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Abstract

Noun compound interpretation is the task of
expressing a noun compound (e.g. chocolate
bunny) in a free-text paraphrase that makes the
relationship between the constituent nouns ex-
plicit (e.g. bunny-shaped chocolate). We pro-
pose modifications to the data and evaluation
setup of the standard task (Hendrickx et al.,
2013), and show that GPT-3 solves it almost
perfectly. We then investigate the task of noun
compound conceptualization, i.e. paraphrasing
a novel or rare noun compound. E.g., chocolate
crocodile is a crocodile-shaped chocolate. This
task requires creativity, commonsense, and the
ability to generalize knowledge about similar
concepts. While GPT-3’s performance is not
perfect, it is better than that of humans—likely
thanks to its access to vast amounts of knowl-
edge, and because conceptual processing is ef-
fortful for people (Connell and Lynott, 2012).
Finally, we estimate the extent to which GPT-3
is reasoning about the world vs. parroting its
training data. We find that the outputs from
GPT-3 often have significant overlap with a
large web corpus, but that the parroting strategy
is less beneficial for novel noun compounds.

1 Introduction

Noun compounds (NCs) are prevalent in English,
but most individual NCs are infrequent (Kim and
Baldwin, 2007). Yet, it is possible to derive the
meaning of most NCs from the meanings of their
constituent nouns. The task of noun compound
interpretation (NCI) addresses this by explicitly
uncovering the implicit semantic relation between
the constituent nouns. We focus on the paraphras-
ing variant (Nakov and Hearst, 2006), where the
goal is to generate multiple paraphrases that ex-
plicitly express the semantic relation between the
constituents. For example (Figure 1), a chocolate
bunny is a “chocolate shaped like a bunny”.

Earlier methods for NCI represented NCs as
a function their constituents’ representations (e.g.

chocolate bunny
bunny-shaped chocolate

chocolate shaped like a bunny

…

Noun Compound Interpretation

chocolate crocodile
crocodile-shaped chocolate

chocolate shaped like a crocodile

…

Noun Compound Conceptualization

Figure 1: An example NC (input) and paraphrases (out-
put) for each of the NCI and NCC tasks.

Van de Cruys et al., 2013; Shwartz and Dagan,
2018). In recent years, pre-trained language mod-
els (PLMs) caused a paradigm shift in NLP. Such
models are based on the transformer architecture
(Vaswani et al., 2017), which by design computes
a word representation as a function of the represen-
tation of its context. Further, PLMs are pre-trained
on vast amounts of text, which equips them with
broad semantic knowledge (Rogers et al., 2020).
Such knowledge may facilitate interpreting unseen
NCs based on observed NCs that are semantically
similar. Indeed, Ponkiya et al. (2020) showed that a
masked language model is useful for this task, and
Shwartz (2021) demonstrated the utility of genera-
tive language models on this task.

We formalize the experiments presented in
Shwartz (2021) and evaluate generative models
on NCI. We manually analyze and correct many
problems with the standard SemEval 2013 task
4 dataset (Hendrickx et al., 2013), and release a
cleaned version of the dataset. Following the crit-
icism in Shwartz and Dagan (2018) on the task’s
dedicated evaluation metrics, we propose a more
complete set of evaluation metrics including both
automatic metrics and human evaluation.

Our experiments show that a few-shot model
based on GPT-3 (Brown et al., 2020) achieves near-
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perfect performance on the NCI test set. The im-
pressive performance may be due to a combination
of factors. First, it tends to memorize texts seen
during pre-training (Carlini et al., 2022), likely in-
cluding partial or complete definitions of common
NCs. Second, it has learned vast commonsense
and world knowledge from its pre-training cor-
pus, which—together with its ability to generalize—
may be useful for interpreting less frequent NCs.

To test the extent that GPT-3 reasons about its
knowledge as opposed to memorizes definitions,
we propose a second task: noun compound con-
ceptualization (NCC). The setup is identical to
NCI, but the NCs are rare or novel (e.g., choco-
late crocodile in Fig. 1), requiring a model to come
up with a plausible interpretation based on its exist-
ing knowledge. We construct a test set for this task
based on data from Dhar and van der Plas (2019).
The results show that GPT-3 outperforms humans
on NCC, presumably thanks to its fast access to
a huge “knowledge base”, and compared to the
relative human slowness on this task (Connell and
Lynott, 2012).

Yet, compared to its performance on NCI, GPT-
3’s performance on NCC shows a significant drop.
We thus quantify the extent that GPT-3 copies from
its pre-training corpus when generating paraphrases
for either NCI or NCC. We find that the generated
paraphrases have significant overlap with a large
web-based corpus, but that as expected, the copying
strategy is less beneficial for NCC than for NCI.

We anticipate that the cleaned dataset and pro-
posed evaluation setup will be adopted by the re-
search community for NCI, and hope to see further
research on NCC.1

2 Background

2.1 Noun Compound Interpretation

Traditionally, NCI has been framed as a classifica-
tion task into predefined relation labels. Datasets
differed by the number of relations and their speci-
ficity level; from 8 prepositional relations (e.g. of,
from, etc.; Lauer, 1995), to finer-grained inven-
tories with dozens of relations (e.g. contains,
purpose, time of; Kim and Baldwin, 2005; Tratz
and Hovy, 2010). The classification approach is
limited because even the larger relation invento-
ries don’t cover all possible relationships between

1The code and data are available at: https://github.
com/jordancoil/noun-compound-interpretation

nouns. In addition, each NC is classified to a sin-
gle relation, although several relations may be ap-
propriate. E.g., business zone is both a zone that
contains businesses and a zone whose purpose
is business (Shwartz and Dagan, 2018).

For these reasons, in this paper we focused on the
task of interpreting noun compounds by producing
multiple free-text paraphrases (Nakov and Hearst,
2006). The reference paraphrases could be any text,
but in practice they typically follow a “[n2] ... [n1]”
pattern, where n1 and n2 are the constituent nouns.
The main dataset for this task comes from SemEval
2013 task 4 (Hendrickx et al., 2013), following a
similar earlier task (Butnariu et al., 2009).

Earlier methods for this task reduced the para-
phrasing task into a classification task to one of mul-
tiple paraphrase templates extracted from a corpus
(Kim and Nakov, 2011; Paşca, 2015; Shwartz and
Dagan, 2018). Shwartz and Dagan (2018) jointly
learned to complete any item in the ([n1], [n2], para-
phrase template) tuple, which allowed the model
to generalize, predicting paraphrases for rare NCs
based on similarity to other NCs.

More recently, Ponkiya et al. (2020) showed
that PLMs already capture this type of knowl-
edge from their pre-training. They used an off-
the-shelf T5 model to predict the mask substitutes
in templates such as “[n2] [MASK] [n1]”, achiev-
ing a small improvement over Shwartz and Dagan
(2018). Shwartz (2021) further showed that su-
pervised seq2seq models based on PLMs and a
few-shot model based on GPT-3 yielded correct
paraphrases for both common and rare NCs.

2.2 Forming and Interpreting new Concepts

Research in cognitive science studied how peo-
ple interpret new noun-noun combinations such as
cactus fish (e.g. Wisniewski, 1997; Costello and
Keane, 2000; Connell and Lynott, 2012). While
such combinations invite various interpretations,
there is usually a single preferred interpretation
which is more intuitively understood. For example,
a cactus fish would more likely mean “a fish that is
spiky like a cactus” than “a fish that is green like a
cactus”, because “spiky” is more characteristic of
cacti than “green” (Costello and Keane, 2000).

Connell and Lynott (2012) constructed a set of
27 novel NCs and asked people to (1) judge the
sensibility of an NC; and (2) come up with a plausi-
ble interpretation. The short response times for the
sensibility judgment task indicated that participants

2699

https://github.com/jordancoil/noun-compound-interpretation
https://github.com/jordancoil/noun-compound-interpretation


relied on shallow linguistic cues as shortcuts, such
as the topical relatedness between the constituent
nouns. Response times in the interpretation genera-
tion task were longer, indicating that participants
employed a slower process of mental simulation.
Interpreting a new concept required building a de-
tailed representation by re-experiencing or imag-
ining the perceptual properties of the constituent
nouns.

Computational work on plausibility judgement
for NCs involves rare NCs (Lapata and Lascarides,
2003) and novel NCs (Dhar and van der Plas,
2019). The latter built a large-scale dataset of novel
NCs by extracting positive examples from different
decades in the Google Ngram corpus for training
and testing. Negative examples were constructed
by randomly replacing one of the constituents in
the NC with another noun from the data. They
proposed an LSTM-based model that estimates the
plausibility of a target NC based on the pairwise
similarity between the constituents of the target NC
and other, existing NCs. For example, the candi-
date NC glass canoe was predicted as plausible
thanks to its similarity to glass boat.

In this paper, we go beyond plausibility judge-
ment to the more complicated task of interpretation.
In concurrent work, Li et al. (2022) conducted simi-
lar experiments evaluating GPT-3’s ability to define
common and new noun compounds, as well as com-
binations of nonce words. They found no evidence
that GPT-3 employs human-like linguistic princi-
ples when interpreting new noun compounds, and
suggested it might be memorizing lexical knowl-
edge instead. We further try to quantify the latter
possibility in this work.

Similarly to novel NCs, Pinter et al. (2020b) look
at novel blends from the NYTWIT corpus, col-
lected automatically from a Twitter bot that tweets
words published for the first time in the NYT (Pin-
ter et al., 2020a). For example, thrupple is a blend
of three and couple, used to describe “A group
of three people acting as a couple”. They found
that PLMs struggled to separate blends into their
counterparts.

In a related line of work on creativity, researchers
proposed models that coin new words from exist-
ing ones. Deri and Knight (2015) generated new
blends such as frenemy (friend + enemy). Mizrahi
et al. (2020) generated new Hebrew words with an
algorithm that is inspired by the human process of
combining roots and patterns.

3 Noun Compound Interpretation

We first evaluate PLMs’ ability to interpret exist-
ing noun compounds. We focus on the free-text
paraphrasing version of NCI, as exemplified in Ta-
ble 2. We use the standard dataset from SemEval
2013 Task 4 (Hendrickx et al., 2013). We identified
several problems in the dataset that we address in
Sec 3.1. We then trained PLM-based models on
the revised dataset (Sec 3.2), and evaluated them
both automatically and manually (Sec 3.3).

3.1 Data

We manually reviewed the SemEval-2013 dataset
and identified several major issues with the data
quality. We propose a revised version of the dataset,
with the following modifications.

Train-Test Overlap. We discovered 32 NCs that
appeared in both the training and test sets, and
removed them from the test set.

Incorrect Paraphrases. We manually corrected
paraphrases with superficial problems such as
spelling or grammatical errors, redundant spaces,
and superfluous punctuation. We also identified
and removed NCs that were semantically incor-
rect. For example, rubber glove was paraphrased
to “gloves has been made to get away from rubber”,
perhaps due to the annotator mistaking the word
rubber for robber. Finally, we found and removed
a few paraphrases that contained superfluous or sub-
jective additions, deviating from the instructions
by Hendrickx et al. (2013). For example, tax reduc-
tion was paraphrased as “reduction of tax hurts the
economy”, and engineering work as “work done by
men in the field of engineering”. Further, we dis-
carded a total of 14 NCs from the training set and
11 NCs from the test set that had no correct para-
phrases. In total, we removed 1,960 paraphrases
from the training set and 5,066 paraphrases from
the test set.

“Catch-All” Paraphrases. The paraphrases in
Hendrickx et al. (2013) were collected from crowd-
sourcing workers. An issue with the crowdsourcing
incentive structure, is that it indirectly encourages
annotators to submit any response, even when they
are uncertain about the interpretation of a given NC.
In the context of this dataset, this incentive leads
to what we call “catch-all” paraphrases. Such para-
phrases include generic prepositional paraphrases
such as “[n2] of [n1]” (e.g. “drawing of chalk”).
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Original Revised

train dev test train dev test

#NCs 174 0 181 160 28 110
#paraphrases 4,256 0 8,190 5,441 1,469 4,820

Table 1: Statistics of the original SemEval 2013 dataset
(Hendrickx et al., 2013) vs. our revised version (hence-
forth: the NCI dataset).

For verbal paraphrases, the include generic verbs,
such as “[n2] based on [n1]”, “[n2] involving [n1]”,
“[n2] associated with [n1]”, “[n2] concerned with
[n1]”, and “[n2] coming from [n1]”. While these
paraphrases are not always incorrect, they are also
not very informative of the relationship between
the constituent nouns. We therefor removed such
paraphrases.2

Data Augmentation. To increase the size of the
dataset in terms of paraphrases and facilitate easier
training of models, we performed semi-automatic
data augmentation. Using WordNet (Fellbaum,
2010), we extended the set of paraphrases for each
NC by replacing verbs with their synonyms and
manually judging the correctness of the resultant
paraphrase. We also identified cases were two
paraphrases could be merged into additional para-
phrases. For example, steam train contained the
paraphrases “train powered by steam” and “train
that operates using steam”, for which we added
“train operated by steam” and “train that is powered
using steam”. Overall, we added 3,145 paraphrases
to the training set and 3,115 to the test set.

We followed the same train-test split as the orig-
inal dataset, but dedicated 20% of the test set to
validation. Table 1 displays the statistics of the NCI
datasets.

3.2 Methods
We evaluate the performance of two representa-
tive PLM-based models on our revised version of
the SemEval-2013 dataset (henceforth: the NCI
dataset): a supervised seq2seq T5 model (Raf-
fel et al., 2020) and a few-shot prompting GPT-3
model (Brown et al., 2020).

Supervised Model. We trained the seq2seq
model from the Transformers package (Wolf et al.,
2019), using T5-large. We split each instance in

2Another factor for the quality of paraphrases is the work-
ers’ English proficiency level. Writing non-trivial paraphrases
requires high proficiency, and in 2013, it wasn’t possible to
filter workers based on native language on Mechanical Turk.

the dataset into multiple training examples, with
the NC as input and a single paraphrase as output.
We used the default learning rate (5× 10−5), batch
size (16), and optimizaer (Adafactor). We stopped
the training after 4 epochs when the validation loss
stopped improving. During inference, we used top-
p decoding (Holtzman et al., 2020) with p = 0.9
and a temperature of 0.7, and generated as many
paraphrases as the number of references for a given
NC.

Few-shot Model. We used the
text-davinci-002 GPT-3 model available
through the OpenAI API. We randomly sampled
10 NCs, each with one of its paraphrases, from the
training set, to build the following prompt:

Q: what is the meaning of <NC>?
A:<paraphrase>

This prompt was followed by the same question
for the target NC, leaving the paraphrases to be
completed by GPT-3. We used the default setup of
top-p decoding with p = 1 and a temperature of 1.

3.3 Evaluation

We decided to deviate from the original evaluation
setup of the SemEval 2013 dataset, which was crit-
icized in Shwartz and Dagan (2018). We describe
the original evaluation setup, and our proposed
setup including automatic and manual evaluation.

Original Evaluation Setup. The original Se-
mEval task was formulated as a ranking task. The
paraphrases of each NC were ranked according
to the number of annotators who proposed them.
Hendrickx et al. (2013) introduced two dedicated
evaluation metrics, an ‘isomorphic’ score that mea-
sured the recall, precision, and order of paraphrases
predicted by the systems, and a ‘non-isomorphic’
score that disregarded the order. Both metrics re-
warded systems for predicting shorter prepositional
paraphrases (e.g. “[n2] of [n1]”), that were in the
set of paraphrases for many NCs, and were often
ranked high because many annotators proposed
them. For example, for the NC access road, the
catch-all paraphrase “road for access” was ranked
higher than the more informative “road that pro-
vides access”. Indeed, as noted in Shwartz and
Dagan (2018), a baseline predicting a fixed set
of common, generic paraphrases already achieves
moderately good non-isomorphic score. In general,
we do not see the benefit of the ranking system,
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NC GPT-3 T5

access road road that provides access road for access
reflex action a sudden, involuntary response to a stimulus action performed to perform reflexes
sport page a page in a publication that is devoted to sports page dedicated to sports
computer format the way in which a computer organizes data format used in computers
grief process process of grieving or mourning process that a grief sufferer experiences

Table 2: Example paraphrases generated using GPT-3 and T5 for NCs in the revised SemEval 2013 test set.

Method METEOR ROUGE-L BERTScore Human

T5 69.81 65.96 95.31 65.35
GPT-3 56.27 47.31 91.94 95.64

Table 3: Performance of the T5 and GPT-3 models on the revised SemEval 2013 test set.

since some of the most informative paraphrases are
unique and are less likely to have been proposed
by many annotators. Instead, we propose to use
standard evaluation metrics for generative tasks, as
we describe below.

Automatic Evaluation. Table 3 (columns 2-4)
displays the performance of T5 and GPT-3 on the
test set using the following standard evaluation
metrics for text generation tasks: the lexical over-
lap metrics ROUGE-L (Lin, 2004) and METEOR
(Lavie and Agarwal, 2007), and the semantic-
similarity metric BERT-Score (Zhang et al., 2020).
These metrics compare the system generated para-
phrases with the reference paraphrases, further mo-
tivating our data augmentation in Sec 3.1 (e.g., Lin
(2004) found that considering multiple references
improves ROUGE’s correlation with human judge-
ments). For each metric m, we compute the follow-
ing score over the test set T:

s = meannc∈T
[
meanp∈system(nc)

maxr∈references(nc)m(p, r)
]

In other words, we generate a number of para-
phrases equal to the number of reference para-
phrases, then find the most similar reference for
each of the generated paraphrases, and average
across all paraphrases for each NC in the test set.

The automatic metrics show a clear preference to
T5. However, upon a closer look at the outputs of
each model, it seems that T5 generated paraphrases
that more closely resembled the style and syntax
of the references, as expected from a supervised
model, but the paraphrases were not “more correct”
than those outputted by GPT-3. For example, in
Table 2, the paraphrase generated by GPT-3 for
reflex action is correct but doesn’t follow the syn-
tax of the references in the training data ([n2] ...

[n1]). The T5-generated paraphrase follows that
syntax but generates the generic and inaccurate
paraphrase “action performed to perform reflexes”.
More broadly, lexical overlap based metrics such as
ROUGE and METEOR penalize models for lexical
variability.

Human Evaluation. To assess the quality of pre-
dictions in a more reliable manner, we turn to hu-
man evaluation. We used Amazon Mechanical
Turk (MTurk) and designed a human intelligence
task (HIT) which involved displaying an NC along
with 10 generated paraphrases, 5 from GPT-3 and
5 from T5, randomly shuffled. We asked work-
ers to indicate for each paraphrase whether they
deemed it acceptable or not. Each HIT was to
be performed by 3 workers, and acceptability was
measured using majority voting. To ensure the
quality of workers, we required that workers re-
side in the US, Canada, or the UK, and that they
had an acceptance rate of at least 99% for all prior
HITs. We also required them to pass a qualification
task that resembled the HIT itself. We paid each
worker $0.10 per task, which yielded an approxi-
mate hourly wage $15.

The last column in Table 3 presents the results
of the human evaluation in terms of percentage of
paraphrases deemed acceptable by a majority of hu-
man evaluators. GPT-3 performed remarkably well
with over 95% of generated paraphrases deemed
acceptable by a majority of human evaluators. In
contrast to the automatic metrics, T5 fared much
worse on human evaluation, and human annotators
judged a third of T5 outputs as incorrect.

4 Noun Compound Conceptualization

GPT-3’s impressive success at interpreting exist-
ing noun compounds is related to PLMs’ ability
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to associate nouns with their hypernyms (Ettinger,
2020) and to generate accurate definitions for terms
(Shwartz et al., 2020). Such models are trained on
vast amounts of texts, including said definitions,
and the target NC itself occurring alongside con-
texts that indicate its meaning. Humans are dif-
ferent in their ability to interpret NCs. We can
often rely on a single context, or no context at all,
to have at least an educated guess at the mean-
ing of a new NC. We are capable of representing
new concepts by “mentally manipulating old ones”
(Connell and Lynott, 2012), e.g. coming up with
a plausible interpretation for chocolate crocodile
based on similar concepts such as chocolate bunny.
Prior work on NCI simulated this by training a
model to jointly predict a paraphrase as well as
answer questions such as “what can chocolate be
shaped like?” (Shwartz and Dagan, 2018). We are
interested in learning whether PLMs already do
this implicitly, or more broadly, to what extent can
PLMs interpret new noun compounds?

Inspired by studies in cognitive science about
“conceptual combination” (Wisniewski, 1997;
Costello and Keane, 2000), we define the task of
Noun Compound Conceptualization (NCC). NCC
has the same setup as NCI (§3), but the inputs are
rare or novel noun compounds. The task thus re-
quires some level of creativity and the ability to
make sense of the world. We first describe the cre-
ation of the NCC test set (Sec 4.1). We evaluate the
best model from Sec 3.2 on the new test set, and
present the results in Sec 4.2.

4.1 Data

We construct a new test set consisting of novel or
rare NCs. The guidelines for adding an NC for
the test set are that: (a) humans could easily make
sense of it; but (b) it is infrequent in or completely
absent from the web.

Noun Compounds. The main source for the test
set is a dataset from Dhar and van der Plas (2019).
They proposed the task of classifying an unseen se-
quence of two nouns to whether it can form a plau-
sible NC or not. The data was created by extracting
noun-noun bigrams from the Google Ngram cor-
pus (Brants, 2006). To simulate novel NCs, the
models were trained on bigrams that only appeared
in the corpus until the year 2000 and evaluated
on bigrams that only appeared after 2000. Since
GPT-3 was trained on recent data, we had to make
sure that we only include the most infrequent NCs.

Test Set NCI NCC

Human Performance - 73.33
GPT-3 95.64 83.81

Table 4: Human evaluation performance (percent of
correct paraphrases) of paraphrases proposed by people
or generated by GPT-3 for the NCI and NCC test sets.

We thus further refined the data from Dhar and
van der Plas (2019) by including only the 500 most
infrequent NCs based on their frequency in a large-
scale text corpus, C4 (Raffel et al., 2020). We
then semi-automatically filtered out named entities,
compounds that were part of larger expressions,
and NCs with spelling errors. Finally, we manually
chose only the NCs for which we could come up
with a plausible interpretation, leaving us with 83
NCs in total.

We added 22 more NCs that we extracted in
a similar manner from the Twitter sentiment 140
dataset (Go et al., 2009). We expected to find more
“ad-hoc” NCs in tweets than in more formal texts
such as news. Due to the age and size of this dataset,
we filtered the NCs based on frequency in C4, set-
ting the threshold to 250 occurances. Overall, our
NCC test set contains a total of 105 NCs.

Paraphrases. We collected reference para-
phrases for the NCC test set using MTurk. We
showed workers the target NC and asked them to
paraphrase the NC or give their best estimate if
they are unfamiliar with the NC. We used the same
qualifications as in Sec 3.3, and paid $0.12 per
HIT.

4.2 Evaluation

We focus on GPT-3 due to its almost perfect per-
formance on NCI. We evaluated GPT-3 on the
NCC test set using the few-shot setup described
in Sec 3.2. We selected the few-shot examples
from the NCI training set.

We focus on human evaluation (as described in
Sec 3.3), which is more reliable than automatic met-
rics. We asked workers to judge the validity of both
human-written and GPT-3 generated paraphrases.

Table 4 shows that GPT-3 performs significantly
better than humans at this task. GPT-3 benefits
from access to huge amounts of data. We conjec-
ture that even though the target NCs are rare in its
training data, it likely observed similar NCs, and is
able to generalize and make sense of new concepts.
At the same time, while humans are in general ca-
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Figure 2: The percent of n-grams among the generated paraphrases (for n = {3, 4, 5}) that occur in the C4 corpus
0, 1-5, or 5+ times, for each of the NCI and NCC test sets, grouped by correct vs. incorrect generated paraphrases.

pable of coming up with a plausible interpretation
for an unfamiliar concept, it is an effortful and cog-
nitively taxing task. We hypothesize that in a setup
other than crowdsourcing, i.e. given more time or
incentive, human performance may increase.

Compared to its performance on NCI, GPT-3’s
performance on NCC shows a significant drop.
This may suggest that GPT-3 struggles to reason
about certain rare NCs, which we investigate in the
next section.

5 Does GPT-3 Parrot its Training Data?

While GPT-3 performs fairly well on NCC, look-
ing at failure cases brings up interesting observa-
tions. For example, one of its responses for choco-
late crocodile was “A large, aggressive freshwa-
ter reptile native to Africa”. This response seems
to have ignored the chocolate part of the NC en-
tirely, and opted to provide an answer to “What is
a crocodile?”. Much like a student who doesn’t
know the answer to a question so instead regurgi-
tates everything they memorized about the topic in
hopes that it will include the correct answer.3

To quantify the extent to which GPT-3 may be
parroting its training corpus, we look at n-gram
overlap between GPT-3’s generated paraphrases
and the large-scale web-based corpus C4 (Raffel
et al., 2020).4

3A similar phenomenon was also demonstrated in concur-
rent work from Li et al. (2022). They showed that for instance,
GPT-3 defines a banana table as a banana rather than a table,
differently from humans.

4We don’t have access to the GPT-3 training corpus, but
it included Common Crawl, web texts, books, and Wikipedia.

Figure 2 displays the percents of n-grams among
the generated paraphrases (for n = {3, 4, 5}) that
occur in the C4 corpus 0, 1-5, or 5+ times, for
each of the NCI and NCC test sets. The results
are presented separately for paraphrases deemed
correct and incorrect by human evaluators.

We learn several things from Figure 2. First, the
generated paraphrases often had significant overlap
with the corpus (34-94%). As expected, trigrams
are copied more than 4-grams, which are copied
more than 5-grams, as those tend to be rarer.

Second, for the NCI test set, for each n, we
see that n-grams from the correct paraphrases are
copied from the web more often than n-grams from
the incorrect paraphrases. The trend is reversed for
NCC, where incorrect paraphrases are copied from
the web more often than correct ones. Naturally,
the copying strategy is less useful for NCC, which
requires reasoning about new concepts. When GPT-
3 generates correct paraphrases for NCC, their n-
grams tend to not appear in the web at all.

We reach a similar conclusion by looking at the
percent of n-grams in correct vs. incorrect para-
phrases that are copied from the web. The vast
majority of n-grams copied from the web (97%)
for the NCI test set were correct, as opposed to
only 80% for NCC.

6 Conclusion

We evaluated PLMs on their ability to paraphrase
existing and novel noun compounds. For interpre-

C4 (Raffel et al., 2020) is a colossal, cleaned version of Com-
mon Crawl, thus it is the closest to GPT-3’s training corpus.
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tation of existing NCs (NCI), we released a cleaned
version of the SemEval 2013 dataset, with man-
ual correction and automatic augmentation of para-
phrases, and proposed additional evaluation metrics
to overcome limitations described in prior work.
GPT-3 achieved near perfect performance on this
new test set. We then investigated the task of noun
compound conceptualization (NCC). NCC evalu-
ates the capacity of PLMs to interpret the meaning
of new NCs. We showed that GPT-3 still performs
reasonably well, but its success can largely be at-
tributed to copying definitions or parts of defini-
tions from its training corpus.

7 Limitations

Human performance on NCC. The human ac-
curacy on NCC was 73%, compared to 83% for
GPT-3. We know from cognitive science research
that humans are capable of forming new concepts
based on existing ones (Connell and Lynott, 2012).
Moreover, we manually selected NCs in the NCC
test set that we could come up with a plausible inter-
pretation for. The fact that 27% of the paraphrases
proposed by MTurk workers were judged as incor-
rect could be explained by one of the following.
The first explanation has to do with the limitations
of crowdsourcing. To earn enough money, workers
need to perform tasks quickly, and conceptualiza-
tion is a slow cognitive process. On top of that, a
worker that has already spent considerable amount
of time trying to come up with a plausible interpre-
tation for a new NC, is incentivized to submit any
answer they managed to come up with, regardless
of its quality. Skipping a HIT means lost wages.
In a different setup, we hypothesize that human
performance may increase for this task.

The second explanation has to do with the evalu-
ation setup. We asked people to judge paraphrases
as correct or incorrect. Upon manual examination
of a sample of the human-written paraphrases, we
observed a non-negligible number of reasonable
(but not optimal) paraphrases that were annotated
as incorrect. For future work, we recommend doing
a more nuanced human evaluation that will facili-
tate comparing the outputs of humans and models
along various criteria.

The work focuses only on English. Our setup
and data construction methods are fairly generic
and we expect it to be straightforward to adapt
them to other languages that use noun compounds.
With that said, languages such as German, Nor-

wegian, Swedish, Danish, and Dutch write noun
compounds as a single word. Our methods will
not work on these languages without an additional
step of separating the NC into its constituent nouns,
similar to unblending blends (Pinter et al., 2020b).
In the future, we would like to investigate how well
PLMs for other languages perform on NCI and
NCC, especially for low-resource languages.

Limitations of automatic metrics for generative
tasks. Automatic metrics based on n-gram over-
lap are known to have low correlation with hu-
man judgements on various NLP tasks (Novikova
et al., 2017). In particular, they penalize models
for lexical variability. To mitigate this issue, we
semi-automatically expanded the set of reference
paraphrases using WordNet synonyms. Yet, we
still saw inconsistencies with respect to the auto-
matic metrics and human evaluation on NCI. The
automatic metrics showed a clear preference to T5,
which thanks to the supervision, learned to gener-
ate paraphrases that more closely resembled the
style and syntax of the references. GPT-3’s para-
phrases, which were almost all judged as correct by
human annotators, were penalized by the automatic
metrics for their free form (e.g., they didn’t always
include the constituent nouns). For this reason, we
focused only on human evaluation for NCC.

8 Ethical Considerations

Data Sources. All the datasets and corpora used
in this work are publicly available. The cleaned ver-
sion of the NCI dataset is based on the existing Se-
mEval 2013 dataset (Hendrickx et al., 2013). The
NCs for the new NCC test set were taken from an-
other publicly-available dataset (Dhar and van der
Plas, 2019), based on frequencies in the Google
Ngram corpus (Brants, 2006). To quantify Ngram
overlap, we used the Allen AI version of the C4 cor-
pus (Raffel et al., 2020; Dodge et al., 2021) made
available by the HuggingFace Datasets package.5

Data Collection. We performed human evalua-
tion using Amazon Mechanical Turk. We made
sure annotators were fairly compensated by com-
puting an average hourly wage of $15, which is
well above the US minimum wage. We did not
collect any personal information from annotators.

Models. The models presented in this paper are
for a low-level NLP task rather than for an appli-

5https://huggingface.co/datasets/c4
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cation with which users are expected to interact di-
rectly. The generative models are based on PLMs,
which may generate offensive content if prompted
with certain inputs.

Acknowledgements

This work was funded, in part, by an NSERC
USRA award, the Vector Institute for AI, Canada
CIFAR AI Chairs program, an NSERC discovery
grant, and a research gift from AI2.

References
Thorsten Brants. 2006. Web 1t 5-gram version 1.

http://www. ldc. upenn. edu/Catalog/CatalogEntry.
jsp? catalogId= LDC2006T13.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Cristina Butnariu, Su Nam Kim, Preslav Nakov, Diar-
muid Ó Séaghdha, Stan Szpakowicz, and Tony Veale.
2009. SemEval-2010 task 9: The interpretation of
noun compounds using paraphrasing verbs and prepo-
sitions. In Proceedings of the Workshop on Semantic
Evaluations: Recent Achievements and Future Di-
rections (SEW-2009), pages 100–105, Boulder, Col-
orado. Association for Computational Linguistics.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Louise Connell and Dermot Lynott. 2012. Flexible
shortcuts: Linguistic distributional information af-
fects both shallow and deep conceptual processing.
In Proceedings of the Annual Meeting of the Cogni-
tive Science Society, volume 34.

Fintan J. Costello and Mark T. Keane. 2000. Efficient
creativity: Constraint-guided conceptual combina-
tion. Cognitive Science, 24(2):299–349.

Aliya Deri and Kevin Knight. 2015. How to make a
frenemy: Multitape FSTs for portmanteau generation.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 206–210, Denver, Colorado. Association for
Computational Linguistics.

Prajit Dhar and Lonneke van der Plas. 2019. Learning to
predict novel noun-noun compounds. In Proceedings
of the Joint Workshop on Multiword Expressions and
WordNet (MWE-WN 2019), pages 30–39, Florence,
Italy. Association for Computational Linguistics.

Jesse Dodge, Maarten Sap, Ana Marasović, William
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