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Abstract
Out-of-Domain (OOD) Intent Classification
and New Intent Discovery are as two basic
and critical tasks in the Task-Oriented Dialogue
System, which are typically treated as two inde-
pendent tasks. Classification focuses on identi-
fying intents beyond the predefined set of the
dialog system, but it will not further differen-
tiate detected OOD intents in fine granularity.
Discovery focuses on how to cluster unlabeled
samples according to their semantic representa-
tion, which relies heavily on prior knowledge
and can not provide label information for the
formed clusters. To be closer to the real user-
facing scenarios, we strengthen a combined
generative task paradigm to extend Classifica-
tion with Discovery referred to as Open Envi-
ronment Intent Prediction, which is to make a
further fine-grained discovery of OOD based
on OOD Intent Classification. Using various
widely-used generative models as an archetype,
we propose a general scheme for Open Envi-
ronment Intent Prediction. In a nutshell, we
first perform intent detection to identify the In-
domain (IND) samples and then generate labels
for those identified as OOD. With these gener-
ated labels, we can discover new general intents
and provide label information for them. We de-
velop a suite of benchmarks on the existing
intent datasets and present a simple yet effec-
tive implementation. Extensive experiments
demonstrate that our method establishes sub-
stantial improvement compared to the baselines.
Codes is publicly available.1

1 Introduction

OOD Intent Classification, also known as OOD
Intent Detection (OID), and New Intent Discovery
(NID), as two basic tasks of the Task-Oriented
Dialogue System, have been two areas of active
research. The purpose of OOD Intent Classifica-
tion (Zhang et al., 2021b; Zhan et al., 2021; Zhou

∗Corresponding author.
1https://github.com/zyh190507/Open-Enviroment-Intent-
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Figure 1: Illustration of Open Environment Intent Pre-
diction. (a) Classification is to distinguish IND (give
specific labels for IND samples) and OOD. (b) Discov-
ery is to make a further fine-grained discovery of OOD
based on generated labels. See text for details.

et al., 2022a) is to identify utterances with not sup-
ported intents to prevent them from being wrongly
post-processed. However, in the setting of OID,
all OOD samples, which contain a lot of valuable
corpus with different meaningful intents, are just
grouped into one rejected class and are not distin-
guished in a fine-grained way. At the same time,
how to effectively identify intents under the gener-
ative paradigm has been underdeveloped.

New Intent Discovery (Zhang et al., 2021c; Zhou
et al., 2022b) focuses on how to cluster unlabeled
data according to their learned semantic represen-
tation. However, existing research on New Intent
Discovery needs strong prior knowledge (Zhang
et al., 2022) to learn the semantic representation
that can adapt to subsequent clustering, which also
depends on unacceptable assumptions in real sce-
narios, such as knowing the number of categories of
OOD intents in advance. In addition, its processing
procedure is usually cumbersome with multiple de-
pendent processing stages, which often suffers the
dilemma that the knowledge learned in the previous
is often forgotten in the follow-up as demonstrated
in Zhou et al. (2022b) and the generated clusters
usually lack semantic label information. Further,
since unlabeled data usually contains a large num-
ber of samples with known intents, a closer look at
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the process of NID will reveal that it pays a lot of
costs, but in many cases, it is just gathering a large
number of samples with definite intents into clus-
ters but cannot provide labels and not fully commit
to discovering new intents.

To be closer to the realistic scenarios, we first
strengthen a combined generative task paradigm
based on the characteristics of the above two tasks–
Open Environment Intent Prediction, which is to
make a further fine-grained discovery of OOD
based on OOD Intent Classification and not only
gives the specific categories of IND samples but
also further gives the label information of OOD.
This paradigm can reduce the “burden” of existing
NID tasks by avoiding clustering a large number of
known intent samples and focusing on discovering
new intents while giving specific label informa-
tion. Compared with OID and NID, our proposed
task paradigm is more general and practical, whose
whole process is shown in Figure 1. Then we offer
a general implementation based on the generative
models. Specifically, with a generative model in
hand, we carry out OID according to the learned
semantic representation and give the correspond-
ing predefined label for IND. At the same time,
labels are generated for the samples identified as
OOD, which also can help to discover more general
intents in fine granularity.

For more general and practical, we expect to not
rely on any assumptions or prior about OOD and di-
rectly provide high-quality OOD labels, which also
becomes more challenging. Especially for the label
generation, since only IND samples are available
in the training set, fine-tuning the model directly
(Model-tuning) will cause the generated labels to
overfit training labels, making it a poor choice for
the Open Environment Intent Prediction. There-
fore, we adopt prefix-tuning (Li and Liang, 2021)
to retain the general knowledge learned during pre-
training to avoid shifting toward the training labels
to generate more diverse labels. On this basis, to
discover more general intents, we reformulate the
intent discovery as a minimum cost Multi-Cut prob-
lem, which can automatically divide samples be-
longing to a general intent into a cluster according
to the similarity of labels. Further, to mitigate the
impact of Inherent Label Uncertainty (Wang et al.,
2022) on the Open Environment Intent Prediction,
with the help of large pre-trained models such as
GPT-3 (Brown et al., 2020) or ChatGPT2, we intro-

2https://openai.com/blog/chatgpt/

duce a simple yet effective method of enriching the
expression of intents and generate multiple related
labels for each intent in the training set.

The contributions can be summarized as follows:
Firstly, this paper strengthens a combined gener-
ative task paradigm, which can not only give the
specific category of IND but also give the label
information of OOD and can further discover more
general intents. Secondly, this paper offers an effec-
tive implementation for such a paradigm without
relying on any prior about OOD and provides a
novel solution for enriching the expression of in-
tents and a general method for intent discovery.
Thirdly, to evaluate the effectiveness and general-
ity of our method, we establish a suite of bench-
marks across widely-used generative models and
datasets. The experimental results demonstrate our
method not only performs better classification but
also makes an effective discovery.

2 Related Work

OOD Intent Detection (OID) OID is a field of
concern recently, and many excellent related pieces
of research have emerged. According to whether
there are additional OOD samples involved in the
training process, these works can be broadly catego-
rized into two main groups, namely supervised and
unsupervised. The supervised approaches (Zheng
et al., 2020; Zhan et al., 2021; Lang et al., 2022)
focus on how to help distinguish IND and OOD
by using additional collected or synthesized OOD
samples. The unsupervised methods usually con-
strain decision boundaries through specific training
paradigms (Zeng et al., 2021; Zhou et al., 2022a)
or post-processing methods (Zhang et al., 2021b).
The existing work usually groups all OOD samples
into one rejected class without further fine-grained
distinction. At the same time, there is less research
on generative models for OOD Intent classification.
This work explores how to carry out OOD classi-
fication on the generative models and expand the
OOD Intent Classification.
New Intent Discovery (NID) This name may be
a bit misleading (it is called Generalized Category
Discovery (Vaze et al., 2022) in the field of com-
puter vision). In the field of natural language pro-
cessing, unlabeled corpus in the setting of NID
include samples with known intents in addition to
OOD samples. Zhang et al. (2021c, 2022) learn the
clustering friendly-representation by generalizing
prior knowledge to the representation of unlabeled

2227



samples so that samples with similar representa-
tions can be divided into the same cluster. Gao
et al. (2021b) discover new intents by a variant
of PageRank and Intent rank algorithm and Zhou
et al. (2022b) introduce a principled probabilistic
framework for this task. Zhang et al. (2021a) pro-
vide a tool platform to integrate various existing
methods about OID and NID. Vedula et al. (2020);
Zheng et al. (2022) can be approximated as two
specific implementations of the paradigm proposed
in this work. However, they either need to rely
on the prior knowledge of OOD or need to make
complex category estimations. Further, they need
to rely on all samples during discovery and can-
not directly provide label information, which is not
general. Different from the previous work, we use
a model to implement the Open Environment Intent
Prediction, and our method does not rely on any
prior knowledge or assumptions about OOD while
providing effective label information.
Parameter-Efficient Tuning (PET) PET aims
to optimize as few parameters as possible while
achieving the effect as optimizing all parame-
ters (He et al., 2022). To this end, Lester
et al. (2021) inject tunable prompts into the in-
put layer. Li and Liang (2021); Liu et al. (2022)
go a step further and put tunable prompts on each
internal layer of the model to achieve better results.

Within Training Labels

Outside of Training Labels

(a) Generated Words Distribution

Pre-Trained LMs

(e.g., ChatGPT )

Please generate many labels 

similar to Card-not-working,

which is related to following 
samples.

Template

Why cannot I use my card?

My card cannot physically 

work.

Training examples

PTMs

Expand Labels

- Card-not-functioning

- Card-malfunctioning

(b) Label Extension by PTMs

Figure 2: Plots show (a) the comparison of generated
word distribution, the solid line represents the distribu-
tion of words falling into the training label set (overfit-
ting), and the dotted line represents the distribution of
words beyond the label list (diversity). The inside of
each part is sorted by word frequency from high to low.
Our method (Blue) can not only alleviate overfitting but
also increase diversity. (b) label extension by the PTMs.
See text for details.

3 Proposed Method

A natural solution to solve the Open Environment
Intent Prediction is to carry out full model tuning,
i.e., fine-tune all the parameters of the generative
models, by taking generating labels for IND sam-

ples as the downstream task. However, model tun-
ing could lead to a certain degree of “degradation”
of the vocabulary generated by the fine-tuned gener-
ative model, which means that the generated labels
overfit the labels in the training set.

Specifically, as shown in Figure 2(a), almost all
the words generated by the fine-tuned model fall
in the vocabulary composed of the labels in the
training set (solid red line in Figure 2(a)), and few
words beyond the vocabulary (dotted red line in
Figure 2(a)) can be generated, which will fail to
generate correct labels for OOD samples.
Prompt-based prefix tuning To retain the gen-
eral knowledge (avoid shifting towards training
labels) obtained by pre-training in large-scale cor-
pus while adapting the model to the downstream
task that generates diverse labels, we achieve it by
prompting the model with tunable instructions to
retain the main parameters of the model unchanged.
Specifically, we adopt the prefix-tuning (Li and
Liang, 2021; Liu et al., 2022) training paradigm
to prepend continuous tunable tokens pl ∈ Rn×d

(termed as prefix) to the l-th internal layer of the
model, denoting P = [p1, p2, ..., pl] as the whole
prefixes in all layers. In addition, to steer generative
models to generate labels according to the content
of samples, we formulate the input X to model
with natural language prompts (such as “It was
[Mask]”, which a crafted template of prompt) into
T (X) = {x.It was [Mask].|x ∈ X} to prompt the
model to generate appropriate labels for [Mask]
during decoding as suggested in Gao et al. (2021a).
The optimization objective is formulated as fol-
lows:

P = argmin
P∈P

Lobj(F(T (X), P ; θ), Y ), (1)

where F is the generative model, θ is main param-
eters, P is the prefix space, Lobj is the tuning loss
Eq.(6) and Y is the label space. The whole process
of tuning is shown in Figure 3 and the advantages
of this proposed method are shown in subsequent
experiments.
Label Extension with Pre-trained Models Both
the OID and NID tasks face a real dilemma. Be-
cause of the inherent defects of annotation and
diversity of intent expression, only one label given
in the dataset usually can not accurately reflect the
true intents behind the samples or even is wrong for
some samples, which can be called Inherent Label
Uncertainty (ILU). ILU not only affects the defi-
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Figure 3: An illustration of our implementation based on (a) Autoregressive Model (GPT-2) and (b) Encoder-
Decoder Model (BART/T5). The prefix refers to trainable prompt tokens, and the parameters of the pre-trained
models are frozen. The input to the model includes a crafted prompt in addition to the original utterance. (M)LM
head output logit score on semantic representation. See text for details.

nition of decision boundary with IND intents but
also weakens the ability of the model to generate
correct labels.

To alleviate the Inherent Label Uncertainty, we
extend the label space Y in the dataset and provide
multiple candidate labels for each intent. We pro-
pose utilizing the emerging generative capacity of
large generative language models such as GPT-3 or
ChatGPT (used in this paper) to expand labels. For
a specific label y ∈ Y in the training set, we use
crafted template T followed by a certain amount of
randomly selected samples x1:n in this category to
prompt model F to expand the label. The extended
label space can be denoted as Y = F(T (y), x1:n).
The process of extension is shown in Figure 2(b).

Unlike the previous work of generating train-
ing samples using large models, compared with
the number of samples required for training, the
number of labels to be expended can be almost
negligible. Therefore, our method is extremely ef-
ficient and can obtain labels of higher quality than
human annotations with the help of general knowl-
edge of large models.
The Loss Function of OID Considering the exis-
tence of Inherent Label Uncertainty and the waste
of generating labels for a large number of IND
samples, it is not the best choice to directly use the
generated labels for OID (See Appendix B for more
discussion). We adopt the previous OID paradigm
to detect through the learned discriminative repre-
sentation of samples. For the semantic representa-
tion z of the input x, it can be obtained by averag-
ing the hidden vectors outputted by the last layer
of the model (decoder-only PTMs, GPT-2 (Rad-

ford et al., 2019)) or averaging the hidden vectors
outputted by the encoder (encoder-decoder PTMs,
BART (Lewis et al., 2020), T5 (Raffel et al., 2020)),
which is shown in Figure 3. With the original label
space Y , a head for the OID task can be trained by
cross-entropy loss:

Lce = − 1

N

N∑

i=1

log
exp(φyi(zi))∑

k∈[K] exp(φk(zi))
, (2)

where yi is the gold label for input xi, φ is a linear
classifier and K is the number of IND classes.
For each sample, there is also extended label space
Y , which can help learn the discriminative repre-
sentation. Inspired by the Multi-label research, we
introduce an additional loss suggested in (Su, 2020)
for a specific input x with Y:

Lex(x) = log(1 +
∑

i∈Ω,j∈Ω
exp(φi(z)− φj(z))),

(3)
where z is the representation of input x, Ω is the
extended set of the label of x, Ω = Y −Ω is the set
of remaining classes and φj(z) denotes the logit
score of the j-th class. Intuitively, the purpose of
Eq.(3) is to make the score of each extended class
no less than that of each other class, so that the
learned representation can be more discriminative.
So far, we can train the OID-specific head by the
following loss:

LOID = (1− α) · Lce + α · Lex, (4)

where α is a hyper-parameter and Lex is calculated
by 1

|X|
∑

x∈X Lex(x).
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After obtaining the representation, in order not
to rely on any assumptions or prior knowledge, we
perform detection following Zhang et al. (2021c).
First, determine a decision boundary in the rep-
resentation space for each known intent. Those
samples falling into the boundary are considered as
the intent, and those not within any decision bound-
ary are OOD.
The Loss Funciton of NID The whole NID con-
sists of two parts. First, generate labels for the
samples identified as OOD, and cluster according
to the label similarity to discover general intents.
For label generation, we adopt the standard lan-
guage modeling objective to decode:

LNID = −α(x)
∑

(x,u∈π(y))

|u|∑

j=1

p(uj |ui<j , T (x)),

(5)
where D is the training data, (x, y) is a pair in D,
π(y) is a set just containing extended labels (not
original labels), T is the template of prompts and p
is the conditional probability calculated by softmax
function, whose input is the hidden vector output at
the corresponding position of the last layer of the
decoder and output is the probability of token uj .
The α(x) is set as 1/Nπ(y).

Combined with Eq.(4) and Eq.(5), the finetune
optimization objective are as:

LOBJ = (1− λ) · LOID + λ · LNID, (6)

where λ is a hyper-parameter to balance the loss of
two tasks.

Book-hotel

Credit-

limit

Travel-alert

Figure 4: Illustration (inspired by Abbas and Swoboda
(2022)) of formulating new intent discovery into mini-
mum cost multi-cut. A graph is automatically cut into
three segmentations (green), representing the general
intents of Book-hotel, Credit-limit and Travel-alert. The
red dotted line indicates a (minimum cost) multi-cut.

Since multiple similar labels can be generated
for the same intent, to discover a more general new
intent, samples with labels belonging to the same

intent should be divided into one group as an intent
set. To this end, we establish a weighted association
network (graph) with nodes as samples and the
weights of edges as the similarity (ROUGE (Lin,
2004) adopted in this paper, see Appendix A for
details and more discussion) between labels of the
linked samples. We reformulate the new intent
discovery as a minimum cost Multi-cut problem on
a graph. Samples belonging to the same intent will
be automatically divided into the same cluster due
to the high label similarity (see Figure 4), and thus
do not rely on any prior about OOD.

For a specific weighted association graph G =
(V,E,W ), a multi-cut refers to a subset of edges
dividing the graph into distinct clusters, which sat-
isfies the following constraints:

P := {p(V1, . . . , Vn)|
n⋃

i

Vi = V ;Vi ∩ Vj = ∅},

(7)
where Vi is a node set, P is the space of all multi-
cut and p is a specific cut.

The minimum cost multi-cut problem takes the
weight of the edge W ∈ RE×E into account. In-
tuitively, a greater weight of an edge (u, v) ∈ E
suggests a higher likelihood that u and v are in the
same cluster and more cost is needed to remove
the edge. The minimum cost muli-cut is to find a
cut with the lowest cost, which can be defined as
minp∈P <W, p> suggested in Abbas and Swoboda
(2022). In this paper, we find the minimum cost
muli-cut by the implementation in Abbas and Swo-
boda (2022), which is an algorithm that can be run
in GPU. See Appendix A for more discussion.

4 Experiments

4.1 Evaluation Datasets and Backbones
We conduct extensive experiments across two chal-
lenging real-world datasets and three widely used
generative models.
CLINC (Larson et al., 2019) This is a widely stud-
ied intent dataset, which covers a wide range of in-
tent categories. Specifically, This dataset includes
150 classes distributed across 10 different domains,
consisting of 22500 utterances totally.
BANKING (Casanueva et al., 2020) This is a
dataset related to the banking business, which is
notable for its imbalanced distribution of samples
across different categories. The dataset includes
77 intents, consisting of 9003 training samples and
3080 test samples. Appendix C summarizes de-
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tailed statistics of each dataset.
To verify the generality and effectiveness of our
proposed method, we set up benchmarks on the
widely used generative models across various ar-
chitectures, i.e., autoregressive language model
(decoder-only, GPT-2 (Radford et al., 2019)), and
encoder-decoder architecture (BART (Lewis et al.,
2020), T5 (Raffel et al., 2020)), and make a com-
prehensive comparison with our proposed method.

4.2 Evaluation Protocol and Baselines
We follow the generally accepted metrics used in
the previous work of OID and NID tasks. In the
task of OID, as suggested in Zhang et al. (2021b);
Zhou et al. (2022a), we calculate macro F1-score
for IND and OOD classes donated as F1-IND and
F1-OOD respectively. Calculate accuracy score
(ACC-ALL) and F1-score (F1-ALL) on all classes
meanwhile.
For the task of NID, following Zhang et al. (2021c,
2022), we adopt the two metrics: Adjusted Mu-
tual Information (AMI) and Adjusted Rand Index
(ARI), to measure the quality of clustering (new
intents found). In particular, we use the Hungarian
algorithm (consistent with the previous methods)
to align predicted classes and gold classes to cal-
culate Accuracy (ACC). Finally, we calculate the
macro average (AVG.) of these metrics to com-
prehensively measure the performance of different
methods.
Based on the above evaluation metrics of different
tasks, we use two baseline methods (Model Tun-
ing and Prefix Tuning) to establish comparable
benchmarks on the above datasets. Model Tuning
refers to fine-tuning the full parameters of models.
Prefix-tuning is a variation based on Li and Liang
(2021) and our method is introduced in Section 3.
In particular, the cluster-based method is a com-
mon method in the NID field, so we also made a
comparison with it. We perform K-means with the
representations identified as OOD to discover new
intents as Zhang et al. (2021c, 2022) do.

4.3 Experimental Setting
Following the general setting in OID and NID tasks,
we randomly select 75% of the intent classes given
in the dataset as known intents (IND intents), and
the rest are regarded as unknown intents (OOD in-
tents). The OOD samples in training and validation
sets are discarded. In the OID task, the disposed of
classes in the test set are grouped into one rejected
class (remarked as OOD), while in the NID task,

the disposed of labels are retained in the test set to
evaluate the quality of the predicted new class.

The details about the used models and hyper-
parameters are listed in Appendix D. Baselines
and our method use the same experimental settings.
Whether it is the main experiment or the analy-
sis experiments, we use multiple different random
seeds to conduct at least three rounds of experi-
ments and report the average results.

4.4 Main Results
The comparison results of our methods and
baselines across different generative models and
datasets are shown in Table 1 (See Appendix D for
the statistics of experimental parameters and the
standard deviation). On the whole, our method ob-
tain substantial improvements across various met-
rics in different datasets compared with baselines,
which shows that our method can not only distin-
guish IND and OOD better but also better further
distinguish OOD in fine granularity.

A closer look at Table 1, for the OOD Intent De-
tection, it can be observed from the table that BART
and T5 are better than GPT-2 on the whole, and T5
performs better than BART on the CLINC dataset,
but the opposite is true on the BANKING dataset.
Interestingly, we observe that the effect of Prefix-
tuning is better than that of Model-tuning, espe-
cially in the BANKING dataset, which shows that
overfitting not only affects the generation of labels
but also affects the learning of representations. Fur-
thermore, our method is better than Prefix-tuning,
which shows that expended labels and prompts can
help to learn discriminative representations.

Further observation of the comparison results
on the New Intent Discovery task shows that the
results of intent discovery based on label similarity
are better than those based on cluster-based (K-
means), reflecting the advantages of our proposed
method. The comparison between different mod-
els shows that T5 performs better than other mod-
els in different datasets (across different training
methods), which relies on the excellent generation
ability of T5. The Prefix-based training methods
are better than the Model-tuning, which shows that
the Prefix-based training method can well alleviate
the generated labels overfitting to the labels in the
training set and is also in line with our expectations.
At the same time, by comparing our method with
Prefix-tuning, we can further show that prompts
and extended labels can help the model generate
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Model Methods

CLINC BANKING

OOD Intent Detection

F1-ALL ACC-ALL F1-OOD F1-IND F1-ALL ACC-ALL F1-OOD F1-IND

GPT-2
Model-tuning 86.83 81.39 66.49 87.01 81.75 75.73 57.23 82.17
Prefix-tuning 91.61 88.47 80.11 91.72 86.06 81.92 70.44 86.33

Ours 92.69 89.44 80.68 92.80 86.93 82.57 70.75 87.21

BART
Model-tuning 93.55 90.50 82.25 93.65 87.62 82.77 66.95 87.98
Prefix-tuning 93.94 90.90 82.66 94.04 87.94 83.88 72.24 88.21

Ours 94.21 91.33 83.57 94.30 88.00 83.83 72.40 88.27

T5
Model-tuning 93.04 90.13 82.18 93.13 86.71 82.16 69.81 87.00
Prefix-tuning 93.05 90.33 83.02 93.14 87.11 82.90 71.43 87.38

Ours 94.52 91.74 84.36 94.61 87.85 83.63 72.13 88.11

Model Methods
New Intent Discovery

ACC ARI AMI AVG. ACC ARI AMI AVG.

GPT-2

K-means 28.49 6.22 12.79 15.83 21.58 6.75 16.46 14.93
Model-tuning 25.13 8.40 26.95 20.16 26.21 11.15 32.28 23.21
Prefix-tuning 32.86 16.34 32.48 27.23 27.10 13.71 29.68 23.49

Ours 36.30 18.25 34.15 29.56 29.54 16.88 34.33 26.91

BART

K-means 30.81 14.32 29.86 25.00 31.61 19.16 41.76 30.84
Model-tuning 28.52 14.10 41.30 27.97 35.53 21.18 42.08 32.92
Prefix-tuning 35.72 18.76 32.76 29.08 36.38 23.11 42.11 33.86

Ours 39.57 23.99 45.29 36.28 36.77 23.42 43.41 34.53

T5

K-means 33.98 19.36 36.33 29.88 33.61 26.37 50.76 36.91
Model-tuning 42.17 25.51 51.13 39.61 32.27 21.22 45.01 32.83
Prefix-tuning 47.96 33.22 50.42 43.87 37.82 24.56 45.01 35.80

Ours 48.78 35.61 53.06 45.82 41.51 29.43 50.77 40.57

Table 1: Overall comparison results across various models and datasets. The upper part is the comparison result of
the OID task, the lower part is the result of the NID. All exhibited results are percentages and the average of the
results over different random seeds. See Appendix D for the standard deviation and text for details.

better labels (Appendix A).

5 Analysis

Figure 5: Plots show the impact of the length of the
prefix. Our method (Red) is also better than Prefix-
tuning (Blue) under various prefix lengths.

5.1 Impact of Prefix Length
In this section, we explore the specific impact of
the length of the prefix. From Figure 5, we can
observe that both tasks seem to be sensitive to the
length of the prefix. A small prefix will not play
its advantages. Further, the performance of Detec-
tion may decline with the increase of prefix length
(especially for GPT-2). For the Discovery, similar
phenomena will be observed, but the downward
trend will be postponed. The above phenomenon
may be attributed to the fact that the increase of
the prefix length brings more fine-tuned parame-
ters, which results in the model shifting toward the
limited IND data, which not only weakens the abil-
ity to generate labels but also affects the learning
of discriminative representations. Under various
prefix lengths (other parameters remain the same),
Our method is better than Prefix-tuning.

5.2 Towards a Win-win Training
We adopt hyper-parameter λ to balance the losses
of two tasks in Eq.(6) during training. In this sec-
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Figure 6: Plots show the effect of λ. The λ can balance
different losses to make the model achieve satisfactory
performance in the Open Environment Intent Prediction,
and our method (Red) is better than the baseline (Blue)
under different settings.

tion, we evaluate the benefits of λ in the training
process. Specifically, we vary the value to obtain
the changing trend of the performance of two tasks,
and the results are shown in Figure 6. When the λ
at around 0.5, the two tasks can achieve a win-win
situation across the different models and different
training methods, which demonstrates the ratio-
nality of extending Classification with Discovery.
In addition, by varying the value of the λ while
keeping other parameters unchanged, our method
is always better than the baseline method. See Ap-
pendix B for more related discussion.

Figure 7: Effect of extended labels in detection. The
extended labels can help different models GPT-2 (left)
and T5 (right) better distinguish IND and OOD.

5.3 Effect of Extended Labels
In this section, we explore the effect of extended
labels in the Open Environment Intent Prediction.
The extended labels affect the Detection in the form
of Lex in Eq.(3). By varying α in Eq.(4), we can
observe the effect of extended labels. The results
are shown in Figure 7, which shows that with the
increase of weight α, the model can learn better

discriminative representations (F1-ALL rises), but
if the α continues to increase, the recognition ac-
curacy may be affected due to the influence of un-
certainty between labels. More experiments in Ap-
pendix B can demonstrate its effect is general. For
the Discovery, it has been proved that extended la-
bels can alleviate the degradation of the generated
vocabulary(Section 3) and help to discover new in-
tents(Section 4.4). We also evaluate the quality of
labels generated with the help of extended labels in
Appendix A.

Template

GPT-2 T5

Dete. Disc. Dete. Disc.
(F1-ALL) (ACC) (F1-ALL) (ACC)

<x>. (w/o template) 86.29 25.91 87.65 35.05

(∗) <x>.It was [Mask]. 86.65 26.77 88.15 36.11
(†) <x>.Refer to [Mask]. 86.68 28.80 87.86 37.80
(†) <x>.This is [Mask]. 86.40 30.15 87.89 37.69

Table 2: Effect of prompts. ∗ is a crafted template and †
represents the templates are generated automatically.

5.4 Necessity of Prompts
To steer the model to generate high-quality labels,
we task the model with natural language prompts
in the input. In this section, we explore the spe-
cific effect of prompts. The experimental results in
BANKING are listed in Table 2, where the input in
the first row is without prompt and the inputs in the
following three rows are with templates generated
in different ways. From Table 2, it can be observed
that the existence of prompts can not only help with
detection (Dete.) but also has an obvious effect on
new intent discovery (Disc.). At the same time, the
help of prompts is general. In addition to manual
design, we also try to automatically generate tem-
plates based on Gao et al. (2021a) (Appendix E).
Compared with only inputting utterances to the
model, formulating input with these generated tem-
plates T (X) shows a certain degree of help.

6 Conclusion

In this paper, we strengthen a combined genera-
tive task paradigm to expand the two basic tasks
of the Task-Oriented Dialogue system, which is
more general and practical. Further, without rely-
ing on prior knowledge about OOD, we provide
an effective and efficient implementation based on
the generative model. At the same time, we intro-
duce an effective method of intent expansion to
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alleviate Inherent Label Uncertainty and provide a
method for constructing multi-label intent datasets
to inspire further research. Extensive experiments
across different models and different datasets have
verified effectiveness and generality.

Limitations

To better enlighten the follow-up research, we con-
clude the limitations of our method as follows:
1) Although the method we proposed can help im-
prove the quality of generated labels, there is still
room for further improvement; 2) Because our de-
tection is not perfect, it will lead to inaccurate la-
bels of some samples. We look forward to better
methods to improve detection in the future; 3) This
work has verified that the extended labels can ef-
fectively help the performance of models and pro-
posed a method of label extension, but has not tried
other extension methods or whether it is helpful to
extend more labels. 4) This work focuses on solv-
ing Open Environment Intent Prediction with dif-
ferent generative models, without exploring other
types of models.
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Methods
GPT-2 T5

AMI ARI ACC AMI ARI ACC

GloVe (Pennington et al., 2014)

Prefix-tuning 31.77 13.96 28.65 46.77 24.21 36.87
Ours 33.94 14.14 28.30 49.00 23.71 38.06

BERTScore (Zhang et al., 2020)

Prefix-tuning 27.20 9.57 24.58 47.47 25.81 39.50
Ours 33.48 11.76 27.10 50.62 28.23 40.12

ROUGE (Lin, 2004)

Prefix-tuning 28.20 11.66 25.87 46.47 25.85 39.20
Ours 34.33 16.88 29.54 48.97 27.95 41.53

Table 3: Results of the New Intent Discovery by labels
generated in different ways in the BANKING dataset.
Under different similarity measures, our method has
achieved better results, which reflects that our methods
can generate better labels.

A More Discussion on Generated Labels
and New Intent Discovery

In this section, we evaluate the quality of gener-
ated labels. Because we discover general intents
based on generated labels (Section 3), the better
effect of intent discovery suggests the better quality
of generated labels. In this paper, For efficiency
and effect, we use ROGUE (Lin, 2004) to measure
the similarity between two labels. Specifically, we
calculate the average of the ROGUE-1, ROGUE-
2, and ROGUE-L3 F1-scores of two labels as the
similarity score. In addition, for the sake of gener-
ality, we try two additional widely-used similarity
measures: GloVe (Pennington et al., 2014) and
BERTScore (Zhang et al., 2020). We use labels
generated in different ways to discover intents and
compare the effects in Table 3. Under different
similarity measures, our methods have achieved
better results, which shows that our methods can
generate better labels.

At the same time, it should be emphasized that
the scheme we proposed for new intent discovery
based on generated labels in Section 3 is a general
framework that can be flexibly implemented. In
addition to the way to establish graphs described
in Section 3, we can also build a weighted asso-
ciation graph with labels as nodes, whose edges

3https://pypi.org/project/rouge/

are the similarity between linked labels, then per-
form minimum cost multi-cut on this graph, where
the segmentations (composed by similar labels) di-
vided are also regarded as more general intents,
and the whole process also does not depend on any
prior or assumptions about OOD. We leave more
and broader exploration for future research.

For the label for discovered general intents, you
can either pick the label with the highest frequency
in the corresponding segmentation as the label of
the intent, or the labels with the top k highest fre-
quency, which depends on the purpose of using the
data.

Methods
CLINC

F1-ALL ACC-ALL F1-OOD F1-IND

Cluster-based 76.22 72.96 64.66 76.33

Detection-based 93.79 90.96 83.31 93.88
+Expended labels 94.47 91.67 84.27 94.57

Label-based 71.25 67.76 62.40 71.33
+Expended labels 73.68 72.30 62.55 73.78

Ours 94.68 92.07 85.07 94.77

Table 4: Comparison results of different paradigms of
detection. The results are obtained with T5 on CLINC
dataset.

B More Comprehensive Comparison of
Detection

As mentioned in Section 3, considering the exis-
tence of Inherent Label Uncertainty and the waste
of generating labels (or clusters) for a large number
of IND samples, we conduct the OID task based
on the learned representation. To learn the discrim-
inative representations, we enrich the expression
of intent by multi labels and train together with
the loss of generation Eq.(6) during training (The
effectiveness is proved in Section 5.2).

In this section, in order to further verify the ef-
fectiveness of our method, we make a comprehen-
sive comparison with various paradigms. Cluster-
based refers to the paradigm adopted by previ-
ous work in the NID (Zhang et al., 2021c, 2022),
all samples are directly clustered by K-means
for intent discovery after learning representation,
Detection-based means that only the OID loss
LOID (λ = 0.0 in Eq.(6)) is used for training
to obtain representations of samples, which is a
paradigm in the OID task (Zhang et al., 2021b),
and Label-based means that only the NID loss
LNID (λ = 1.0 in Eq.(6)) is used for training then
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discovery intents based on labels (same as that we
used in 3). The experimental parameters of all
methods are consistent.

We show the comparison results of different
methods in Table 4, which demonstrates our
method is superior to other methods. In addition,
many meaningful observations can be obtained
from the table. The introduction of extended labels
can improve the effect of detection under differ-
ent paradigms, which reflects the generality. The
effect of the Cluster-based method is significantly
lower than that of representation-based detection,
which also shows that the previous paradigms in
the NID not only waste a lot of costs to cluster IND
samples but also may have very limited effect. The
above comparison results can fully demonstrate the
rationality and effectiveness of our method.

C Statistics of Datasets

The detailed statistics of the datasets described in
the Section 4.1 are summarized in Table 5.

D Details of the Models and
Hyper-parameters

In this paper, experiments are conducted on mod-
els with different architectures, i.e., decoder-only
(GPT-2 (Radford et al., 2019)), and encoder-
decoder architecture (BART (Lewis et al., 2020),
T5 (Raffel et al., 2020)), whose details are shown
in 6. The implementations of GPT-24, BART5 and
T56 are based on the Huggingface Transformer
models. We tried learning rate in {1e-4, 2e-4, 3e-4,
4e-4}, training batch size in {64,128}, the length
of tunable prefix in {64,128,256} and trained 100
epochs with an AdamW optimizer. We utilized
four extended labels for each intent during the ex-
periment (In fact, for certain intents, the number of
labels was expanded to five.). In the K-means set-
ting, we set k to three times the ground truth num-
ber of intent categories. Baselines and our method
use the same experimental settings. Whether it is
the main experiment or the analysis experiments,
we use multiple different random seeds to conduct
multiple rounds of experiments and report the av-
erage results. We list the standard deviation of the
main experiment results (Table 1) in Table 7. Our
experiments are conducted on a single NVIDIA

4https://huggingface.co/gpt2
5https://huggingface.co/facebook/bart-base
6https://huggingface.co/t5-base

A100 Tensor Core GPU. We also have tried to con-
duct experiments on a single NVIDIA GTX 3090
with small batchsizes.

E Automatic Generation of Templates

To verify the generality of the benefits of the
prompts, in addition to manually designing tem-
plates, we use T5 to automatically generate models
based on Gao et al. (2021a). The difference is that
to maintain the semantics of labels, we have not
pruned the generated vocabulary set. To generate
templates, we formalize the input (x, y) ∈ Dtrain

to T5 as x.<s1>y<s2> (The <s1> and <s2> are the
mask tokens) and let T5 automatically fill in <s1>
and <s2> (i.e., templates) during decoding. We se-
lect the templates with higher beam search scores
as the candidates then use Ddev to pick templates
with better performance. See Gao et al. (2021a)
for more details.
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Dataset Classes |Training| |Validation| |Test| Vocabulary Length (Avg.)

CLINC-FULL (Larson et al., 2019) 150 18000 2250 2250 7283 8.32
BANKING (Casanueva et al., 2020) 77 9003 1000 3080 5028 11.91

Table 5: Statistics of CLINC-FULL, BANKING datasets. || denotes the total number of utterances. Length indicates
the average length of each utterance in the dataset. The vocabulary is drawn from (Zhang et al., 2021c)

Model Magnitude Encoder Decoder DIM.(hidden) Parameters

GPT-2 (Radford et al., 2019) Base / 12-layer 768 117M
BART (Lewis et al., 2020) Base 6-layer 6-layer 768 139M
T5 (Raffel et al., 2020) Base 12-layer 12-layer 768 220M

Table 6: Details of the model adopted in this paper. Dim.(hidden) refers to the dimension of the hidden vector.

Model Methods

CLINC BANKING

OOD Intent Detection

F1-ALL ACC-ALL F1-OOD F1-IND F1-ALL ACC-ALL F1-OOD F1-IND

GPT-2
Model-tuning 0.99 1.11 1.47 0.99 1.48 1.60 2.97 1.47
Prefix-tuning 0.98 1.52 2.66 0.97 0.42 0.67 1.91 0.41

Ours 0.60 0.92 1.75 0.59 0.10 0.24 0.85 0.09

BART
Model-tuning 0.33 0.78 1.77 0.31 0.79 1.44 4.52 0.74
Prefix-tuning 0.10 0.33 0.85 0.10 0.96 1.73 3.92 0.91

Ours 0.59 1.08 2.27 0.58 0.55 0.79 1.65 0.53

T5
Model-tuning 0.28 0.69 1.65 0.27 0.77 0.90 2.04 0.75
Prefix-tuning 0.36 0.18 0.58 0.36 0.23 0.64 2.53 0.23

Ours 0.51 0.91 1.91 0.50 0.61 1.14 2.82 0.57

Model Methods
New Intent Discovery

ACC ARI AMI - ACC ARI AMI -

GPT-2

K-means 0.34 0.79 1.46 - 0.69 0.90 1.46 -
Model-tuning 0.54 1.19 0.80 - 2.28 2.91 1.54 -
Prefix-tuning 1.74 1.32 1.81 - 0.47 2.06 2.86 -

Ours 4.24 3.42 5.07 - 1.21 2.19 1.83 -

BART

K-means 1.87 2.65 3.05 - 1.87 3.54 4.78 -
Model-tuning 1.61 2.49 1.89 - 3.34 2.76 2.10 -
Prefix-tuning 6.67 9.69 12.69 - 4.32 3.71 3.79 -

Ours 3.23 3.83 5.19 - 1.26 1.37 1.19 -

T5

K-means 1.97 2.99 3.15 - 2.20 2.29 2.49 -
Model-tuning 3.02 4.09 2.49 - 1.32 1.02 0.66 -
Prefix-tuning 0.69 2.40 1.14 - 2.25 2.74 1.54 -

Ours 4.38 4.75 3.59 - 3.07 2.39 1.71 -

Table 7: The standard deviation corresponding to each mean result in Table 1.
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