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Abstract

The open-ended Visual Question Answering
(VQA) task requires AI models to jointly rea-
son over visual and natural language inputs
using world knowledge. Recently, pre-trained
Language Models (PLM) such as GPT-3 have
been applied to the task and shown to be power-
ful world knowledge sources. However, these
methods suffer from low knowledge coverage
caused by PLM bias – the tendency to generate
certain tokens over other tokens regardless of
prompt changes, and high dependency on the
PLM quality – only models using GPT-3 can
achieve the best result.

To address the aforementioned challenges, we
propose RASO: a new VQA pipeline that de-
ploys a generate-then-select strategy guided
by world knowledge for the first time. Rather
than following the de facto standard to train a
multi-modal model that directly generates the
VQA answer, RASO first adopts PLM to gen-
erate all the possible answers, and then trains
a lightweight answer selection model for the
correct answer. As proved in our analysis,
RASO expands the knowledge coverage from
in-domain training data by a large margin. We
provide extensive experimentation and show
the effectiveness of our pipeline by advanc-
ing the state-of-the-art by +4.1% on OK-VQA,
without additional computation cost. Code and
models are released at http://cogcomp.org/
page/publication_view/1010

1 Introduction

Open-ended Visual Question Answering (VQA),
that requires answering a question based on an
image, has received much attention in machine
learning research in the past decade (Antol et al.,
2015; Goyal et al., 2017). Knowledge-based
VQA(Marino et al., 2019; Schwenk et al., 2022)
is a variant of VQA, where models have to use ex-
ternal knowledge that is not present in the image
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Q: What kind of 
ins/tu/on does this 
image depict? 

A: University

Figure 1: An example data from the OK-VQA dataset,
which requires external knowledge not present in the
image to answer the question.

to generate the answer. It is a more challenging
problem as it requires joint reasoning over visual
and natural language inputs using world knowledge.
For example, in Figure 1, the VQA model needs to
conduct multiple levels of inference: to detect the
objects in the image (e.g. laptops, whiteboard, etc),
to retrieve external world knowledge (e.g, univer-
sity is an institution and has lecture rooms, lecture
rooms have laptops, stairs, and whiteboard, etc),
and combine the important visual parts with re-
trieved knowledge to induce the final answer (e.g.
university).

In this paper, we focus on improving the impor-
tant step of external knowledge retrieval. A com-
mon procedure of previous VQA methods (Marino
et al., 2021; Wu et al., 2022) is to retrieve with
knowledge graphs from diverse knowledge bases
(e.g. Wikipedia (Wikipedia contributors, 2004),
ConceptNet (Liu and Singh, 2004), etc.), with the
results being input to an answer generation model.
However, the retrieved knowledge could be noisy,
irrelevant, and redundant, and therefore lead to
mismatches that limit the VQA performance. Mo-
tivated by the development of large-scale PLMs
such as GPT-3 (Brown et al., 2020) that obtain
state-of-the-art (SOTA) performance in most NLP
tasks including text generation (Chowdhery et al.,
2022), more recent approaches PiCA (Yang et al.,
2022) and KAT (Gui et al., 2022) propose to re-
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Image Caption
& Object Tags

Q: What kind of institution does 
this image depict?

𝑃𝑟𝑜𝑚𝑝𝑡!
Please list all the possible answers to 
the question.

Q: What room is this?
A: office, or computer lab, or it room.

Q: What level of schooling are these 
people in?
A: middle school, or college, or high 
school.

.…….

Q: What kind of institution does this 
image depict?
A:                         

𝑃𝑟𝑜𝑚𝑝𝑡!"

Please answer the question according to the 
above context. List all the possible answers.

Context: There is a lot of electrical 
equipment sitting on the table.
Q: What room is this?
A: office, or computer lab, or it room.

…….

Context: a large room full of laptops with 
people in the background. wall, computer…
Q: What kind of institution does this image 
depict?
A:                         

Frozen PLM

In-Context 
Examples

𝐴!: school, or college, or 
university, or office, or 
library. 

𝐴!": office, or 
conference hall, or 
school.

Answer Choices

School
College

University
Office
Library

Conference Hall

Step 1: Multiple Choice Generation

Figure 2: Our multiple choice generation step. Given an image, we use existing tools to get the caption and object
tags. We then select most similar examples from the training data and construct the two prompts. We combine the
PLM outputs and get the answer choice list. Note that the list is ranked by PLM probability from high to low. More
details can be found in Section 3.1. (PLM icon credit to https://claudeai.uk/.)

Step 2: Answer Selection

Image Caption
& Object Tags

Question
CoT Rationale

Answer: From the context, a large 
room full of laptops with people in the 
background means there are 
computers in a room. So the question 
is asking what kind of institution does 
an image with computers in it depict. 
So the answer is a school.

Image (Caption)

Answer Choices

Frozen PLM

Pre-designed Prompt

CoT Rationale
VQA Model Training

Question

Multiple Choices Selection

School
College

University
Office
Library

Conference Hall

Answer: University; College.

Figure 3: Our answer selection step. Before selecting the final answer, we first use the same PLM to generate
a chain-of-thought rationale to guide the process. Then input being the image or its caption, the question, CoT
rationale, and answer choices from Step 1, we train a model to output the correct answer. See Section 4.4 for details
about the answer selection models we experiment with.

trieve from GPT-3 and achieve better performance
for their neat and high-quality knowledge. Specif-
ically, PiCA directly treats GPT-3 output as the
VQA answer, while KAT further uses GPT-3 out-
puts to train an answer generation model.

GPT-J UL2 GPT-3 OPT Codex
PromptQ 32.4 32.6 - 34.21 44.8
PromptQC 37.1 37.5 48.0 37.8 52.9

Table 1: Knowledge coverage (%) of different five
PLMs, evaluated on OK-VQA. PromptQ means that
the prompt to PLM is constructed by the VQA question
only, and PromptQC means that the prompt is con-
structed by the VQA image and question together. Note
that the GPT-3 score is taken from (Yang et al., 2022).

While achieving SOTA at the time, the two mod-
els suffer from the low knowledge coverage caused
by PLM bias – the tendency to generate certain to-

kens over other tokens despite the prompt changes,
and their performance are highly dependent on the
PLM quality – only GPT-3 and Codex can achieve
good results. As illustrated in Table 1, we report the
knowledge coverage percentage of different PLMs
on OK-VQA (Marino et al., 2019), a knowledge-
based open VQA dataset. We use the accuracy
of PiCA as a representation of knowledge cover-
age, and the first column indicates the PLM input
prompts, where PromptQ is constructed by VQA
question only, and PromptQC is constructed by
image and question together. The top row lists five
selected PLMs with parameter size varying from
6.7B to 175B: GPT J (Wang and Komatsuzaki,
2021), UL2 (Tay et al., 2022), OPT-175B (Zhang
et al., 2022), GPT-3, and Codex (Chen et al., 2021).
Table 1 proves that existing VQA approaches using
PLMs can only cover less than half (37% - 53%)
of the required external knowledge. Further, the
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small difference (5% - 8%) between PromptQ and
PromptQC coverage percentages show that PLM
bias – the tendency to generate certain tokens over
others given the same question – is not alleviated
by prompt changes such as the inclusion of the
image information or not.

To address these challenges, we propose RASO, a
new VQA pipeline that expands world knowledge
retrieval by requesting PLMs to generate multiple
answer choices, followed by an answer selection
model. As shown in Figure 2, we first propose a
new prompting method to retrieve a long list of
possible answers using in-context examples from
in-domain training data. Note that for the example
data in Figure 1, the PiCA end-task output would be
“office” as in AQC in Figure 2. With this prompting
method, we expand the external knowledge cov-
erage by more than +20% for each PLM, without
additional training data. Then, as illustrated in Fig-
ure 3, we propose a chain-of-thought (CoT) (Wei
et al., 2022) guided answer selection approach. By
plugging in the previous SOTA method KAT (Gui
et al., 2022) as the answer selector, we achieve
the new SOTA performance 58.5% (+4.1%) on the
OK-VQA dataset without additional computation
effort.

Extensive experiments in Section 4 suggest
that RASO provides a general way to increase
the retrieved world knowledge coverage using
PLMs, boosting end-task performance without ad-
ditional computation cost. We believe our proposed
pipeline motivates a new type of generate-then-
select VQA method and facilitates future work.

Our main contributions are: (a) We provide a
new prompting method using PLMs that extends
the retrieved external knowledge coverage by 20%
over previous approaches in VQA; (b) We are the
first to propose a general generate-then-select VQA
pipeline, different from the de facto tradition of di-
rect generation approaches; (c) We achieve the new
SOTA on the challenging OK-VQA benchmark.

2 Related Work

2.1 VQA Methods

Visual question answering (VQA) has always been
one of the most popular topics in the natural lan-
guage and computer vision community over recent
years. While the VQA task is free-form and open-
ended as first proposed in (Antol et al., 2015), a
large portion of previous methods (Shih et al., 2016;
Anderson et al., 2018; Lu et al., 2019; Gardères

et al., 2020) cast it as a classification problem. It’s
a common strategy for them to construct a target vo-
cabulary from the dataset’s training set by answer
frequency, resulting in around two to four thousand
candidates in the target vocabulary (Ben-Younes
et al., 2017; Yu et al., 2019; Marino et al., 2021;
Wu et al., 2022). These methods suffer from the
limited answer vocabulary – if the gold answer is
outside of the vocabulary, then there is no way for
these models to have the correct answer.

Rather than closed-set classification, several re-
cent methods focus on direct generating for the cor-
rect answer (Gui et al., 2022; Salaberria et al., 2023)
using transformer-based models such as T5 (Raf-
fel et al., 2020). Large-scale multi-modal models
trained on multiple vision language tasks (Alayrac
et al., 2022; Chen et al., 2022) have also become
popular and achieved good performance on the
OK-VQA dataset. However, these models are not
publicly available and necessitate a vast quantity
of data and computation resources.

Different from all the previous approaches that
are either classification or direct generation, our
proposed pipeline RASO is the first approach ever
to follow a generate-then-select strategy, as far as
this paper is written. We hope to benefit from less
computation cost in the selection part compared
to direct generation, while keeping the free-form
open-ended answer vocabulary from the answer
generation part.

2.2 Knowledge-based VQA

While significant progress (Lu et al., 2016; Ander-
son et al., 2018; Lu et al., 2019; Jiang et al., 2020;
Marino et al., 2021; Biten et al., 2022) has been
made on the most famous VQA benchmarks (An-
tol et al., 2015; Goyal et al., 2017; Wang et al.,
2017; Singh et al., 2019), researchers start to raise
more challenging questions that require external
knowledge not inside the image to answer (Marino
et al., 2019; Zellers et al., 2019; Park et al., 2020;
Schwenk et al., 2022; Fu et al., 2022).

Two-step approaches (Marino et al., 2021; Wu
et al., 2022; Gui et al., 2022; Lin and Byrne, 2022;
Gao et al., 2022; Hu et al., 2022; Lin et al., 2022)
that explicitly retrieve world knowledge as input
to the end-task model have received much atten-
tion. However, these methods could retrieve noisy
and redundant information that limits the VQA
performance, or have low knowledge coverage.
In contrast, without retrieving documents, they



may suffer from PLM hallucinations. To address
these problems, we treat LLM as a world knowl-
edge source with wide coverage, and propose new
prompt-engineering methods to retrieve succinct
but higher-quality knowledge, represented as an-
swer choices.

3 Method

Our method consists of two steps: answer choices
generation and answer selection. The overview of
the proposed model is shown in Figures 2 and 31.
Problem Formulation Given a training dataset
D = {(vi, qi, ai)}Ni=1, where vi denotes the i-th
training image and N is the total number of the
training images, qi and ai represent the i-th ques-
tion and its corresponding answer, respectively. We
deploy a generate-then-select strategy to first gen-
erate a set of answer choices using a frozen PLM g,
then trains a model p to select the correct answer
from it. g takes vi and qi as inputs, and generates
all the possible answers Âi = {âi0, âi1, âi2, ...}.
Finally, p takes vi, qi, and Âi as inputs and learns
a set of parameters θ to select from Âi for the final
answer.

3.1 Answer Choices Generation

We design our generation process with inspirations
from the previous work (Yang et al., 2022; Gui
et al., 2022). As demonstrated in Figures 2 and 4,
we follow a similar strategy to use few-shot in-
context learning and leverage a frozen PLM g to
generate all the possible answer choices.

For each image-question pair, we first convert
the image vi into a textual context ci following
(Yang et al., 2022), where ci consists of a cap-
tion generated from an image captioning model
(Zhang et al., 2021) and a list of tags predicted
by the public Microsoft Azure tagging API32. We
then construct two carefully designed text prompts
PromptQ and PromptQC , where Q stands for
question and QC stands for question and context.
PromptQC consists of a general instruction sen-
tence: “Please list all the possible answers to the
question.”, the textual context, the question, and
few-shot in-context examples. The examples are

1PLM icon credit to https://claudeai.uk/ and model
icon credit to https://www.vecteezy.com/vector-art/
8156819-bot-reading-the-book

2Azure Tagging API:https://westus.
dev.cognitive.microsoft.com/docs/
services/computer-vision-v3-2/operations/
56f91f2e778daf14a499f21b

context-question-answers triples taken from the
training set that are most similar to the current
image-question pair. Since we want to generate
all the possible answers, we use all the gold an-
swers and connect them with “or” in the few-shot
examples. PromptQ has similar components: a
slightly different instruction sentence, the question,
and few-shot examples of question-answers pairs.

Following (Yang et al., 2022; Gui et al., 2022),
we use 16-shot in-context examples and calcu-
late the similarity scores using CLIP (Radford
et al., 2021) embedding of the images and the
questions. We utilize the frozen PLM g to gen-
erate outputs for both PromptQ and PromptQC

as demonstrated in Figure 4. The outputs are com-
bined together to form the final answer choices
Âi = {âi0, âi1, âi2, ...} for the current image-
question pair. Our goal is to have ai ∈ Âi.

3.2 Answer Selection

Given vi, ci, qi, Âi, this step trains a model p that
selects âi from Âi. Our goal is for p to output ai
when ai ∈ Âi.

Before training p, we first generate chain-of-
thought (CoT) (Wei et al., 2022) style rationales to
help guide the selection process, with inspirations
from (Schwenk et al., 2022). Specifically, a fixed
prompt is pre-designed to generate CoT rationales,
with details in Figure 6 in Appendix A.

We then construct the input for the answer selec-
tion model. In this paper, we plug in existing text
generation models as p, and require them to output
one choice with further fine-tuning on OK-VQA.
For each image-question pair, we concatenate the
question qi, the image – represented by either ci
or the image embedding using CLIP model (Rad-
ford et al., 2021), the CoT rationale coti, and the
generated answers choices Âi. We also add sen-
tinel tokens such that the input turns out to be in
the following format: Context : ci, question : qi,
rationale : coti, choices : Âi, answers : with
minor adaptions for each specific p. Check Figure
5 for inference.

4 Experiment

4.1 Dataset

OK-VQA (Marino et al., 2021) is a widely used
VQA dataset that requires external world knowl-
edge outside of the image to answer the ques-
tion. The dataset contains 14,031 images from the
COCO dataset (Lin et al., 2014) and 14,055 crowd-
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Please list all the possible answers.

Q: What kind of institution does this image depict?

Standard VQA Prompting

Model Input I

RASO Prompting

Please answer the question.

Context: a large room full of laptops with people in 
the background. wall, computer...
Q: What kind of institution does this image depict?

Model Input

A: library
Model Output

A: Library, School, University, Office, Hospital.

Model Output II

A: School, College, University, Other.

Model Output I

Please list all the possible answers.

Context: a large room full of laptops with people in 
the background. wall, computer...

Q: What kind of institution does this image depict?

Model Input II

Figure 4: An illustration of our proposed prompting method for choice generation enabling larger knowledge
retrieval coverage, compared with standard prompting as in PiCA (Yang et al., 2022). Note that Model Input I and
II corresponds to PromptQ, PromptQC respectively, and correct answers are highlighted.

PLM Prompt Type Top1 (%) Top3 (%) Top5 (%) All (%) Avg #

GPT J PromptQ 32.4 46.1 46.7 46.7 2.6
PromptQC 37.1 49.5 50.7 50.7 3.0

both 37.1 52.0 55.9 57.1 4.1
UL2 PromptQ 32.6 45.4 46.4 46.5 2.7

PromptQC 37.5 51.3 52.8 52.9 3.0
both 37.5 53.1 57.0 58.0 4.1

GPT-3 PromptQC 48.0 - - - -
OPT PromptQ 34.21 48.45 49.7 49.8 3.0

PromptQC 37.8 52.9 55.0 55.4 3.7
both 37.8 55.6 61.0 63.4 5.2

Codex PromptQ 44.8 58.8 59.8 59.8 3.1
PromptQC 52.9 67.8 68.9 68.9 3.2

both 52.9 68.6 72.6 73.5 4.5
ensembled both 52.9 68.6 74.6 81.9 11.0

Table 2: Answer choices generation result on OK-VQA, representing the external knowledge coverage. Top 1,
Top 3, Top 5, and All represent the highest accuracy that can be achieved using top 1, top 3, top 5, and all answer
choices. All results are in accuracy scores evaluated following (Antol et al., 2015). “both” means that we combine
the answer choices generated using both prompts. “ensembled” means that we combine the answer choices of all
four PLMs. Note that the GPT-3 result is taken from (Yang et al., 2022).

Figure 5: Example input for the answer selection model
for the image in Figures 1 and 2.

sourced questions covering a variety of knowledge
categories, with 9,009 training data and 5,046 test-
ing data. Each question has ten annotated answers
(possibly repeated), and we follow the standard
evaluation metric recommended by the VQA chal-
lenge (Antol et al., 2015). The external knowledge
required in OK-VQA is not provided and there is

no designated external knowledge source (such as
a knowledge base), leaving the benchmark more
challenging.

4.2 Publicly Available PLMs

We experiment with four different-sized PLMs that
are publicly available as follows:
Codex (Chen et al., 2021) The Codex models
are descendants of GPT-3 models that can under-
stand and generate code. Their training data con-
tains both natural language and billions of lines
of public code from GitHub. We use the version
code− davinci− 002 of Codex.
OPT-175b (Zhang et al., 2022) Open Pre-trained
Transformers (OPT) is a suite of decoder-only pre-
trained transformers ranging from 125M to 175B
parameters trained on publicly available datasets.



Method External Knowledge Source Answer Selector Acc(%)
MUTAN+AN (Ben-Younes et al., 2017) Wiki - 27.8

ConceptBERT (Gardères et al., 2020) ConceptNet - 33.7
KRISP (Marino et al., 2021) Wiki+ConceptNet - 38.9

MAVEx (Wu et al., 2022) Wiki+ConceptNet+Google Images - 39.4
PiCA (Yang et al., 2022) Frozen GPT-3 Wiki - 48.0

KAT (Gui et al., 2022) (ensemble) Wiki+Frozen GPT-3 Wiki - 54.4
ClipCap (Mokady et al., 2021) . - - 22.8

Frozen GPT-J 29.5
Frozen UL2 33.1

RASO Frozen OPT ClipCap 31.3
Frozen Codex 35.3
All 4 Frozen PLMs 38.0
Frozen GPT-J 29.6

RASO Frozen UL2 IterPLM 33.8
Frozen OPT 58.5
Frozen Codex 45.7
Frozen GPT-J 47.2
Frozen UL2 45.8

RASO Frozen OPT UnifiedQA 47.8
Frozen Codex (ensemble) 51.2
All 4 Frozen PLMs 45.6
Wiki+Frozen GPT-J 50.3
Wiki+Frozen UL2 52.2

RASO Wiki+Frozen OPT KAT 53.0
Wiki+Frozen Codex (ensemble) 58.5
Wiki+ All 4 Frozen PLMs 57.9

Table 3: VQA results on the OK-VQA benchmark comparing to standard baselines. “Wiki” stands for “Wikipedia”
and the “Wiki” resource in the last row’s block is brought by the answer selector KAT. “All 4 Frozen PLMs” means
that we use all the answer choices generated by GPT-J, UL2, OPT, and Codex. When we have UnifiedQA or KAT
as answer selector, we train with 3 random seeds and denote the results as ensemble following (Gui et al., 2022).

We use the version 175 billion parameters of OPT.
UL2 (Tay et al., 2022) Unified Language Learner
(UL2) is 20 billion parameter novel language pre-
training paradigm that improves the performance
of language models universally across datasets and
setups released recently. UL2 frames different ob-
jective functions for training language models as
denoising tasks, where the model has to recover
missing sub-sequences of a given input.
GPT-J (Wang and Komatsuzaki, 2021) GPT-J is a
6 billion parameter, autoregressive text generation
model trained following (Wang, 2021). The model
consists of 28 layers with a model dimension of
4096, and a feed-forward dimension of 16384.
During prompting, we always set the temperature
to 0.001 and max token to 15.

4.3 Answer Choices Generation Results

The answer choice generation result is shown in
Table 2. Top 1, Top 3,..., All represent the highest
accuracy that can be achieved using top 1, top 3,
..., and all answer choices, calculated following the
standard VQA evaluation metric in (Antol et al.,
2015). Note that the GPT-3 score is taken from
(Yang et al., 2022). We do not experiment with

GPT-3 in this paper due to the required cost. Avg #
stands for the average number of answer choices.

While previous VQA methods also retrieve
from PLMs, they have a similar result as if using
PromptQC and Top1 choice. As discussed before,
these generation results can represent the external
knowledge coverage ratio. From the table, Codex
covers the majority of the knowledge needed and
has the highest score of 73.5%. Using our prompt-
engineering method, the knowledge coverages of
all PLMs increase by a large margin of at least
20% (which are the accuracy differences between
Top1 choice by PromptQC and All choices by
both prompts).

4.4 Answer Selection Models

We plug in existing text-generation models as an-
swer selectors and experiment on four methods:
KAT (Gui et al., 2022) is a VQA method that uses
a sequence-to-sequence model composed of an en-
coder and a decoder, similar to T5 (Raffel et al.,
2020). As far as this paper is written, KAT is known
to be the SOTA method on OK-VQA benchmark.
ClipCap (Mokady et al., 2021) uses the CLIP (Rad-
ford et al., 2021) encoding as a prefix to generate



KAT Top1 All w/o cot All w/ cot
GPT-J (single) 45.9 47.8 49.6
GPT-J (ensemble) 46.6 48.4 50.3
UL2 (single) 50.2 50.7 51.2
UL2 (ensemble) 51.1 51.5 52.2
OPT (single) 51.7 52.3 52.5
OPT (ensemble) 52.1 52.9 53.0
Codex (single) 56.2 57.1 57.5
Codex (ensemble) 57.1 58.1 58.5
All (single) 56.4 56.9 57.0
All (ensemble) 57.0 57.6 57.9

UnifiedQA All w/o cot All w/ cot
GPT-J (single) 45.6 46.0
GPT-J (ensemble) 46.6 47.2
UL2 (single) 44.8 44.6
UL2 (ensemble) 45.8 45.8
OPT (single) 47.9 46.8
OPT (ensemble) 49.0 47.8
Codex (single) 51.1 50.4
Codex (ensemble) 52.1 51.2
All (single) 45.1 44.6
All (ensemble) 45.7 45.3

Table 4: Ablation study investing how different in-
puts influence the answer selection results using KAT
(top) and UnifiedQA (bottom) on OK-VQA in accuracy
scores. “Top1” means using Top 1 answer choice,“All”
in the first row means using all answer choices, to
form the input respectively. “cot” means the CoT ra-
tionales. We train with 3 random seeds and denote the
average scores as single and majority vote results as
ensemble.“All” in the leftmost column represent using
combined answer choices from all four PLMs.

textual captions by employing a simple mapping
network over the raw encoding, and then fine-tunes
a language model to generate a valid caption. The
language model we use here is GPT-2. In this pa-
per, we adapt this model by adding question tokens,
CoT rationale tokens, and answer choices tokens
to the prefix as input, with the target to generate
answers instead of captions. We train the mapping
network from scratch and also fine-tune GPT-2.
IterPLM Inspired by previous work (Wang et al.,
2022), we use iterative prompting with the same
PLM in choice generation for correct answer selec-
tion. A snippet of an example prompt is shown in
Figure 5. We use 8-shot in-domain examples with
the temperature set to 0.001 and max token set to
5.

GPT-J UL2 OPT Codex
w/o cot 28.5 29.1 31.6 45.6
w/ cot 28.1 32.3 33.5 44.9

Table 5: Ablation study on how different inputs influ-
ence the answer selection result using IterPLM: iterative
prompting using the same PLM, on OK-VQA. All re-
sults are in accuracy scores. Both setting use all the
answer choices.

Type GPT-J UL2 OPT Codex
DG 23.5

ViT-L_14 w/o cot 28.7 30.3 29.1 33.4
w/ cot 29.5 33.1 31.3 35.3

DG 21.6
RN50x64 w/o cot 29.3 30.3 28.6 34.5

w/ cot 29.6 32.6 31.4 36.4

Table 6: Ablation study on how different inputs influ-
ence the answer selection result using ClipCapVQA
(Mokady et al., 2021) on OK-VQA. The first column
represents two CLIP checkpoints. “DG” represents di-
rect generation without any answer choices.

UnifiedQA (Khashabi et al., 2022, 2020) is a
multiple-choice question answering (QA) model
that performs well across 20 QA datasets, using
the T5ForConditionalGeneration model. We load
UnifiedQA v2 (Khashabi et al., 2022) checkpoint
unifiedqa-v2-t5-large-1251000.

4.5 End-task VQA Results

As illustrated in Table 3, we compare our pro-
posed pipeline against several standard baseline ap-
proaches: MUTAN+AN (Ben-Younes et al., 2017),
ConceptBERT (Gardères et al., 2020), KRISP
(Marino et al., 2021), MAVEx (Wu et al., 2022),
PiCA (Yang et al., 2022), and KAT (Gui et al.,
2022), on the OK-VQA data test set. RASO out-
performs the previous SOTA by an absolute 4%
margin, achieving the new SOTA.

Comparing different answer selectors, it is sur-
prising that the two transformer-based text-only
models: UnifiedQA and KAT significantly outper-
form the multi-modal ClipCap model by around
20% on average, even though their sizes (T5 large)
are much smaller than that of GPT-2. We believe
this phenomenon is because the Clip image em-
beddings trained using image captions do not have
enough granularity to support reasoning over the
image, question, and answer choices for answer se-
lection, compared to T5 models. Besides, IterPLM
has much worse scores than we imagined. While



many papers (Wang et al., 2022) show that itera-
tive prompting should boost the performance, our
experiments suggest that asking the PLMs to select
between their own output at the highest confidence
is indeed a very difficult problem for them.

In Table 3, we also compare single PLM answer
choices with ensembled choices by all four PLMs,
with the latter showing lower scores. We believe
this is because the answer selectors we experiment
on are not good enough, and thus increasing choice
numbers turns out to hurt the performance.

4.6 Implementation Details

In the answer choice generation step, we use 16-
shot in-context examples on the test data. On the
training data, because we have ten gold answers
with repetitions, we use 4-shot in-context learning
for faster generation. The temperature for PLM
generation is set to be 0.001. The generation max
token length is set to be 15. All experiments of
selection models have been run in 8 NVIDIA V100
Tensor Core GPUs with 32 GiB of memory each,
96 custom Intel Xeon Scalable (Skylake) vCPUs,
and 1.8 TB of local NVMe-based SSD storage. The
running times for KAT, UnifiedQA and ClipCap are
less than 4, 2 and 1 hours, respectively. OPT-175b
model is locally set up in 32 NVIDIA V100 Tensor
Core GPUs to make inferences. The learning rates
for KAT, UnifiedQA and Clipcap are set as 3e-5,
5e-5 and 2e-5, respectively, for all experiments.
Optimizer AdamW (Loshchilov and Hutter, 2017)
is used for all selection models.

5 Ablation Studies

We perform qualitative and quantitative analysis
on the answer selection results to better understand
whether the expanded external knowledge coverage
benefits the end-task VQA much. As illustrated in
Tables 4 to 6, we investigate the impact of various
inputs on the answer selection results, with answer
choices representing the retrieved knowledge.

CoT Rationale Impact From the experiments
results in Tables 4 to 6 where we compare the set-
tings: “w/cot” and “w/o cot”, input with CoT ratio-
nales consistently boosts the answer selection per-
formance of KAT, UnifiedQA, and ClipCap. How-
ever, this conclusion fails for iterative prompting
– adding CoT hurts the performance of IterPLM
when we use GPT-J and Codex. We believe this
can result from the difference in CoT qualities, and
different pre-training methods and data.

Choice Number Impact As shown in Table 4,
larger knowledge coverage, represented by using
choices from all four PLMs versus a single PLM,
can not consistently increase the performance of
KAT or UnifiedQA. As we compare the results
on Codex choices and that on all PLMs choices,
more choices always lead to lower accuracy scores.
This is somehow against our instinct, and we be-
lieve it is because our answer selectors are not good
enough. Digging deeper into the problem, we fur-
ther compare the difference between using Top1
choices and all choices in KAT as in the top table.
Note that the Top1 results here are not the same
as the Top1 accuracy in Table 2 because KAT uses
Wikipedia knowledge by design so it further ex-
pands knowledge coverage. We can see that using
all choices is consistently better than using Top 1
choice. However, the improvements are too small
(0.4-1.9 %) considering that their knowledge cover-
ages differ by at least 20% as in Table 1, suggesting
that KAT, while being the best, is still not the ideal
selection model, and motivating future research in
this direction.

Multi-modal Selector Impact As demonstrated
in Table 6, we experiment with the two versions
of CLIP embedding: “ViT-L_14” and “RN50x64”
and the difference between direct generation (DG)
and answer selection is constantly large – providing
answer choices definitely helps ClipCap to generate
the correct answer.

Ensemble Impact Our answer choice genera-
tion step is indeed ensembling on PLMs results.
Previous VQA methods that retrieve from PLMs
also conduct ensembling but in a different way
(Yang et al., 2022). They usually request the same
prompt (see example in Figure 4) multiple times
and take the majority-voted answer. This process
is called multi-query ensemble, and could boost
the GPT-3 performance by about 5%. We argue
that our proposed RASO prompting is superior to
multi-query ensemble in that we allow more diver-
sity in the output and provide VQA systems more
explainability by separating the choice-generation
and selection steps, without additional API request
cost or longer inference time.

6 Conclusion

In this paper, we propose RASO: a new VQA
pipeline following a generate-then-select strategy
guided by world knowledge. RASO proposes a new
prompting method that largely increases the ex-



ternal knowledge coverage by a margin of more
than 20% compared to previous approaches on the
OK-VQA benchmark. Our pipeline achieves the
new SOTA 58.5% on the end-task performance ,
encouraging avenues for future studies.

7 Limitations

While the previous VQA methods that retrieve from
PLMs all use GPT-3, we do not experiment with
GPT-3 in this paper due to the additional cost. We
only focus on applying text-generation models as
answer selectors, while classification models could
also potentially be good answer selectors. The
multi-modal CLIP embedding has already been
surpassed by several recent studies (Alayrac et al.,
2022; Singh et al., 2022; Lu et al., 2022) and there-
fore ClipCap cannot represent the performance of
multi-modal answer selectors.

8 Ethical Considerations

The authors of this paper acknowledge the signifi-
cance of responsible NLP in research and develop-
ment. The objective of this research is to enhance
the capabilities of visual question answering mod-
els, guided by human values-based world knowl-
edge. We strive to ensure that the model is not only
accurate and efficient, but also fair and unbiased.
We recognize that the VQA technology may have
a substantial impact on society and pledge to be
transparent in sharing our findings and progress
with relevant users and stakeholders.
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A Appendix

A.1 CoT prompts
For our CoT generation experiments, we use a pre-
designed fixed prompt as partly shown in Figure 6.

A.2 Additional Experiments
We conduct additional experiments for RASO on
an augmented successor dataset of OK-VQA: A-
OKVQA (Schwenk et al., 2022) to prove its effec-
tiveness. Since we do not have the baseline results
or any intermediate outputs on A-OKVQA as the
paper was written, we only compare with PiCA
(Yang et al., 2022) with a simpler setting: without
using image tagging or chain-of-thought and only
using GPT-J. The captions we use are generated us-
ing BLIP-2 (Li et al., 2023), following the default
example in the paper.
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Figure 6: The fixed prompt we use to generate chain-
of-thought style rationales. We randomly select seven
examples in the prompt and show two of them here. We
set the temperature as 0.7 and max token as 80 during
inference for all PLMs.

PiCA RASO

A-OKVQA 33.2 37.1

Table 7: Additional comparison of RASO versus PiCA
on A-OKVQA dataset.


