were performed with instructions I2
and I3. Similar to I1, Tables 5a and 5b show
how OPG:(1)+(2)+(3)+(4) ends up obtaining the
most balanced results among the generation strate-
gies. We can see how it has comparable results

Figure 3: (nof_shots) x (% Implicit) line
curve. Optimal number of shots for the best genera-
tor OPG:(1)+(2)+(3)+(4).

with OPG:(1) concerning the obtained number of
implicit instances and improvements in sentence
similarity and the number of hard attacks to Hate-
BERT. However, neither I2 nor I3 show significant
variants in the results obtained with I1. This might
suggest that implicit generation depends more on
the shot examples provided and the target group of
those shots.

Finally, we take OPG:(1)+(2)+(3)+(4), and we
repeat the generation experiment varying this time
the number of shots provided in order to answer
to RQ5. Figure 3 shows a rapid improvement in
obtaining implicit HS messages when incrementing
from 1 to 10 shots. However, as soon as we surpass
this number, we have no further benefits with 20,
30, 40, or even 50 examples. This indicates that
using only 10 demonstrations might be suitable
enough to get challenging instances with GPT3.

2764



Generator (%) Implicit (x) Similarity (%) Target (%) Easy (%) Medium (%) Hard (%) Attacks
MPG:(1) .163 .323 - .144 0 .856 .856
OPG:(1) .710 .475 .944 .040 .123 .837 .837
OPG:(1)+(2) .519 .445 .917 .013 0 .987 .987
OPG:(1)+(2)+(3) .619 .440 .955 .032 .021 .947 .968
OPG:(1)+(2)+(3)+(4) .695 .517 .963 .070 .021 .909 .930

(a) Results with instruction I2.
Generator (%) Implicit (x) Similarity (%) Target (%) Easy (%) Medium (%) Hard (%) Attacks
MPG:(1) .196 .344 - .183 0 .817 .817
OPG:(1) .734 .488 .935 .056 .155 .780 .818
OPG:(1)+(2) .535 .437 .941 .017 .046 .937 .937
OPG:(1)+(2)+(3) .641 .459 .963 .032 .027 .941 .968
OPG:(1)+(2)+(3)+(4) .710 .505 .947 .095 .017 .888 .905

(b) Results with instruction I3.

Table 5: Generation results with GPT3 using instructions I2, I3 and generator OPG:(1)+(2)+(3)+(4).

5 Improving HS Classifiers on Implicit
Messages

In this section, we report on how our generation
framework can be used to improve implicit hate
speech detection on the ISHate benchmark, relying
on a variant of the build it, break it, fix it approach
(Dinan et al., 2019; Vidgen et al., 2021).

5.1 Build it, Break it, Fix it Strategy

The build it, break it, fix it method translates a con-
cept used in engineering to find faults in systems,
to machine learning. The breaker would seek for
failures in an already built classification model: the
more failures the breaker can find, the better the
fixes on the model might be.

During the “build it” phase, a machine learning
classifier M0 is trained on the training set trainD
of a benchmark D, which defines a certain classi-
fication task. This classifier works as the baseline
model we aim to improve. During the “breaking”
phase, adversarial examples that break the initial
model M0 should be created by giving one possi-
ble configuration of parameters to our generation
framework. For the following round i, i > 1, the
same generator must break the model obtained in
the previous round Mi−1. The generator is fed
with the benchmark training set trainD to gen-
erate hard cases through demonstration examples,
so that to attack the classifier of the previous step
Mi−1. During the “fix it” phase the model Mi is
updated with the newly generated adversarial data
from the “break it” round. Each newly corrected
model is evaluated on the test set of the bench-
mark. At the same time, hyperparameter selection
and loss evaluation can be performed through the
development set of D.

Non-HS Explicit HS Implicit HS
M P R F1 P R F1 P R F1
M0 .90 .90 .90 .83 .83 .83 .50 .56 .53
M1 .93 .85 .89 .81 .84 .82 .43 .82 .56
M2 .93 .85 .89 .81 .85 .83 .45 .82 .58
M3 .93 .82 .87 .81 .85 .83 .36 .82 .50

Table 6: HateBERT classification results on ISHate

5.2 Experimental Settings

Goal of these experiments is to improve the classi-
fication results of the HateBERT model (described
in Section 4.2) on the Implicit HS class, with-
out affecting its performances on the Non-HS and
Explicit HS labels. The number of rounds used
is R = 3, where each round has a total of 870
human-validated HS implicit adversarial exam-
ples. All the instances are scored by the goal
function described in Section 3.3 in order to keep
only those that are considered being Hard. Also,
as our approach generates instances of only one
class (i.e., Implicit HS), we randomly picked
the same number of safe and explicit instances
from ISHate. For the training parameters for the
model, we follow (Ocampo et al., 2023), i.e., a
batch_size = 2, epochs = 4, lr = 2 × 10−5,
and weight_decay = 0.01.

5.3 Obtained Results

Table 6 reports the obtained classification results
of HateBERT on the ISHate test set after three
retraining rounds. All runs show satisfactory per-
formances in the three categories. We note that
after the first round, M1 had an increment on the
F1-score of the implicit class compared with its
predecessor M0 giving more relevance to recall (R)
than precision (P). Consider that the generator’s
goal function aims to produce an implicit HS mes-
sage that maximizes the chances of being classified
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as either explicit or non-hateful, i.e., it forces the
classifier to have false negatives. In that sense, after
retraining, the SOTA model focuses its attention
on prioritizing more recall than precision, as we
can see in the results. Also, note that the results
obtained on the majority classes are not affected.
This might be a consequence of not only providing
adversarial examples on the target class, but also
retraining on instances that are non-hateful and ex-
plicit from the ISHate dataset. After the second
round M2, we see an improvement in the perfor-
mances of the implicit class. M2 can update its
parameters on this retraining round through the pro-
vided material, that helped it to correctly classify
instances that were previously misclassified by M1.
On the contrary, from the third iteration, while the
classification of false negatives improves through
the generator’s attacks, this forces the classifier to
prioritize recall over precision, affecting the overall
performance of M3 on the implicit class.

5.4 Error Analysis
To gain insights on the model’s behavior, we per-
form a manual error analysis. As mentioned in
Section 5.3, most of the errors after the fixing
rounds come from false positives. In particular, as
HateBERT prioritizes recall over precision, explicit
and non-hateful instances labeled as implicit hate
started to be more prominent. Among misclassi-
fied messages, there are some instances of explicit
hate which are considered implicit by HateBERT,
as Example 1.

1. I believe that same sex attraction is a mental
disorder that can be cured.

We can also find misclassified messages when com-
monly used explicit words are used in neutral situa-
tions. For example, the word animal, which is used
sometimes in a pejorative form, might trigger the
classifier to detect it as hateful (see Example 2).

2. No, they are the fastest land animal on this
continent, so I think they are simply testing
their speed.

6 Conclusions

In this paper, we have presented a new framework
for generating on-scale adversarial implicit texts for
HS detection using auto-regressive language mod-
els. The proposed framework follows (Hartvigsen
et al., 2022) and guides a GPT3 PLM to output mes-
sages that fool current HS classifiers on implicit

messages. Following (Hartvigsen et al., 2022), we
have further developed a variant of constrained
beam search decoding, providing a guided genera-
tion strategy through i) implicit hate demonstration-
based prompts, ii) scores of implicit hate detectors,
iii) generation weights through implicit and ex-
plicit words in HS lexicons, and iv) text similar-
ity constraints that compare the used prompt and
the expected output. We show how the proposed
framework can produce, from a batch of generated
messages, 70% of implicit HS messages, where
90% of them result to be hard adversarial cases for
a competitive SOTA model on the ISHate bench-
mark (i.e., HateBERT).

Furthermore, we have proposed a build it, break
it, fix it, approach that uses the adversarial exam-
ples generated by the above described framework
to incrementally retrain machine learning mod-
els and improve their classification performances.
We showed how adversarial generation leverages
the HateBERT classification model on the ISHate
dataset by improving false negative classification.
While this strategy may have potential issues, such
as cyclical progress, it remains a valuable approach
to improve model robustness, accelerate progress,
define clear objectives (Dinan et al., 2019; Kiela
et al., 2021; Vidgen et al., 2021; Wallace et al.,
2022), and gain a deeper understanding of models’
errors as shown in our paper.

As for future work, we plan to explore how to
embed implicit and subtle statements properly in
representation spaces (Kim et al., 2022; Han and
Tsvetkov, 2020), deciphering models for code lan-
guage (Manzini et al., 2019) and provide bias miti-
gation strategies for social stereotypes (Sap et al.,
2020).

Limitations

The main limitation of the proposed framework is
its dependency on a reasonable amount of real im-
plicit hate instances to be used as the prompting
input material. Obtaining implicit and subtle mes-
sages from social media is undoubtedly a challeng-
ing and time consuming task. More importantly,
another limitation lies in the fact that the proposed
framework does not rely on an automatic metric to
determine if the generated messages are actually
implicit. Therefore, a human-in-the-loop step for
validating the obtained newly generated instances
is still required. Additionally, there has been mount-
ing pressure to obtain debiased PLMs, which might
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lead to the generation of less challenging examples.

Ethics Statements

This paper contains examples of HS from existing
linguistic resources for HS detection and which do
not reflect the authors’ opinions.

While our purpose is to prevent and curate so-
cial media resources from HS, our study might still
pose a potential misuse case, as our method can be
employed to encourage a large language model to
generate implicit and subtle instances of hate. How-
ever, we still consider that effective classifiers and
new data creation/collection methods for this task
are necessary to investigate and tackle implicit and
subtle online hate speech on scale and prevent the
spreading of this harmful content online. Our work
aims at making a step towards that objective and
encourages the scientific community to investigate
these aspects.
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