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Abstract

Recent work has questioned the necessity of vi-
sual information in Multimodal Machine Trans-
lation (MMT). This paper tries to answer this
question and build a new benchmark in this
work. As the available dataset is simple and
the text input is self-sufficient, we introduce a
challenging dataset called EMMT, whose test-
set is deliberately designed to ensure ambiguity.
More importantly, we study this problem in a
real-word scenario towards making the most of
multimodal training data. We propose a new
framework 2/3-Triplet which can naturally
make full use of large-scale image-text and
parallel text-only data. Extensive experiments
show that visual information is highly crucial
in EMMT. The proposed 2/3-Triplet out-
performs the strong text-only competitor by 3.8
BLEU score, and even bypasses a commercial
translation system. 1

1 Introduction

Multimodal Machine Translation (MMT) is a ma-
chine translation task that utilizes data from other
modalities, such as images. Previous studies pro-
pose various methods to improve translation quality
by incorporating visual information and showing
promising results (Lin et al., 2020; Caglayan et al.,
2021; Li et al., 2022a; Jia et al., 2021). However,
manual image annotation is relatively expensive; at
this stage, most MMT work is applied on a small
and specific dataset, Multi30K (Elliott et al., 2016).
The current performance of the MMT system still
lags behind the large-scale text-only Neural Ma-
chine Translation (NMT) system, which hinders
the real-world applicability of MMT.

We summarize the limitations of the current
MMT in two aspects. The first limitation is the
size of the training data. Usually, the performance
of MMT heavily relies on the triple training data:

1Codes and data are available at https://github.
com/Yaoming95/23Triplet
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Figure 1: Triple data, although widely utilized in multimodal
machine translation, is quite scarce. We emphasize the im-
portance of other two kinds of data: parallel text and image
captions. The numbers represent the size of commonly used
datasets for the corresponding data type.

parallel text data with corresponding images. The
triplets are much rarer for collection and much
more costly for annotation than monolingual image-
text and parallel text data, as in Figure 1. Con-
sidering that current MT systems are driven by a
massive amount of data (Aharoni et al., 2019), the
sparsity of multimodal data hinders the large-scale
application of these systems. Some researchers
have proposed retrieve-based approaches (Zhang
et al., 2020; Fang and Feng, 2022), aiming to
construct pseudo-multimodal data through text re-
trieval. However, their constructed pseudo-data
face problems like visual-textual mismatches and
sparse retrieval. Besides, the models still cannot
take advantage of monolingual image-text pairs.

The second limitation is the shortage of proper
benchmarks. Although several researchers have
examined the benefit of visual context upon the
translation when textural information is degra-
dated (Caglayan et al., 2019; Wang and Xiong,
2021), the improvements remain questionable. Wu
et al. (2021) and Li et al. (2021) argue that vision
contributes minor in previous MMT systems, and
the images in the previous benchmark dataset pro-
vide limited additional information. In many cases,
the translation of sentences relies on textual other
than image information. The texts contain com-
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plete contexts and are unambiguous, leaving the
usage of images doubtful. Therefore, a benchmark
in that the sentences can not be easily translated
without visual information is much needed.

To address these limitations, we propose models
to make the most of training data and build a chal-
lenge and real-world benchmark to push the real-
world application of MMT research. At first, we
propose a new framework, named 2/3-Triplet,
which can use both parallel text and image-text
data. It provides two different ways of exploiting
these data based on the continuous vision feature
and discrete prompt tokens, respectively. The two
approaches are not mutually exclusive and can be
used jointly to improve performance within the
same framework. It is also worth mentioning that
the prompt approach is easy to deploy without mod-
ifying the model architecture.

In addition, we present a new real-world dataset
named EMMT. We collect parallel text-image data
from several publicly available e-commerce web-
sites and label the translation by 20 language ex-
perts. To build a challenge test set, we carefully
select ambiguous sentences that can not be eas-
ily translated without images. This high-quality
dataset contains 22K triplets for training and 1000
test examples, along with extra image-text and par-
allel text data.

Comprehensive experiments show that
2/3-Triplet rivals or surpasses text-only and
other MMT competitors on EMMT, as well as
previous benchmarks. Especially, 2/3-Triplet
consistently improves the strong text-only baseline
by more than 3 BLEU scores in various settings,
showing the importance of visual information.

2 Related Work

Researchers applied multimodal information to en-
hance machine translation systems since the statis-
tical machine translation era (Hitschler et al., 2016;
Afli et al., 2016). With the rise of neural networks
in machine translation, researchers have focused on
utilizing image information more effectively. Early
work used image features as initialization for neu-
ral MT systems (Libovický and Helcl, 2017). More
recent studies proposed multimodal attention mech-
anisms (Calixto et al., 2017; Yao and Wan, 2020),
enhanced text-image representations using graph
neural networks (Lin et al., 2020), latent variable
models or capsule networks (Yin et al., 2020), and
used object-level visual grounding information to

align text and image (Wang and Xiong, 2021). Li
et al. (2022a) found that a stronger vision model
is more important than a complex architecture for
multimodal translation.

As we discussed earlier, these methods are lim-
ited to bilingual captions with image data, which is
scarce. Therefore, some researchers (Zhang et al.,
2020; Fang and Feng, 2022) also design retrieval-
based MMT methods that retrieve images with sim-
ilar topics for image-free sentences. Alternatively,
Elliott and Kádár (2017) proposed visual “imagina-
tion” by sharing visual and textual encoders.

Recently, Wu et al. (2021) and Li et al. (2021)
have questioned whether the most common bench-
mark Multi30K (Elliott et al., 2016) is suited for
multimodal translation since they found images
contribute little to translation. Song et al. (2021)
have contributed a new dataset of the e-commercial
product domain. However, we find their datasets
still have similar drawbacks.

Several relevant studies about translation and
multimodality are noteworthy. Huang et al. (2020)
used visual content as a pivot to improve unsu-
pervised MT. Wang et al. (2022b) proposed a pre-
training model by using modality embedding as
prefix for weak supervision tasks. Li et al. (2022c)
introduced the VALHALLA, which translates un-
der guidance of hallucinated visual representation.

3 Approach

For the fully supervised condition in MMT, we
have triplet {(x, y, i)}, where x is the source text,
y is the target text, and i is the associated image.
Since the triplet is rare, we attempt to utilize par-
tially parallel data like {(y, i)} and {(x, y)}, which
are referred as monolingual image-text data and
parallel text data in this paper.

In this section, we propose a new training frame-
work 2/3-Triplet with two approaches to utilize
triple and non-triple data at the same time. We
name these two approaches as FUSION-BASED
and PROMPT-BASED, as shown in Figure 2.

For each approach, the model can conduct a mix
training with three kinds of data: ((x, i) → y),
((x) → y), and ((y∗, i) → y), where y∗ indicates
the masked target text.

FUSION-BASED approach resembles the conven-
tional models where the encoded vision informa-
tion is taken as model input and the model is trained
in end2end manners, and our design makes it possi-
ble to utilize bilingual corpus and image-text pairs

2680



Image 

Encoder

black bass T-shirt ⿊⾊ 鲈⻥ [MASK]

② Parallel Text

⿊⾊ 鲈⻥ T恤

 

③ Monolingual Caption① Triplet

   

+

Text Encoder

text input

image 

feature

Random 

Text Mask

⿊⾊ 鲈⻥ T恤

Text Decoder
Textual 

Modality

Visual 

Modality
fusion gate

black bass 

T-shirt black bass T-shirt  

Image 

Encoder

吉他
Image  

Caption

Image  

Embedding

(a) FUSION-BASED

black bass T-shirt 

[SEP]  吉他 T恤 

Caption 

Model

① Triplet ② Parallel Text

  

black bass T-shirt 

[SEP]  ⻉斯

Random 

Text Mask

Sample 
from 

Target

⿊⾊ ⻉斯 T恤Text Encoder-

Decoder

text input

Translations: 

⿊⾊  black 

吉他  guitar 

T恤    T-shirt 

⻉斯  bass (guitar) 

鲈⻥  bass (fish)

black bass 

T-shirt 

⿊⾊ [MASK] T恤 

[SEP]  吉他 T恤 

⿊⾊ ⻉斯 T恤black bass 

 T-shirt  

 

⿊⾊ ⻉斯 T恤

③ Monolingual Caption

 

Caption 

Model

(b) PROMPT-BASED

Figure 2: The illustration of our framework 2/3-Triplet in FUSION-BASED and PROMPT-BASED given ambigu-
ous sentences. For each approach, the model can conduct a mixed training with three kinds of data: {(x, y, i)},
{(y, i)}, and {(x, y)}. ① means using triple data ((x, i) → y); ② means using parallel text data ((x) → y); ③
means using monolingual image-text data ((y∗, i) → y), where y∗ indicates the masked target text.

other than multilingual triplets.
PROMPT-BASED approach is inspired by the re-

cent NLP research based on prompts (Gao et al.,
2021; Li and Liang, 2021; Wang et al., 2022a; Sun
et al., 2022), where we directly use the image cap-
tion as a prompt to enhance the translation model
without any modification to the model.

3.1 FUSION-BASED

The common practice to utilize image information
is to extract vision features and use them as in-
puts of the multimodal MT systems. Typically, it’s
common to cooperate vision and textual features to
get a multimodal fused representation, where the
textual features are the output state from the Trans-
former encoder and the vision feature is extracted
via a pre-trained vision model.

We incorporate textual embedding and image
features by simple concatenation:

H fused = [Htext; himg] (1)

where Htext is the encoded textual features of
Transformer encoder, and himg is the visual repre-
sentation of [CLS] token broadcated to the length
of the text sequence.

Then, we employ a gate matrix Λ to regulate the
blend of visual and textual information.

Λ = tanh(f([Htext;H fused])) (2)

Finally, we add the gated fused information to
the origin textual feature to get the final multimodal
fused representation:

Hout = Htext + ✶(img)ΛH fused (3)

✶(img) indicates whether the image exists. The
value is set to zero when image is absent.

It is worth noting that in Eq.2, we employ the
hyperbolic tangent (tanh) gate instead of the tra-
ditional sigmoid gate (Wu et al., 2021; Li et al.,
2022a) in the multimodal translation scenario. The
new choice has two major advantages: (a) The
output of the tanh can take on both positive and
negative values, thereby enabling model to modu-
late the fused features H fused in accordance with
the text Htext; (b) The tanh function is centered
at zero, thus, when the fused feature is close to
zero, the output of the gate is also minimal, which
aligns with the scenario where the image is absent
naturally (i.e. tanh(0) = ✶(no img) = 0).

The next paragraphs illustrate how to utilize
three types of data respectively.

Using Triple Data ((x, i) → y) Figure 2a 1 :
Based on the basic architecture, we take in the
source text for the text encoder and the image for
the image encoder. By setting ✶(img) = 1, we
naturally leverage vision context for translation.
The inference procedure also follows this flow.
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Using Parallel Text ((x) → y) Figure 2a 2 :
We utilize the same architecture as the triple data
setting. By setting ✶(img) = 0, we can adapt to
the text-only condition. For the image-free bilin-
gual data, the fused term is absent, and the final
representation Hout is reduced to textual only, con-
sistent with the learning on unimodal corpus.

Using Monolingual Caption ((y∗, i) → y) Fig-
ure 2a 3 : Inspired by Siddhant et al. (2020)’s
strategy on leveraging monolingual data for transla-
tion, we adapt the mask de-noising task for utilizing
monolingual image-text pairs. In a nutshell, we ran-
domly mask some tokens in the text, and force the
model to predict the complete caption text based
on the masked text and image as input.

3.2 PROMPT-BASED

As prompt-based methods have made great success
in NLP tasks(Gao et al., 2021; Li et al., 2022b;
Wang et al., 2022a; Sun et al., 2022), we also con-
sider whether the image information can be con-
verted to some prompt signals for guiding sentence
generation.

The general idea is quite straight: our translation
system accepts a sentence of source language along
with some keywords of target language, and trans-
lates the source sentence into the target language
under the instruction of the target keywords. The
keywords can be any description of the image that
can help disambiguate the translation.

Using Triple Data ((x, i) → y) Figure 2b 1 :
First, we generate the prompt from the image with
a pre-trained caption model (we will introduce the
caption model later). The source sentence is con-
catenated with the The original source sentence and
the prompt are concatenated together to compose
the training sources, with a special token [SEP]
as a separator between the two.

Using Parallel Text ((x) → y) Figure 2b 2 :
Since PROMPT-BASED approach adopts a standard
Transformer and involves no modification on archi-
tecture, it is natural to train on unimodal parallel
corpus. We use the parallel data to strengthen the
ability to take advantage of the prompt. Without
any image, we randomly select several words from
the target sentence as the pseudo vision prompt.
For translation training, we append the keyword
prompt to the end of the original sentence and use
a special token as a separator (Li et al., 2022b).

After inference, we extract the translation result by
splitting the separator token.

Using Monolingual Caption ((y∗, i) → y) Fig-
ure 2b 3 : Like FUSION-BASED approach, we use
the de-noising auto-encoder task. By randomly
masking some tokens and combining the caption
result from the image as the prompt, we make the
model learn to predict the original target text.

Training Caption Model ((i) → keywords(y))
Meanwhile, we train an caption model to generate
the guiding prompt from images for translation, We
formulate image-text pairs from both triple data
and target-side monolingual caption. The input and
output of the model are the image and extracted
keywords of the corresponding target sentence.

3.3 Comparison and Combination of
FUSION-BASED and PROMPT-BASED

Under the same training framework 2/3-Triplet,
we propose two approaches, FUSION-BASED and
PROMPT-BASED, for utilizing non-triple data. The
FUSION-BASED approach preserves the complete
visual context, providing more information via
model fusion. In contrast, the PROMPT-BASED

approach has the advantage of not requiring any
modifications to the model architecture. Instead,
all visual information is introduced by the prompt
model, making deployment more straightforward.

The two methods, FUSION-BASED and PROMPT-
BASED, are not mutually exclusive, and we can
jointly utilize them. Specifically, the model si-
multaneously utilizes the fused feature in Eq. 3
as an encoder representation and the prompted-
concatenated source as text input. The combination
enables the model to benefit from our framework
in the most comprehensive way, and as a result, the
performance gains significant improvements.

4 Dataset

As mentioned before, in previous test sets, many
sentences can be easily translated without the im-
age context, for all information is conveyed in the
text and has no ambiguity. To deeply evaluate vi-
sual information usage, we propose a multimodal-
specific dataset.

We collect the data based on real-world e-
commercial data crawled from TikTok Shop and
Shoppee. We crawled the product image and title
on two websites, where the title may be in English
or Chinese. We filter out redundant, duplicate sam-
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ples and those with serious syntax errors. Based
on this, we conduct manual annotations. We hired
a team of 20 professional translators. All transla-
tors are native Chinese, majoring in English. In
addition, another translator independently samples
the annotated corpus for quality control. We let
the annotators select some samples specifically for
the test set, which they found difficult to translate
or had some confusion without images. The total
number of triples annotated is 22, 500 of which
are carefully selected samples as testset. We also
randomly selected 500 samples as devsets among
the full-set while the remaining as training set.

Besides the annotated triplets, we clean the rest
of the crawled data and open sourced it as the mono-
lingual caption part of the data. Since our approach
features in utilizing bilingual data to enhance mul-
timodal translation, we sample 750K CCAlign (El-
Kishky et al., 2020) English-Chinese as a bilingual
parallel text. The selection is motivated by the
corpus’s properties of its diversity in sources and
domains, and it is more relevance to real-world
compared to other corpus. The sampled data scale
is decided based on both the model architecture
and the principles of the neural scaling law (Ka-
plan et al., 2020; Gordon et al., 2021). We also
encourage future researchers to explore the use of
additional non-triple data to further enhance perfor-
mance, as detailed in the appendix. We summarize
the dataset statistics in Table 1. We discuss ethic
and copyright issue of the data in the appendix.

5 Experiments

5.1 Datasets

We conduct experiments on three benchmark
datasets: Multi30K (Elliott et al., 2016), Fashion-
MMT (Clean) (Song et al., 2021), and our EMMT.
Multi30K is the most common benchmark on
MMT tasks, annotated from Flickr, where we fo-
cus on English-German translation. To validate the
effectiveness of parallel text, we add 1M English-
German from CCAlign and COCO (Lin et al., 2014;
Biswas et al., 2021). Fashion-MMT is built on
fashion captions of FACAD (Yang et al., 2020).

5.2 Baselines

We compare our proposed 2/3-Triplet with the
following SOTA MT and MMT systems:
Transformer (Vaswani et al., 2017) is the current
de facto standard for text-based MT.

Train
Test Dev

Triplet PT MC
22K 750K 103K 1000 500

Table 1: EMMT statistics. “PT” stands for parallel text
data. “MC” stands for monolingual caption.

UPOC2 (Song et al., 2021) introduced cross-modal
pre-training tasks for multimodal translation.
Selective-Attention (SA) (Li et al., 2022a) investi-
gated strong vision models and enhanced features
can enhance multimodal translation with simple
attention mechanism.
UVR-NMT (Zhang et al., 2020) retrieves related
images from caption corpus as the pseudo image
for sentences.
Phrase Retrieval (Fang and Feng, 2022) is an im-
proved version of retrieval-based MMT model that
retrieve images in phrase-level.

In addition, we report the results of Google
Translate, which helps to check whether the trans-
lation of the test set actually requires images. All
baselines reported use the same number of layers,
hidden units and vocabulary as 2/3-Triplet for
fair comparison.

We mainly refer to BLEU (Papineni et al., 2002)
as the major metric since it is the most commonly
used evaluation standard in various previous multi-
modal MT studies.

5.3 Setups

To compare with previous SOTAs, we use differ-
ent model scales on Multi30K and the other two
datasets. We follow Li et al. (2022a)’s and Li et al.
(2021)’s setting on Multi30K, where the model
has 4 encoder layers, 4 decoder layers, 4 attention
heads, hidden size and filter size is 128 and 256,
respectively. On the other two datasets, we set the
model has 6 encoder layers, 6 decoder layers, 8
attention heads, hidden size and filter size is 256
and 512, respectively (i.e. Transformer-base set-
ting). We apply BPE (Sennrich et al., 2016) on
tokenized English and Chinese sentences jointly to
get vocabularies with 11k merge operations. We
use Zeng et al. (2022)’s method to get the caption
model. The vocabularies, tokenized sentence and
caption models will be released for reproduction.
Codes are based on Fairseq (Ott et al., 2019).

When training models on various domains (+PT
and +MC in Tab. 2), we upsample small-scale data
(i.e. E-commercial Triplet) because of the massive
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ID
Test set EMMT Multi30k-Test16 Multi30k-Test17
Training Data Triplet Only +PT + PT + MC Triplet Only +PT Triplet Only +PT

1 Plain Transformer♥ 39.07 40.66 42.71 39.97 44.13 31.87 40.46
2 Selective Attention♠ 41.27 / / 40.63 / 33.80 /
3 UPOC2♦ 40.60 / 44.81 40.8 / 34.1 /
4 UVR-NMT♣ 37.82 41.13 / 38.19 / 31.85 /
5 Phrase Retrieval♣ / / / 40.30 / 33.45 /
6 FUSION-BASED 41.74 44.22 45.93 40.95 / 34.03 /
7 PROMPT-BASED 41.70 43.35 46.28 40.17 / 33.87 /
8 FUSION+PROMPT 42.03 45.20 46.55 40.48 44.60 34.62 40.07

Google Translate 44.27 41.9 42.0
♥ We also train plain Transformer on monolingual captions via Siddhant et al. (2020)’s method for fair comparison on textual data.
♠ We use their open source code to reproduce Multi30K’s results.
♦ Multi30K’s results copy from Song et al. (2021). We add all MC and PT data for its pre-training in +PT+MC column for fair comparison on data. The complete UPOC2 also

utilize product attributes besides images, which is removed from our replication.
♣ Multi30K’s results copy from Fang and Feng (2022). Phrase Retrieval is not reported on EMMT since they haven’t released the phrase extraction scripts. We conduct the

retrieval for all parallel sentences with top 5 images as candidate in +PT column of UVR-NMT.

Table 2: Results of 2/3-Triplet and related work on EMMT and Multi30k. “PT” indicates parallel text data {(x, y)}, “MC”
indicates monolingual caption data {(y, i)}. On the one hand, 2/3-Triplet outperforms previous studies. On the other
hand, extra non-triple data brings significant improvements. The reported improvement on EMMT dataset is examined with
Dror et al. (2018)’s significance test with p < 0.05 .

disparity of data scale in different domains. We
follow Wang and Neubig (2019)’s and Arivazha-
gan et al. (2019)’s temperature based data sampling
strategy and set the sampling temperature at 5. We
empirically find that the model gains by simply
randomly dropping some images during the train-
ing, where we set the drop ratio at 0.3 . Interest-
ingly, such the method is also observed in other
multimodal research topics (Abdelaziz et al., 2020;
Alfasly et al., 2022). We evaluate the performance
with tokenized BLEU (Papineni et al., 2002).

5.4 Main Results

We list the main results in Tab. 2. We get three
major findings throughout the results:

1. In traditional multimodal MT settings (i.e.
Triplet only and Multi30K), whose train-
ing and inference are on triple data,
2/3-Triplet rivals or even surpasses the
previous SOTAs.

2. Parallel text and monolingual captions signifi-
cantly boost the performance of multimodal
translation models. With these additional
data, even the plain Transformer model outper-
forms SOTA multimodal baselines. Given the
scarcity of multimodal data, we argue that the
use of extra data, especially the parallel text, is
more crucial for multimodal translation than
the use of multimodal information.

3. FUSION and PROMPT generally achieve the
best performance when used together. This
suggests two approaches are complementary.

We also list results on Multi30k for dataset com-
parison. Google Translate achieves the best results,
while all other models are close in performance
with no statistical significant improvement. It indi-
cates that images in Multi30K are less essential and
a strong text translation model is sufficient to han-
dle the majority of cases. Moreover, we find that by
incorporating non-imaged parallel text, the model’s
performance improves significantly, while narrows
the gap between plain transformer models MMT
ones. Hence, the parallel text rather than images
may be more essential for improving performance
on the Multi30k. In contrast, 2/3-Triplet sur-
pass Google’s on EMMT with visual infomation,
providing evidence that ours serves as a suitable
benchmark.

We also report the results of 2/3-Triplet and
baselines on FashionMMT in Appendix along with
BLEURT (Sellam et al., 2020) and word accuracy
as supplementary metrics. The results show that
2/3-Triplet also rivals the SOTA MMT systems
on various benchmarks and metrics.

5.5 Performance on Triplet-unavailable
Setting

In more scenarios, annotated triple data is rather
scarce or even unavailable, i.e. only bilingual trans-
lation or monolingual image caption is available in
the training data, while we wish the model can still
translate sentences in multimodal manners.

Since our proposed 2/3-Triplet utilize not
only triplets, we examine whether our model can
conduct inference on multimodal triple testset
while only trained on the non-triple data, as triplet
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might be unavailable in real scenarios. In this ex-
periment, we discard all images of EMMT’s triples
during the training stage, while the trained model is
still evaluated on the multimodal test set. We com-
pare the triplet-unavailable results to triplet only
and full data training set settings in Figure 3

We can see that 2/3-Triplet still preserves a
relatively high performance and even sharply beats
the triplet-only setting. This fully illustrates that
involving parallel text and monolingual caption is
extremely important for MMT.

42

44

46

fusion prompt fusion+prompt

All−data Triplet−only Triplet−unavailable Plain Transfomer

Figure 3: 2/3-Triplet’s performance on using all-
data, use triplet-only and triplet-unavailable cases. The
horizontal line is the transformer baseline trained on
all-data(i.e. +PT+MC of Row 1 in Table 2)

6 Discussion

As plenty of previous studies have discussed, the
current multimodal MT benchmarks are biased,
hence the quality gains of previous work might
not actually derive from image information, but
from a better training schema or regularization ef-
fect (Dodge et al., 2019; Hessel and Lee, 2020).
This section gives a comprehensive analysis and
sanity check on our proposed 2/3-Triplet and
EMMT: we carefully examine whether and how
our model utilize images, and whether the testset
of EMMT has sufficient reliability.

6.1 Visual Ablation Study: Images Matter
We first conduct ablation studies on images to de-
termine how multimodal information contributes
to the performance. Most studies used adversarial
input (e.g. shuffled images) to inspect importance
of visual information. However, effects of adversar-
ial input might be opaque (Li et al., 2021). Hence,
we also introduce absent input to examine whether
2/3-Triplet can handle source sentences with-
out image by simply zeroing the image feature for
FUSION or striping the prompt for PROMPT.

We list the results of a vision ablation study of
both adversarial and absent respectively in Figure 4,

42

44

46

fusion prompt

Plain Transfomer correct adversarial absent

Figure 4: The results of ablation study by given empty
image (absent) and wrong image (adversarial) as input.

where we select FUSION-BASED and PROMPT-
BASED approaches trained with full data(last
columns in Table 2) for comparison.
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Figure 5: Ratio-BLEU on testset during the training

In the absent setting, both the FUSION and
PROMPT degrade to the baseline, confirming the
reliance of 2/3-Triplet on image information.
In the adversarial setting, the PROMPT performs
worse than the baseline, which is in line with the
expectation that incorrect visual contexts lead to
poor results. However, while the FUSION also ex-
hibits a decline in performance, it still surpasses the
baseline. This aligns with the observations made by
Elliott (2018); Wu et al. (2021) that the visual sig-
nal not only provides multimodal information, but
also acts as a regularization term. We will further
discuss this issue in Section 7.
6.2 How Visual Modality Works

We further investigate how the visual signal influ-
ence the model.

FUSION-BASED We verify how much influence
the visual signal imposes upon the model. Inspired
by Wu et al. (2021), we quantify the modality con-
tribution via the L2-norm ratio (ΛH fused for vision
over Htext for text, in Eq. 3). We visualize the
whole training process along with BLEU as a ref-
erence in Figure 5. Wu et al. (2021) criticize that
previous studies do not utilize visual signal, for the
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source: ready stock , cheese grains , pets only
human: 现货商品奶酪粒 (宠物专用）
Plain: 现货起司谷物宠物专用

ready stock cheese cereal grains pet only
Ours (Triplet-only): 现货奶酪颗粒宠物仅限

ready stock cheese granular pets only for
Ours (All-data): 现货奶酪粒 宠物专用

ready stock cheese grains for pets only

source: ready stock kids medical surgical face mask 3-ply 20pcs
human: 现货儿童医疗手术口罩 3层 20个
Plain: 现货儿童医用面具 3-ply 20pcs

ready stock kids medical (opera) mask 3-ply 20pcs
Ours (Triplet-only): 现货儿童医用口罩 3ply 20pcs

ready stock kids medical mask 3-ply 20pcs
Ours (All-data): 现货儿童医用外科口罩 3层 20片

ready stock kids medical surgical mask 3-ply 20pcs

Table 3: Qualitative examples from two complex scenarios. Plain and Ours (Triplet-only) respectively indicate plain
Transformer and 2/3-Triplet trained on triple data only, and Ours (All-data) indicate 2/3-Triplet trained on
all data. The strikethrough, underline and bold indicates inappropriate, reluctant and excellent choices respectively.
The more detailed comments on the translation are in Appendix.

Figure 6: The attention distribution when predicting the
token “口罩” (“mask” in English). The model shows a
strong attention preference to the prompt words.

final ratio converge to zero. Our method shows a
different characteristic: as the BLEU becomes sta-
ble, the ratio of visual signal and textual signal still
remains at around 0.15, showing the effectiveness
of the visual modality.

PROMPT-BASED We also look into the influence
caused by the prompts. We sample an ambiguous
sentence: “chengwei kf94 fish mouth medical mask,
10 pieces of one box”. The keyword “mask” can be
translated into “口罩” (“face mask” in English) or
“面膜” (“facial mask” in English) without any con-
text. We visualize the attention distribution when
our PROMPT-BASED model is translating “mask”
in Figure 6. We can see that the a high attention
is allocated to the caption prompt. Therefore, our
method correctly translates the word. We also vi-

sualize the detailed attention heatmaps for source,
prompts and generated sentences in Appendix.

6.3 Qualitative Case Study

We also compare several cases from EMMT test-
sets to discuss how multimodal information and
external bilingual data help the translation perfor-
mance. Meanwhile, we regard the case study as
a spot check for the multimodal translation testset
itself. We here choose plain Transformer, our meth-
ods trained on triplet only and all data, as well as
human reference for comparison.

Table 3 presents the qualitative cases and major
conclusions are as follows: 1) Visual information
plays a vital role in disambiguating polysemous
words or vague descriptions. 2) Non-triple data
improves translation accuracy, particularly in trans-
lating jargons and enhancing fluency in the general
lack of multimodal data. 3) Our test set is represen-
tative in real-world seniors as it includes product
titles that are confusing and require image, in con-
trast to previous case studies on Multi30k where
researchers artificially mask key words (Caglayan
et al., 2019; Wu et al., 2021; Wang and Xiong,
2021; Li et al., 2022a).

7 Conclusion

This paper devises a new framework
2/3-Triplet for multimodal machine translation
and introduces two approaches to utilize image
information. The new methods are effective and
highly interpretable. Considering the fact that
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current multimodal benchmarks are limited and
biased, we introduce a new dataset EMMT of
the e-commercial domain. To better validate
the multimodal translation systems, the testset
is carefully selected as the image are crucial for
translation accuracy. Experimental results and
comprehensive analysis show that 2/3-Triplet
makes a strong baseline and EMMT can be a
promising benchmark for further research.

Limitation

First, there are studies (Wu et al., 2021) claiming
visual information only serves as regularization. In
our ablation study, we find the adversarial setting
of FUSION-BASED approach outperforms the plain
Transformer. Combined with observations from
previous studies, we suggest that fusion-based ar-
chitectures may apply some images information
as regularization terms, yet the further quantitative
analysis is needed to confirm this phenomenon.

Second, though our testset is carefully selected
to ensure the textual ambiguity without image data,
we encounter difficulties in designing a suitable
metric for quantifying the degree to which the mod-
els are able to resolve the ambiguity. Specifically,
we find that conventional metrics, such as word-
level entity translation accuracy, exhibit significant
fluctuations and do not effectively quantify the ex-
tent to which the model effectively resolves am-
biguity. We discuss this metric in more details in
the Appendix, and offer a glossary of ambiguous
words used in the test set. We acknowledge that
the evaluation of multimodal ambiguity remains an
open problem and an area for future research.

In addition, there are some details regarding the
dataset that we need to clarify: the dataset is col-
lected after COVID-19, so some commodities will
be associated with the pandemic. We collect data
by category in order to cover various products to re-
duce the impact of the epidemic on product types.
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Appendix

7.1 Ethic Consideration About Data
Annotators

We hire 20 professional translators in a crowd-
source platform and pay them according to the
market wage and work within 8 hours a day. All
translators are native Chinese and have graduated
with an English major. The ethics review is done
while in data acceptance stage.

7.2 Data Copyright

In our study, we present a new dataset of public
e-commercial products from Shoppee and TikTok
Shop. To address copyright concerns, we provide a
detailed description of how we collect the data and
ensure that our usage complies with all relevant
policies and guidelines.

For the Shoppee dataset, we obtain the data from
their Open Platform API2. We carefully review
their Data Protection Policy 3 and Privacy Policy
guidelines 4, which provide clear instructions for
using data through the Shopee Open Platform. We
strictly follow their requirements and limitations,
ensuring that we did not access any personal data
and that we only use open information provided by
the API. We also adhere to their robot guidelines 5,
avoiding full-site scraping.

For the TikTok Shop dataset, we access the data
using robots, as scraping is allowed according to
their robots.txt file 6. We also review TikTok Shop
Privacy Policy and TikTok for Business Privacy
Policy 7 to ensure that we only collect data from
merchants under their policy.

It is important to note that all data we publish is
publicly available on the Internet and only pertains
to public e-commercial products. We do not access
or publish any user information, and we take all
necessary steps to respect the intellectual property
and privacy rights of the original authors and cor-
responding websites. If any authors or publishers
express a desire for their documents not to be in-
cluded in our dataset, we will promptly remove that
portion from the dataset. Additionally, we certify
that our use of any part of the datasets is limited to
non-infringing or fair use under copyright law. Fi-

2https://open.shopee.com/documents
3https://open.shopee.com/developer-guide/32
4https://careers.shopee.tw/privacy-policy
5https://shopee.tw/robots.txt
6https://shop.tiktok.com/robots.txt
7https://tiktokfor.business/privacy-policy/

nally, we affirm that we will never violate anyone’s
rights of privacy, act in any way that might give
rise to civil or criminal liability, collect or store per-
sonal data about any author, infringe any copyright,
trademark, patent, or other proprietary rights of any
person.

7.3 Results on Fashion-MMT

We list the testset performance on Fashion-MMT
in Table 4.

FashionMMT（C） Triplet Only + Parallel Text
Transformer 40.12 /

UPOC2 MTLM+ISM 41.38 /
MTLM+ISM+ATTP 41.93 /

Ours
FUSION 41.19 42.38
PROMPT 40.97 42.02
FUSION+PROMPT 41.38 42.33

Table 4: Results on Fashion-MMT(C) testset.

Fashion-MMT is divided into two subset accord-
ing to the source of the Chinese translation: “Large”
subset for the machine-translated part and “Clean”
subset for the manually annotated part. As its au-
thors also found the Large subset is noisier and
different from the human annotated data, our exper-
iments focused on the Clean subset with Fashion-
MMT(i.e. Fashion-MMT(c)).

We compare the model performance on training
on Triplet Only and adding Parallel Text settings.
As the original dataset does not provide a parallel
corpus without pictures, we used Parallel Text from
EMMT for our experiments.

Note that the UPOC2 model relies on three sub-
methods, namely MTLM, ISM, and ATTP. The
ATTP requires the use of commodity attributes,
whereas our model does not use such information.
Hence, we also list results of UPOC2 without ATTP
in the table.

The results show that our model rivals UPOC2

on triplet only settings. And by using parallel text,
ours gain further improvement, even if the parallel
text does not match the domain of the original data.
The results demonstrate the potential of our training
strategy over multiple domains.

7.4 Evaluation with various metrics

Recent studies have indicated that the sole re-
liance on BLEU as an evaluation metric may be
biased (Marie et al., 2021). We hence evalu-
ate models with machine learning-based metric
BLEURT (Sellam et al., 2020) and list the results
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ID
Metric BLEURT Accuracy
Training Data Triplet Only + PT + PT + MC Triplet Only + PT + PT + MC

1 Plain Transformer 0.5424 0.5559 0.5662 0.765 0.754 0.761
2 Selective Attention 0.5619 / / 0.782 / /
3 UPOC2 0.4855 / 0.5788 0.792 / 0.798
4 UVR-NMT 0.5299 0.5866 / 0.795 0.791 /
5 Phrase Retrieval / / / / / /
6 FUSION-BASED 0.5760 0.5782 0.5923 0.771 0.778 0.812
7 PROMPT-BASED 0.5600 0.5772 0.5980 0.792 0.775 0.792
8 FUSION+PROMPT 0.5647 0.5917 0.6018 0.809 0.791 0.799

Google Translate 0.6108 0.741

Table 5: Results of 2/3-Triplet and baselines on EMMT evaluated by BLEURT and word-level accuarcy of
ambiguous words.

in Table 58.
Previous multimodal works often set entity

nouns in the original sentence into [mask] to quan-
tify model’s ability for translating masked items
with images (Wang and Xiong, 2021; Li et al.,
2022a; Fang and Feng, 2022). While the exper-
iment can measure the effectiveness of multimodal
information, text with [mask] is not natural and the
setting makes less sense in the real world. Inspired
by their settings, we have developed a set of com-
monly used English-Chinese translation ambigui-
ties by mining frequently used product entity and
manual annotating. We have defined an word-level
accuracy metric based on those potential ambigu-
ous words in Table 7: if a certain English word
appears in the original sentence, we require that
the model’s translation result in the target language
must be consistent with the human reference’s cor-
responding entity translation in order to be consid-
ered a correct translation, and thus calculate the
word-level accuracy.

The results of BLEURT generally align
with BLEU, indicating the effectiveness of
2/3-Triplet. However, an exception occurs in
the Google Translate system, whose score are high-
est among all systems. We attribute this deviation
to the use of back-translated pseudo corpus in the
pre-training of the BLEURT model.

Multimodal models consistently perform better
than plain transformer models in word-level ac-
cuarcy. Additionally, Google Translate obtains
the lowest scores in word-level accuracy, indicat-
ing that BLEURT may not distinguish ambiguous
words in multimodal scenarios. However, the dif-

8We use BLEURT-20 model from https://github.
com/google-research/bleurt

ference between multimodal ones is not significant.
We attribute it to the difficulty in quantifying the
semantic differences between synonyms, as we will
demonstrate in our case study details. Furthermore,
given the significant human effort required for min-
ing and annotating ambiguous word list while it is
highly domain-specifc to the test set, we suggest
that the development of new metrics for evaluat-
ing multimodal translation ambiguity shall be a
valuable topic of future research.

7.5 Translation Details of Case Study

Here we give some detailed explanations about the
translation of case study translations:

In the first case, the Plain Transformer fail to
recognize whether the word “grains” means ce-
real crop (谷物) or the cheese of grain sizes(奶酪
粒). Triplet-Only 2/3-Triplet translate “grains”
into 颗粒, which is acceptable, but the word not
commonly used to describe food in Chinese, yet
the model does not translate "only" grammatically
properly.

In the second case, Plain Transformer translates
“mask” to面具, which is more commonly used to
refer opera mask in Chinese. Both Plain Trans-
former and Triplet-Only 2/3-Triplet fail to un-
derstand “pcs”(件、个、片) and “ply”(层), and
directly copy them to targets. The two methods
also fail to translate “surgical”(手术、外科) cor-
rectly as it is a rare word in Triplet only settings.

In comparison, the translation of 2/3-Triplet
is more consistent with the images, and more ap-
propriate in terms of grammar and wording.
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Metric BLEU BLEURT
Data + PT + Excessive PT + PT + Excessive PT
Plain Transformer 40.66 40.86 0.5559 0.5406
FUSION-BASED 44.22 43.91 0.5782 0.5877
PROMPT-BASED 43.35 43.61 0.5772 0.5760
FUSION+PROMPT 45.20 44.87 0.5917 0.6025

Table 6: Results of 2/3-Triplet and plain Trans-
former on EMMT with parallel text and excessive paral-
lel text (5M).

7.6 Attention Visualization

We visualize one the attention heatmap case of
PROMPT-BASED in Figure 8 and Figure 8.

Figure 8 shows the attention alignment of orig-
inal source (y-axis) and the prompted source (x-
axis) in text encoder. Figure 8 shows the generated
sentence (y-axis) and the prompted source (x-axis)
in text decoder. From the heat map we know
that the prompt attends to the most relevant am-
biguous words and supports the model translation,
both when encoding the source sentence and de-
coding the infernece. Specifically in our case, “口
罩”(face mask) in prompts has high attention with
all “masks” occurrence on the source side, and
has high attention with all “口罩” generation in de-
coder side. In contrast, the word “防护”(protective)
less prominent in the attention heatmap as it is less
ambiguous.

7.7 Details on Data Selection and Mixing

As discussed in Section 5.3, we resort to upsam-
pling the e-commercial triplet data due to the sig-
nificant disparity in the quantity of data across var-
ious domains. As previously proposed by Wang
and Neubig (2019) and Arivazhagan et al. (2019),
we utilize a temperature-based sampling method,
where the i-th data split is assigned a sampling

weight proportional to D
1
T
i , where Di denotes the

number of sentences in the i-th data split, and T is
the temperature hyper-parameter. In our implemen-
tation, to guarantee the completeness and homo-
geneity of data across each training iteration, we
directly upsample the triplet data or monolingual
captions, and subsequently, shuffle them randomly
with parallel text to construct the training dataset.
The upsampling rate for the triplet data is rounded
to 15 and the upsampling rate for the parallel text
is rounded to 4, resulting in an actual sampling
temperature of 5.11 .

8 Model Performance with Excessive
Data

Based on data distribution and scaling laws, we
sample 750k parallel text and 103k monolingual
captions as non-triple data to validate our methods.
To further explore the potential of models with ex-
cessive non-triple data, we attempt to increase the
data scale of the parallel text corpus to 5M, which
are also sampled from CCAlign corpus. We list
the results in Table 6. However, we find that exces-
sive parallel text does not further promote model
performance on current test sets. We suggest that
the lack of improvement in performance may be
due to the difference in text domain between the
general domain and the e-commerce domain. As
we will release the parallel text corpus we used
in our experiments, in addition to conducting fair
comparisons based on our data, we also encourage
future researchers to use more unconstrained ex-
ternal data and techniques to continue to improve
performance.
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English Word Chinese Potential Translations English Word Chinese Potential Translations
mask 面膜,口罩,面罩,面具,遮垫 tape 胶带,胶布,带子,磁带,薄胶带
bow 琴弓,弓子,弯弓 bar 吧台,酒吧,棒杆
top 上衣,上装,女上装,机顶 basin 盆子,盆器,盆,地盆,盆池
set 套装,把套,撮子,套盒,组套 sheet 被单,棚布,薄板,薄片,片材
clip 卡子,提盘夹,提盘夹子,夹片,取夹 film 贴膜,薄膜,胶片,胶卷,软片
nail 钉子,铁钉,扒钉,指甲,钉钉子 eyeliner 眼线笔,眼线液,眼线,眼线膏
iron 铁,铁艺,电熨斗,熨斗,烫斗 shell 车壳,被壳,贝壳,外壳,壳壳
rubber 胶皮,橡皮 chip 芯片,筹码
brush 刷子,毛笔,毛刷,板刷,锅刷 plug 插头,塞子,胶塞,堵头,地塞
oil 机油,油,油脂,油液 napkin 餐巾纸,餐巾
canvas 餐布,油画布,画布,帆布 grease 润滑脂,打油器
ring 戒指,指环,圆环,圈环,响铃 pipe 管子,烟斗,管材,皮管,排管
pad 护垫,盘垫,踏垫,垫块,贴垫 charcoal 木炭,炭笔,炭,引火炭,炉炭
wipes 湿巾,抹手布,擦地湿巾,擦碗巾,擦奶巾 blade 铲刀,刀片,叶片,刀锋,遮板
face mask 焕颜面膜,护脸面罩,遮脸面罩,脸罩,脸部面膜,口罩 bucket 水桶,面桶,扒斗,漂桶,簸箩
powder 粉饼,散粉,粉掌,修容粉饼,粉剂 lift 升降机,升降梯,举升机,举升器,起重器
tie 扎带,领带 crane 吊车,起重机,吊机,起重吊机,仙鹤
desktop 桌面,台式机 football 足球,橄榄球
jack 千斤顶,插孔 frame 画框,车架,框架,包架,裱画框
collar 项圈,颈圈,套环,领夹 plum 话梅,李子
cement 胶泥,水泥 slide 滑轨,滑梯,滑滑梯,滑道,幻灯片
tank 坦克,料槽,坦克车 keyboard 键盘,钥匙板,小键盘
hood 头罩,遮光罩,机罩,风帽,引擎盖 bass 鲈鱼,贝斯
gum 牙胶,树胶,口香糖 makeup remover 卸妆水,卸妆膏,卸妆液,卸妆乳,卸妆棉棒
screen 屏风,纱窗,滤网,丝网,筛网 counter 计数器,柜台
bell 铃铛,车铃,吊钟,吊铃 separator 隔板,分离器,分液器,隔片,分离机

Table 7: Potential ambiguous product entities in English-Chinese translations. The Chinese translations are separated
by commas and have different meanings in the alternative translations. Words are sorted by the frequency in e-
commercial English corpus
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Figure 7: Attention heat map between source sentence and the source with caption prompts
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Figure 8: Attention heat map between hypo sentence and the source with caption prompts
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