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We are interested in a challenging task, — 4 | ;vaﬁ‘;\?lélg@b i .i
Realistic-Music-Score based Singing Voice (@) fine-grained music scor T
Synthesis (RMS-SVS). RMS-SVS aims to gen- ) Tine-gramec musie Scores
erate high-quality singing voices given realistic
music scores with different note types (grace, o ———) 5 = .
slur, rest, etc.). Though significant progress o = ==

has been achieved, recent singing voice synthe-
sis (SVS) methods are limited to fine-grained
music scores, which require a complicated
data collection pipeline with time-consuming
manual annotation to align music notes with
phonemes. Furthermore, these manual annota-
tion destroys the regularity of note durations in
music scores, making fine-grained music scores
inconvenient for composing. To tackle these
challenges, we propose RMSSinger, the first
RMS-SVS method, which takes realistic music
scores as input, eliminating most of the tedious
manual annotation and avoiding the aforemen-
tioned inconvenience. Note that music scores
are based on words rather than phonemes, in
RMSSinger, we introduce word-level modeling
to avoid the time-consuming phoneme dura-
tion annotation and the complicated phoneme-
level mel-note alignment. Furthermore, we
propose the first diffusion-based pitch mod-
eling method, which ameliorates the natural-
ness of existing pitch-modeling methods. To
achieve these, we collect a new dataset contain-
ing realistic music scores and singing voices
according to these realistic music scores from
professional singers. Extensive experiments
on the dataset demonstrate the effectiveness of
our methods. Audio samples are available at
https://rmssinger.github.io/.

1 Introduction

Singing Voice Synthesis (SVS) aims to generate
high-quality singing given music scores (lyrics,

*Corresponding author.

(b) realistic music scores

Figure 1: Difference between fine-grained and realistic
music scores. Manual adjustment destroys the regularity
of note durations, making fine-grained music scores
"crushed" and inconvenient for composing.

note pitches, and note durations), and has attracted
increasing academic and industrial attention. SVS
is extensively required in both professional mu-
sic composing and entertainment industries in real
life(Umbert et al., 2015).

Though significant progress has been achieved,
recent SVS methods(Wang et al., 2022; Zhang
et al., 2022b; Liu et al., 2022; Zhang et al.; Huang
et al., 2021, 2022a) cannot utilize realistic music
scores from composers or websites but require fine-
grained music scores. Fine-grained music scores
are obtained through a complicated data collec-
tion pipeline, which can be mainly divided into
three major steps(Wang et al., 2022; Zhang et al.):
1) phoneme annotation step, where the duration
of each phoneme is first extracted from singing
through Montreal Forced Aligner' and then fur-
ther manually annotated to acquire more accu-
rate phoneme boundaries. 2) note annotation step,
where preliminary notes are either created by Logic
Pro(Wang et al., 2022) or collected through the
word-level average of extracted FO(Zhang et al.)

"https://github.com/MontrealCorpusTools/Montreal-
Forced- Aligner
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and then note durations are manually adjusted to
the boundaries of vowel phonemes. 3) silence an-
notation step, where the silence part is annotated
as silence (SP) or aspirate (AP).

These steps, especially the first and second steps,
require arduous and professional manual annota-
tion(Zhang et al.), which hinders large-scale SVS
data collection. Furthermore, since the manual ad-
justment in the second step destroys the regularity
of note durations, fine-grained music scores have a
noteworthy difference from realistic music scores
(see Figure 1), which inhibits human composers
from employing SVS methods for composing.

The primary rationale for adopting such a time-
consuming and laborious data collection pipeline
is twofold: 1) Existing methods require phoneme-
level hard-alignment for duration training. Due
to the difficulty in determining phoneme bound-
aries(Ren et al., 2021), complex manual annotation
(phoneme annotation step) is necessary in order
to prevent the negative effects of incorrect align-
ment on model training. 2) Existing methods re-
quire a pre-defined phoneme-level mel-note align-
ment for training and inference. Since one vowel
phoneme may correspond to multiple notes(Wang
et al., 2022), existing methods directly repeat this
phoneme to conform with notes, which requires
note boundaries to be aligned with the boundary of
each vowel phoneme. However, even professional
singers can hardly sing fully conformed to the mu-
sic score(Zhang et al.), so the note annotation step
has to be performed.

To tackle these challenges, we introduce
Realistic-Music-Score Singer (RMSSinger), the
first RMS-SVS method, which utilizes realistic mu-
sic scores with different note types (grace, slur,
rest, etc.,) for training and inference, alleviating
most manual annotations. To alleviate the tedious
annotation in the phoneme annotation step, we
propose word-level positional attention with word-
level hard-alignment and positional attention to
avoid the difficulty of determining exact phoneme
boundaries. To avoid the note annotation step, we
propose the word-level learned Gaussian upsampler
to learn the word-level mel-note alignment in train-
ing and avoid the phoneme-level mel-note align-
ment. Furthermore, existing methods mainly adopt
simple L1 or L2 loss for pitch modeling, which
results in the degradation of expressiveness. To
achieve expressive pitch prediction, we propose the
first diffusion-based pitch generation method. Due

to the existence of both continuous parts (FO) and
categorical parts (UV) in pitch contours, we pro-
pose the pitch diffusion model (P-DDPM), which
models categorical UV and continuous FO in a sin-
gle model. Extensive experiments on our collected
datasets demonstrate the efficiency of our proposed
word-level framework (word-level positional atten-
tion and word-level learned Gaussian upsampler)
and P-DDPM. The main contributions of this work
are summarized as follows:

* We propose the first realistic-music-score-
based singing voice synthesis method
RMSSinger, which alleviates tedious manual
annotation in the current SVS data collection
pipeline and achieve high-quality singing
voice synthesis given realistic music scores.

* We propose the word-level positional attention
and the word-level learned Gaussian upsam-
pler to model lyrics and notes on the word
level and avoid phoneme duration annotation
and phoneme-level mel-note alignment.

* We propose the first diffusion-based pitch gen-
eration model (P-DDPM), which models the
continuous FO and categorical UV in a sin-
gle model and improves the expressiveness of
pitch modeling.

* Extensive experiments demonstrate the perfor-
mance of our proposed method.

2 Related Works

Singing Voice Synthesis (SVS) aims to gener-
ate high-quality singing conditioned on given
music scores. With the development of deep
learning, SVS has achieved great progress in the
network structure and the singing corpus con-
struction. XiaoiceSing(Lu et al., 2020) adopts
the non-autoregressive acoustic model inspired
by FastSpeech(Ren et al., 2019). ByteSing(Gu
et al.,, 2021) is designed based on the auto-
regressive Tacotron-like(Wang et al., 2017) archi-
tecture. DeepSinger(Ren et al., 2020b) builds a
singing corpus by mining singing data from web-
sites and proposes the singing model based on
the feed-forward transformer(Ren et al., 2019).
More recently, Opencpop(Wang et al., 2022) pub-
lish a single-singer Chinese song corpus with
manually-annotated fine-grained music scores and
propose a Conformer-based(Gulati et al., 2020)
SVS method. WeSinger(Zhang et al., 2022b)
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adopts a Transformer-like acoustic model and an
LPCNet neural vocoder. ViSinger(Zhang et al.,
2022a) employs the VITS(Kim et al., 2021) ar-
chitecture for end-to-end SVS and introduces an
FO predictor to guide the prior network. Diff-
Singer(Liu et al., 2022) introduces the diffusion-
based(Ho et al., 2020) decoder for the high-
quality mel-spectrogram generation and proposed
the shallow diffusion mechanism for faster infer-
ence. M4Singer(Zhang et al.) further publishes a
multi-style, multi-singer Chinese song corpus with
manually-annotated fine-grained music scores.

3 Diffusion Models

Diffusion models(Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020) are a paradigm
of generative methods that aim to approximate
the end-point distribution (target distribution) of
a Markow chain and have achieved impressive re-
sults in benchmark generative tasks(Dhariwal and
Nichol, 2021). Diffusion models consist of two
processes:

Diffusion Process The diffusion process gradually
perturbs data xg ~ ¢(x¢) to pure noise with a
Markov chain according to the variance schedule

By Br

T
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Reverse Process The reverse process gradually
denoises the latent variable z7 ~ p(zr) to the
corresponding real data sample xg:
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where pg(z;—1|z¢) are parameterized with a neu-
ral network and learned by optimizing the usual
variational bound on negative log-likelihood:
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With different perturbation transition q(z¢|z;—1)
used, different diffusion models are defined:
Gaussian Diffusion: Gaussian diffusion(Ho et al.,
2020; Nichol and Dhariwal, 2021) is utilized in con-
tinuous data domains. Gaussian diffusion adopts

the Gaussian noise for perturbation:

q($t|9€t—1) = N(l‘t; vV 1- tht—laﬁt-[)’ (4)
plxi—i|a) = N(ze—1; po(we, t), So(ae, t)).

With the parameterization introduced in (Ho et al.,
2020), Equation 3 can be further simplified and
finally optimized with:

B
Exo,e[mw— eo(ze, )], ()

where oy = 1 — B¢, oy = szl os. The neural net-
work is trained to predict the "noise" € from noisy
input x; given timestep ¢. Gaussian diffusion has
been widely utilized for image generation(Nichol
and Dhariwal, 2021; Dhariwal and Nichol, 2021)
and audio generation(Jeong et al., 2021; Huang
et al., 2022b).

Multinomial Diffusion: Multinomial diffusion
(Hoogeboom et al., 2021) is utilized in discrete
data domains, which replaces Gaussian noise with
random walking on discrete data space. The diffu-
sion process can then be defined as:

q(xe|zi—1) = Clag| (1 — Be)wi—1 + B/ K),

Q($t|$0) = C(l’t’@tfb'o + (1 _ dt)/K) (6)

where C denotes a categorical distribution with
probability parameters, z; ~ {0, 1}, 5; denotes
the chance of resampling a category uniformly, and
oy =1—-08, a4 = H’;:l as. Using Equation 6, we
can compute the categorical posterior:

q(zi—1|xe, 20) = C(xtflwpost(l'ta o)),

0 Ty, T O,

post t 0 Z k (7)
0 [O[txt + (1 — at)/K] [(jét—ll'O"‘
(1 —az1)/K],

With the parameterization proposed in

(Hoogeboom et al., 2021), p(zi_1|z) =
C(xt—1]0post(x¢, To)) is utilized to approximate
q(zt—1|z¢, o). And the neural network is trained
to approximate 2y from noisy sample xz; given
timestep .

Though widely utilized in many data domains,
diffusion models have never been utilized for pitch
modeling. Furthermore, due to the existence of
continuous FO parts and discrete UV parts in pitch
contours(Wang et al., 2018), neither Gaussian diffu-
sion nor multinomial diffusion alone can deal with
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pitch modeling. In this paper, we propose the first
diffusion-based pitch modeling (P-DDPM), which
incorporates Gaussian diffusion and multinomial
diffusion in a single model and achieves better pitch
modeling.

4 Methdology

4.1 Overview

In this section, we introduce the overall architecture
of our proposed RMSSinger. As shown in Figure
2a, RMSSinger is built on one of the most popular
non-autoregressive TTS models FastSpeech2(Ren
et al., 2020a). Lyrics are encoded through the
phoneme encoder and then aligned to the lengths of
mel-spectrogram through the word-level positional
attention layer (Section 4.4)to obtain the expanded
lyric feature. Next, we utilize the note encoder
to encode note pitches, note durations, and note
types (rest, slur, grace, etc.) and adopt the word-
level learned Gaussian upsampler (Section 4.3) for
word-level mel-note alignment learning to obtain
the expanded note feature. The timbre informa-
tion of different singers is embedded to obtain the
singer embedding. Then, the expanded lyric fea-
ture, expanded note feature and singer embedding
are summed as the pitch decoder input. The pitch
diffusion model (P-DDPM) (Section 4.5) utilizes
the pitch decoder input as the condition to generate
pitches (FO and UV). Similar to (Ren et al., 2020a),
we obtain the pitch embedding through FO and UV.
Next, the expanded lyric feature, pitch embedding
and singer embedding are summed as the input of
the mel decoder. Finally, to further improve the
quality of the synthesized mel-spectrogram, we in-
troduce a diffusion-based post-net (Section 4.7) to
refine the coarse outputs of the mel decoder.

4.2 Encoder

In this subsection, we introduce the phoneme en-
coder and the note encoder utilized in RMSSinger.
The phoneme encoder takes the phoneme sequence
as input and outputs the phoneme feature . We
also perform the word-pooling on H to obtain the
word-level feature H,,. The architecture of the
phoneme encoder is comprised of a series of Feed-
Forward Transformer Blocks (Vaswani et al., 2017),
which have proven the effectiveness of long se-
quences modeling and linguistic information ex-
traction in TTS methods. The input of the note
encoder is the realistic music score. As there exist
different types of information in music scores, the

note encoder includes an embedding layer for note
pitches, an embedding layer for note types (rest,
slur, grace, etc.), and a linear projection layer for
note durations. All information types are summed
as the note feature H,,.

4.3 Word-level Learned Gaussian Upsampler

One of the key challenges of SVS is the alignment
between word-level mel-spectrogram and notes,
that is the actual length? of each note. Though
the note duration on music scores provides a pre-
liminary estimate of the actual length, even pro-
fessional singers cannot precisely conform to the
music score. Therefore, previous SVS methods
manually adjust the note duration to the phoneme
boundary, which not only requires time-consuming
annotation from experts but also destroys the regu-
larity of the note duration.

The key idea of the proposed word-level learned
Gaussian upsampler (see figure 2b), inspired by
(Donahue et al., 2020), is to learn the word-level
mel-note alignment in training. Given the note fea-
ture H.,,, the word-level feature H,, and the singer
embedding s, we expand H,, to the note-level H,;y,.
Next we predict the actual length of each note:

Ha:Hn+Hwn+5a
ln = f(HCL)7

with a neural network f. The neural network con-
sists of a stack of 1D-convolution, Relu, and layer
normalization. We use a linear projection with
ReLU nonlinearity at the output to make /,, non-
negative, which ensures the monotonicity and none
of the notes can be ignored. Then we upsample
the note feature to its corresponding actual length.
We introduce the Gaussian distribution to make
the upsampling process differentiable and learn-
able. To be specific, given the predicted actual
length, we can find the end position of each note
en = Z:z:1 lm, and then the center position of
each note ¢, = ¢, — %ln. We place a Gaussian
distribution with fixed deviation ¢ at the center ¢,
of the output segment corresponding to the note n.
Then we can define:

(®)

—en)?
n __ emp(_(tQUQ) )

wt—

——= 1 €(0,T) ()
Zm exp(_(t 207;) )

where 1" denotes the length of the mel-spectrogram
and wj' represents the weight of each note for

>The number of the mel-frames
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Figure 2: The overall architecture of our proposed RMSSinger is shown in subfigure (a). Lyrics are first encoded
through the phoneme encoder and then expanded through the word-level positional attention in subfigure (c). Notes
are encoded through the note encoder and then expanded through the word-level learned Gaussian upsampler in
subfigure (b). The expanded note feature, expanded lyric feature and singer embedding are summed and used as the

condition of P-DDPM in subfigure (d).

the output position ¢. And finally, the expanded
note feature at position ¢ can be calculated as
ar =Y, wyHy. We highlight that 1) when calcu-
lating a¢, we only consider the contribution from
the same word, that is if position ¢ belongs to the
range of word ¢ and note n corresponds to the word
jand ¢ # j, then w® = 0. 2) During training,
we use the ground-truth duration of each word to
determine the range of position ¢ and avoid expen-
sive DTW calculation. 2) During inference, we
use the sum of the predicted actual length of notes
Y m lm,;m € word; as the predicted duration of
word;. 3) We use the ground-truth word duration to
constrain the prediction of the actual length, which
is computed as:

£d:|’Zlm—dun‘H, (10)

where dur; denotes the ground-truth duration of
word,;.

4.4 Word-level Positional Attention

To align the lyric features (outputs of the phoneme
encoder) to the lengths of the mel-spectrogram,
previous SVS methods mainly adopt the duration
predictor to predict the number of frames of each
phoneme. Due to the complex articulation of each
phoneme in singing, these methods have to use
manually-annotated phoneme duration for training,
which increases the cost of data collection. Note
that most music scores are word-level and word

boundaries are much easier to be determined, in-
spired by (Ren et al., 2021; Miao et al., 2020), we
propose the word-level positional attention (see fig-
ure 2¢), which avoids the annotation of phoneme
duration. To be specific, given the output of the
phoneme encoder H, let the word-level phoneme
positional encoding which represents the position
of each phoneme in a word be P, and let the
word-level mel-spectrogram positional encoding
which denotes the position of each frame in a word
be P,,, we introduce the position-to-phoneme at-
tention:

Hy = W(cat(H, Pph)),
PmHg)’HT,
Vd

where W represents a linear projection, and Hpq
represents the expanded lyric-feature. During train-
ing, we use the ground-truth word durations to ob-
tain word-level mel-spectrogram positional encod-
ing. During inference, we use the predicted word
duration Zm l,», introduced in subsection 4.3.

(11)

Hepd = Softmax(

4.5 Pitch Diffusion Model

To generate the pitch contours, previous methods
mainly adopt a pitch predictor which predicts the
continuous fundamental frequency (FO) and the
discrete unvoiced label (UV). The pitch predictor
is constrained with simple L1 or L2 loss for FO
and cross-entropy loss for UV. However, due to the
complicated pitch variation of the singing voice, the
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simple pitch predictor fails to model the variance,
resulting in degraded expressiveness. To tackle
this challenge, we propose the first pitch diffusion
model (P-DDPM) (see Figure 2d), which incorpo-
rates both the Gaussian diffusion and multinomial
diffusion to generate FO and UV. During the dif-
fusion process, the Gaussian noise (see Equation
4) and random resampling (see Equation 6) are
used to perturb the continuous FO (represented by
x) and the discrete UV labels (represented by y)
correspondingly:

q(zi|zi—1) = N(z;1/1 — Prae—1, Bel),
qWelyi—1) = C(ye|(1 — Br)ye—1 + B/ K).

During the reverse process, following Equation
5 and Equation 7, the neural network is utilized
to predict the corresponding €y(x¢, t) and yjp. We
adopt a non-causal WaveNet (Oord et al., 2016)
architecture as our denoiser, which has proven to be
effective in modeling sequential data. We design a
1x1 convolution layer for the continuous FO and an
embedding layer for the discrete UV label in order
to perform Gaussian FO diffusion and multinomial
UV diffusion in a single model. The neural network
is optimized through the corresponding Gaussian
diffusion loss L44;fy and multinomial diffusion
loss Lydif-

12)

4.6 Decoder

In this subsection, we introduce the mel decoder
utilized in RMSSinger. The mel decoder takes the
expanded lyric feature, singer embedding and pitch
embedding as input and outputs the coarse mel-
spectrogram. Following previous speech synthesis
methods (Huang et al., 2022¢; He et al., 2022), we
use a stack of Feed-Forward Transformer blocks
as the architecture and use the L1 loss function to
optimize the mel decoder:

(13)

where mel, denotes the predicted coarse mel-
spectrogram and mel, denotes the ground-truth
mel-spectrogram.

Lier = ||mel, —melgy]|,

4.7 Diffusion-Based Post-Net

To achieve high-quality singing voice synthesis, we
have to capture the rich and highly dynamic vari-
ation in the singing voice. However, the widely-
applied transformer-based decoder (mel decoder)
is difficult to generate detailed mel-spectrogram
samples(Ren et al., 2022; Ye et al., 2023, 2022). To

further improve the quality of generated samples,
we introduce the diffusion-based post-net, which
converts the coarse outputs of the mel decoder into
fine-grained ones. In detail, we use the coarse out-
puts as the condition of the diffusion model for
training and inference. We use the Gaussian dif-
fusion loss L5 similar to the previous diffusion-
based TTS method (Jeong et al., 2021) to optimize
the diffusion-based postnet.

4.8 Training Pipeline

There are two training stages for RMSSinger: dur-
ing the first stage, we optimize the whole model
except the diffusion-based postnet by minimizing
the following loss function:

Ly = Lygiff + Lindiff + La+ Lme  (14)

We obtain coarse mel-spectrogram after the first
stage of training. In the second training stage, we
freeze the whole model except the diffusion-based
postnet and only optimize the diffusion-based post-
net by minimizing L.

5 Experiments

5.1 Experimental Setup

In this section, we first describe our collected
dataset for RMS-SVS, and then introduce the im-
plementation details of our proposed RMSSinger.
Finally, we explain the training and evaluation de-
tails utilized in this paper.

Dataset Currently, there are no public SVS datasets
providing realistic music scores, so we collect and
annotate a high-quality Chinese song corpus (about
12 hours in total) with realistic music scores. Pro-
fessional singers are recruited to sing conforming
to these realistic music scores. They are paid based
on their singing time. Next, word durations are
extracted through an external speech-text aligner
and then manually finetuned. Since we do not need
fine-grained phoneme durations, the finetune pro-
cess requires much less effort. Finally, we annotate
the silence and aspirate parts since these parts are
not provided in most realistic music scores. All
audio files are recorded in a professional recording
studio, which guarantees the high quality of our
dataset. All audios are sampled as 48000 Hz with
24-bit quantization, and we randomly select one
song from each singer for the testing.
Implementation Details We convert Chinese
lyrics into phonemes through pypinyin. We ex-
tract mel-spectrogram from raw waveforms and
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Method FORMSE | | VDE | | MCD | | MOS-P 1 MOS-Q *
GT - - - 4.55 £0.04 | 4.58 +0.03
GT(vocoder) 3.77 0.020 1.33 4.10 £ 0.04 | 4.09 £ 0.05
FFTSinger(Zhang et al.) 14.0 0.092 | 3.52 3.57 £0.08 | 3.46 £ 0.07
DiffSinger(Liu et al., 2022) | 12.4 0.077 343 3.63 £0.07 | 3.79 £ 0.07
RMSSinger (ours) 12.2 0.069 | 3.42 3.77 £ 0.05 | 3.84 + 0.06

Table 1: Performance comparison with different methods. We use FORMSE, VDE and MCD for objective

evaluation. And we use MOS-P and MOS-Q for subjective measurement.

(a) ground-truth (b) FFTSinger

(c) DiffSinger (d) RMSSinger

Figure 3: Visualization of the pitch contour and mel-spectrograms of ground-truth and different methods.

set the sample rate to 24000Hz, the window size
to 512, the hop size to 128, and the number of
mel bins to 80. In the phoneme encoder and the
mel decoder, we adopt a similar setting as that in
FastSpeech2(Ren et al., 2020a). In the word-level
learned Gaussian upsampler, the kernel size of 1D-
convolution is set to 5 and the hidden channel is
set to 256. In the word-level positional attention,
we set the number of attention heads to 1. In the
P-DDPM, we set the number of convolution layers
to 12, the kernel size to 3, the residual channel to
192 and hidden channel to 256. And we also set the
total number of diffusion steps to 100 and adopt
the linear 8 schedule from 0.0001 to 0.06. The
diffusion post-net has a similar architecture and
5 schedule except that the number of convolution
layers is set to 20, and the residual channel is set to
256. More details can be found in Appendix B.

Evaluation Details In our experiments, we employ
objective and subjective evaluation metrics to eval-
uate the pitch modeling and the audio quality of
generated samples. For the objective evaluation,
we utilize FO Root Mean Square Error(FORMSE)
to measure the accuracy of FO prediction and
Voice Decision Error(VDE) to measure the accu-
racy of UV prediction. We use Mean Cepstral
Distortion (MCD) for audio quality measurement.
For the subjective evaluation, we use Mean Opin-
ion Score (MOS) for main results and Compari-
sion Mean Opinion Score (CMOS) for ablations.
For a more detailed examination, we score MOS-
P/CMOS-P and MOS-Q/CMOS-Q corresponding

to the MOS/CMOS of pitch modeling and audio
quality. We utilize the HiFi-GAN(Kong et al.,
2020) vocoder published in DiffSinger(Liu et al.,
2022) for all experiments. More details can be
found in Appendix A.

5.2 Main Results

In this subsection, we conduct extensive experi-
ments to compare the performance of RMSSinger
with other baselines. Since RMS-SVS is a new
task, none of the existing methods can handle it.
Therefore, we implement several representative
and state-of-art SVS methods(Zhang et al.; Liu
et al., 2022) with our proposed word-level frame-
work to handle realistic music scores. Specifically,
FFTSinger(Zhang et al.) adopts a similar archi-
tecture to FastSpeech2(Ren et al., 2020a), which
uses MSE loss for FO training and binary cross
entropy loss for UV training. Besides, FFTSinger
adopts the FFT decoder and uses the L1 loss for
mel-spectrogram reconstruction. DiffSinger(Liu
et al., 2022) uses the same pitch modeling method
but replaces the FFT decoder in FFTSinger with
the diffusion-based decoder and uses the Gaussian
diffusion for mel-spectrogram training.

The main results are shown in Table 1. From
the objective and subjective results, we can see
that 1) most methods achieve promising results,
which illustrates the feasibility of RMS-SVS and
the effectiveness of our proposed word-level frame-
work. 2) RMSSinger achieves better results on
FORMSE, VDE, and MOS-P, which demonstrates
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(a) ground-truth (b) RMSSinger

(c) w/o UV diffusion (d) w/o FO diffusion

Figure 4: Visualization of ground truth and generated results of RMSSinger and different ablations

our proposed P-DDPM can improve both the FO
and UV modeling and improve the expressiveness.
3) RMSSinger and DiffSinger achieve similar re-
sults on MCD and MOS-Q, which is because the
diffusion-based postnet of RMSSinger and the dif-
fusion decoder of DiffSinger have a similar archi-
tecture. 4) RMSSinger and DiffSinger outperform
FFTSinger in terms of audio quality by a large
margin due to the existence of mel-spectrogram
over-smooth in FFTSinger.

We then visualize the mel-spectrogram and pitch
contour generated by different methods in Figure
3 to show the difference among different methods
more intuitively. We can find that 1) RMSSinger
can generate more natural pitch contours espe-
cially in the vibrato part (yellow box region), which
demonstrates our method can achieve better pitch
modeling. 2) RMSSinger and DiffSinger can gen-
erate more detailed mel-spectrogram, and alleviate
the mel-spectrogram over-smooth (see red box re-
gion), which explains the higher audio quality.

Method FORMSE | VDE | CMOS-P
Full model 12.2 0.069 | 0.0

w/o UV diffusion | 12.6 0.080 | -0.58
w/o FO diffusion | 12.8 0.070 | -0.50

Table 2: Ablation studies on the effect of P-DDPM.

Method MCD | CMOS-Q
Full model 342 | 0.0
w/o diffusion postnet | 3.48 | -0.91

Table 3: Ablation studies on the postnet.

5.3 Ablation Studies

In this subsection, we conduct a series of ablation
studies to investigate the effect of key components
in our RMSSinger.

P-DDPM To evaluate the effectiveness of our pro-
posed P-DDPM, we design two ablations. In the

(a) RMSSinger (b) w/o postnet

Figure 5: Visualization of generated results of
RMSSinger and the ablation

first ablation, we remove the UV diffusion from
P-DDPM and we use a Transformer-based UV pre-
dictor, which is constrained by binary cross-entropy
loss. In the second ablation, we remove the FO dif-
fusion from P-DDPM and use a Transformer-based
FO predictor, which is constrained by L1 loss. The
results can be found in Table 2. We can see that
1) in the first ablation, VDE increases significantly
and CMOS-P degrades, which demonstrates that
the UV diffusion in P-DDPM contributes to better
UV modeling; 2) in the second ablation, FORMSE
increases, VDE nearly holds the same and CMOS-
P degrades which demonstrates the FO diffusion is
essential to natural FO modeling.

We also visualize the pitch contours of different

ablations in Figure 4. We can find that 1) without
UV diffusion, there exists unpleasant UV errors
(see the red box). 2) without FO diffusion, the
model can not generate natural FO, especially in
the vibrato part (yellow box region).
Postnet To evaluate the effectiveness of our pro-
posed diffusion-based postnet, we remove the post-
net and utilize the output of the mel decoder as the
generated samples. The results can be found in Ta-
ble 3. We can find that MCD increases and CMOS-
Q degrades, which demonstrates that the diffusion
postnet contributes to a better mel-spectrogram
prediction. We also visualize the generated mel-
spectrograms. As shown in Figure 5, the diffusion-
based postnet contributes to alleviating the mel-
spectrogram over-smooth (see red box region).

243



6 Conclusion

In this paper, we propose RMSSinger, the first
realistic-music-score-based singing voice synthesis
(RMS-SVS) method, which utilizes the word-level
modeling framework to avoid most tedious manual
annotations. To achieve better pitch modeling, we
propose the first diffusion-based pitch modeling
method (P-DDPM), which incorporates the Gaus-
sian diffusion and multinomial diffusion in a single
model. Extensive experiments conducted on our
collected dataset demonstrate the feasibility of our
method for RMS-SVS and the superiority of our
proposed P-DDPM.
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8 Limitations

There are majorly two limitations: Firstly, we col-
lect a Chinese singing voice dataset and test our
method only on this Chinese dataset due to the
difficulty of recruiting professional singers in dif-
ferent languages. In the future, we will attempt to
collect the singing voices dataset including more
languages and test our method in multilingual set-
tings. Secondly, our method adopts the diffusion
model in pitch modeling and the postnet, which
require multiple inference steps. We will try ad-
vanced acceleration methods for diffusion models
in the future.

9 [Ethics Statement

RMSSinger provides a high-quality realistic-music-
score-based singing voice synthesis method, which
may cause unemployment for people with related
occupations. Furthermore, the possible misuse of
realistic music scores from the website may lead to
copyright issues. We will add some constraints to
guarantee people who use our code or pre-trained
model would not use the model in illegal cases.
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A More Experimental Details

A.1 Subjective Evaluation

We randomly select 16 sentences from the test set
for the subjective evaluation. Each ground-truth
audio or generated audio has been listened to by
at least 15 professional listeners. For MOS-P and
CMOS-P, listeners are told to focus on the natural-
ness of pitch modeling (e.g., vibrato part, UV part,
and so on). For MOS-Q and CMOS-Q, listeners
are told to focus on audio quality (e.g., noise, high-
frequency details, pronunciation, and so on). For
MOS, each listener is asked to evaluate different
audio samples on a 1 - 5 Likert scale. For CMOS,
listeners are told to compare pairs of audio gen-
erated by different systems and indicate which of
the two audio they prefer and following the rule: 0
indicating no difference, 1 indicating a small dif-
ference, and 2 indicating a large difference. All
listeners get equally paid.

A.2 Training Details

We train and evaluate our model on a single
NVIDIA 2080Ti GPU. Adam optimizer is used
with 81 = 0.9, B2 = 0.98. It takes 180000 steps
for the first stage of training and 160000 steps for
the second stage. It takes about 24 hours for each
stage of training on a single NVIDIA 2080Ti GPU.

B More Model Details
B.1 Encoder

Our phoneme encoder consists of 1 phoneme em-
bedding layer and 4 Feed-Forward Transformer
(FFT) blocks. Each FFT block consists of 1 multi-
head attention layer with 2 attention heads and 1
1D convolution layer with the kernel size set to 5.
All hidden channels are set to 256.

B.2 Decoder

Our mel decoder has a similar architecture to the
phoneme encoder except that the mel decoder does
not consist of the phoneme embedding layer.

246



ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section 7

¥ A2. Did you discuss any potential risks of your work?
Section 8

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract, Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B Did you use or create scientific artifacts?
Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

0J B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C ¥ Dpid you run computational experiments?
Section 5
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Section 5.1, Appendix A.2, Appendix B

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

247


https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5.1, Appendix A.2

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 5.2, Section 5.3

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 5.1, Appendix A.2

D ¥ Did you use human annotators (e.g., crowdworkers) or research with human participants?

Section 5.1, Appendix A.1

¥/ D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Section 5.1, Appendix A.1

¥/ D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Section 5.1, Appendix A.1

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

Not applicable. Left blank.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
They’re completely anonymous, so we don’t know

248



