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Abstract

State-of-the-art few-shot learning (FSL) meth-
ods leverage prompt-based fine-tuning to ob-
tain remarkable results for natural language un-
derstanding (NLU) tasks. While much of the
prior FSL methods focus on improving down-
stream task performance, there is a limited un-
derstanding of the adversarial robustness of
such methods. In this work, we conduct an
extensive study of several state-of-the-art FSL
methods to assess their robustness to adversar-
ial perturbations. To better understand the im-
pact of various factors towards robustness (or
the lack of it), we evaluate prompt-based FSL
methods against fully fine-tuned models for
aspects such as the use of unlabeled data, mul-
tiple prompts, number of few-shot examples,
model size and type. Our results on six GLUE
tasks indicate that compared to fully fine-tuned
models, vanilla FSL methods lead to a notable
relative drop in task performance (i.e., are less
robust) in the face of adversarial perturbations.
However, using (i) unlabeled data for prompt-
based FSL and (ii) multiple prompts flip the
trend. We further demonstrate that increasing
the number of few-shot examples and model
size lead to increased adversarial robustness of
vanilla FSL methods. Broadly, our work sheds
light on the adversarial robustness evaluation
of prompt-based FSL methods for NLU tasks.

1 Introduction

Few-shot learning (FSL) capabilities of large lan-
guage models have led to a remarkable perfor-
mance on several natural language understand-
ing (NLU) tasks, often with as little as 16 ex-
amples per class (Mukherjee et al., 2021; Lester
et al., 2021; Li and Liang, 2021; Wang et al.,
2021c). Prompt-based few-shot learning is one
such approach where NLU tasks are reformulated
as prompts, which are then completed using large
language models (Gao et al., 2020; Schick and
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Figure 1: Overview of our study. We compare the
relative gap between the in-domain and adversarial per-
formance of different state-of-the-art prompt-based few-
shot learning methods with that of the models trained
with fully supervised learning.

Schütze, 2020; Tam et al., 2021; Liu et al., 2021).
By effectively bridging the gap between the pre-
training objective of large language models and the
fine-tuning objective, prompt-based learning has
provided impressive results. Several recent studies
have investigated conditioning large language mod-
els to solve downstream tasks by prompting them
with a few examples.

While much of the prior FSL works (Gao et al.,
2020; Liu et al., 2021; Tam et al., 2021; Lester
et al., 2021) focus on improving downstream task
performance, it is also critical to evaluate language
technologies for adversarial robustness as that can
highlight the security and safety risks of integrating
them into user-sensitive downstream applications.
The robustness and generalization capabilities of
prompt-based few-shot learning models have been
the focus of some recent studies. For instance,
Razeghi et al. (2022) found that prompting lan-
guage models is not robust to pre-training term
frequencies in the context of arithmetic tasks. In
a similar vein, a recent study found that prompt-
based FSL is susceptible to learning superficial
cues that hinder the generalizability of such meth-
ods (Kavumba et al., 2022). On the other hand, en-
couragingly, Liu et al. (2022) and Awadalla et al.
(2022) found that prompt-based FSL leads to more
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robust models in the face of out-of-distribution sam-
ples. We add to the existing body of work by specif-
ically studying the robustness of prompting to ad-
versarial samples, which is different from studying
the robustness against natural out-of-distribution
samples—unlike natural distribution shifts, adver-
sarial samples are carefully designed to exploit the
vulnerabilities of language technologies and can
pose serious safety concerns in real-world applica-
tions (Madry et al., 2017; Huang et al., 2017).

In this work, we conduct the first study that em-
pirically evaluates the adversarial robustness of
prompt-based FSL methods for NLU and compares
it against the robustness of fully supervised mod-
els. We study several state-of-the-art prompt-based
FSL methods and evaluate their adversarial robust-
ness on 6 different tasks included in the GLUE
benchmark. For each of the tasks, we use the adver-
sarial evaluation set (AdvGLUE) curated by Wang
et al. (2021a) to quantify the adversarial robust-
ness of different FSL methods. AdvGLUE is a
rich adversarial benchmark that comprises human-
validated adversarially perturbed examples that in-
clude automated word- and sentence-level pertur-
bations as well as human-crafted examples. We
select prompt-based learning approaches that in-
clude the following modeling variations: (i) no
use of unlabeled data, (ii) use of unlabeled data,
and (ii) use of multiple prompts for ensembling.
Together, these modeling variations cover the dif-
ferent categories of prompt-based FSL methods
identified in the FewNLU benchmark (Zheng et al.,
2021). Finally, we compare the models trained us-
ing prompting techniques with models trained on
fully labeled data using conventional fine-tuning in
terms of the gap in the performance between the
adversarial and the in-domain evaluation sets.

We summarize our findings below:
1. Vanilla prompt-based fine-tuning (LM-BFF (Gao
et al., 2020)) demonstrates a worse relative drop in
adversarial performance with respect to in-domain
performance than full fine-tuning, and even classic
fine-tuning with few examples.
2. However, using unlabeled data (iPET (Schick
and Schütze, 2020)) during fine-tuning flips the
trend, causing prompting to reduce the drop in ad-
versarial performance with respect to in-domain
performance than full fine-tuning.
3. Similarly, using multiple prompts to fine-tune
multiple models (PET (Schick and Schütze, 2020))
and ensembling the resultant predictions cause

prompting to demonstrate a better relative drop in
adversarial performance with respect to in-domain
performance than full fine-tuning.
4. Using several ablations, we demonstrate that
increasing the number of few-shot examples and
the encoder size reduces the relative drop in ad-
versarial performance with respect to in-domain
performance. We also find that RoBERTa (Liu
et al., 2019) encoders are more adversarially robust
than ALBERT (Lan et al., 2019) and BERT (Devlin
et al., 2018) encoders of comparable size.1

We discuss the implications of these findings and
contextualize them with respect to prior studies on
other aspects of the robustness of prompt-based
few-shot learning.

2 Related Work

Few-shot Learning for NLU: Few-shot learn-
ing aims to train models to perform well on a
wide range of natural language understanding
tasks with a small amount of task-specific training
data (Zheng et al., 2021; Mukherjee et al., 2021).
Recent studies have explored a wide range of tech-
niques for few-shot learning, like meta-learning on
auxiliary tasks (Dou et al., 2019; Nooralahzadeh
et al., 2020), semi-supervised learning with unla-
beled data (Xie et al., 2020; Mukherjee and Awadal-
lah, 2020), and intermediate learning with related
tasks (Yin et al., 2020; Zhao et al., 2021; Phang
et al., 2018). A popular and influential branch of
few-shot learning approaches involves fine-tuning
large language models using prompting (Schick
and Schütze, 2021). In such approaches, a hand-
ful of training examples are transformed using
templates and verbalizers, and the language mod-
els are trained to predict the masked verbalizers
under various settings.2 By framing the down-
stream tasks as a MASK prediction task, prompt-
based learning overcomes the requirement of train-
ing task-specific classification heads, matching the
fine-tuning objective with the pre-training objec-
tive. FewNLU (Zheng et al., 2021), a benchmark
designed to evaluate the performance of prompt-
based few-shot learning capabilities systematically,
categorizes these settings to fall in one or more of

1Code for our experiments: https://github.com/
claws-lab/few-shot-adversarial-robustness

2For instance, the sentiment classification could involve the
following transformation using a template: “I loved the movie!”
→ “I loved the movie! It was [MASK]”, with the language
models being trained to predict verbalizers “great” or “terrible”
for positive and negative sentiment labels, respectively.
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the following categories: (i) not using any unla-
beled data, (ii) using unlabeled data, and (iii) us-
ing an ensemble of models trained using different
prompts. Overall, evaluation of multiple prompt-
based few-shot learning approaches has demon-
strated that they solve NLU tasks to a remarkable
extent with as little as 16 labeled examples per
class when compared against fine-tuned models
that are trained with thousands of labeled examples.
Such data-efficient learning capabilities are criti-
cal for building language technologies where it is
challenging to collect large-scale labeled datasets.
However, these approaches must demonstrate ad-
versarial robustness to ensure safe outcomes in real-
world applications where untrusted sources could
supply the inputs. To this end, in this work, we
systematically study the adversarial robustness of
prompt-based few-shot learning approaches while
considering the benefits of various settings identi-
fied in the FewNLU benchmark (i.e., the role of
unlabeled data and ensembling).

Robustness of Few-shot Learning: Prior work
has investigated the robustness of various few-shot
learning of computer vision (Goldblum et al., 2020)
and natural language processing models (Liu et al.,
2022; Awadalla et al., 2022), with some works also
developing new robust learning approaches (Jiang
et al., 2019; Wortsman et al., 2022). Such robust-
ness assessments are distinguished into two cate-
gories: (a) robustness to natural and unintentional
perturbations, and (b) robustness to adversarial per-
turbations. Our work focuses explicitly on the
adversarial robustness of prompt-based few-shot
learning for natural language understanding.

The most related works to ours are the studies by
Liu et al. (2022) and Awadalla et al. (2022). Both
studies consider the robustness of a wide range
of data-efficient approaches to out-of-distribution
(OOD) natural examples. Liu et al. (2022) find
that prompt-based few-shot learning approaches
lead to more robust models than their fully fine-
tuned counterparts. Awadalla et al. arrive at the
same finding in the specific context of Question
Answering tasks. However, since both works focus
on out-of-distribution samples that are considered
likely and natural, it is unclear if their findings
also hold for samples that attackers adversarially
perturb. Consequently, we specifically focus on
the adversarial robustness of data-efficient learning
for NLU. Our findings show that, contrary to the
trends observed for OOD samples in prior works,

in-domain performance is not a good predictor of
adversarial robustness of prompt-based few-shot
learning approaches compared to fully supervised
approaches. In other words, fully supervised mod-
els demonstrate a lesser relative drop in adver-
sarial performance with respect to in-domain per-
formance than prompt-based few-shot approaches.
However, when strategies such as (a) using unla-
beled data and (b) ensembling over models trained
with multiple prompts are adopted, the resultant
models demonstrate better adversarial robustness
than fully fine-tuned models.

3 Experimental Setup

Few-shot Learning (FSL) Methods using
Prompting: We evaluate four different FSL meth-
ods that are commonly used for natural language
understanding tasks: Classic fine-tuning (Devlin
et al., 2018), LM-BFF (Gao et al., 2020), PET,
and iPET (Schick and Schütze, 2020, 2021). To-
gether, these approaches cover three primary set-
tings in state-of-the-art prompt-based FSL methods,
namely, (i) no use of unlabeled data for training, (ii)
use of unlabeled data, and (ii) using ensembles of
models trained with different prompts. We consider
fine-tuning with fully labeled data to give the ceil-
ing performance and contrast the capabilities of the
FSL methods. Below, we briefly describe the FSL
methods and explain our rationale for considering
them in our study.

1. Classic-FT: We use the [CLS] token representa-
tion from the encoder with a softmax classifier on
top and train the model end-to-end on a few labeled
examples (no unlabeled data).

2. LM-BFF: Gao et al. (2020) proposed few-shot
fine-tuning with prompting using demonstrations.
Their approach for FSL involves concatenating
the input example, which is modified to follow
the prompting template with a [MASK] in place of
the verbalizer, with semantically similar examples
(i.e., demonstrations) from the few-shot training set.
Concatenating one demonstration per class with the
input example enables overcoming the long-context
problem of GPT-3’s in-context learning. During in-
ference, LM-BFF ensembles the predictions made
by concatenating the input example with all demon-
strations from the few-shot training set. LM-BFF
does not use unlabeled data for training.

3. PET: Pattern-Exploiting Training (PET) (Schick
and Schütze, 2020) is a simple prompt-based few-
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shot fine-tuning approach where the training exam-
ples are converted into templates, and the [MASK]
tokens are used to predict the verbalizer, which
indicates the output label. To understand the role
of using multiple prompts in robustness, we use
PET to fine-tune models with different template-
verbalizer pairs and ensemble their predictions dur-
ing inference. PET does not use demonstrations or
unlabeled data.

4. iPET: iPET (Schick and Schütze, 2020, 2021)
involves self-training and leverages unlabeled data
during fine-tuning. It iteratively uses PET to pro-
duce multiple generations, assigning pseudo-labels
to unlabeled data at the end of each generation
stage. This pseudo-labeled data from a previously
fine-tuned model is then used along with the few-
shot training data to update the model in the subse-
quent generation stage. iPET uses unlabeled data
and allows us to understand its impact on adversar-
ial robustness.

GLUE and AdvGLUE Benchmarks: We train the
above FSL methods on 6 GLUE (Wang et al., 2018)
tasks that also have a corresponding adversarial
counterpart in the Adversarial-GLUE (AdvGLUE)
benchmark (Zheng et al., 2021), namely, SST-
2 (Socher et al., 2013), QQP3, MNLI-m, MNLI-
mm (Williams et al., 2017), RTE (Dagan et al.,
2006; Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), and QNLI (Rajpurkar et al.,
2016). These tasks consider sentences or sentence
pairs as input. The existence of a corresponding ad-
versarial counterpart enables systematic assessment
of these FSL methods trained on the original in-
domain datasets. The AdvGLUE corpus comprises
task-specific adversarial examples obtained using
14 textual adversarial attack methods. Recall that
the adversarial attack methods cover word-level
and sentence-level perturbations, as well as human-
crafted examples. Since Wang et al. (2021a) find
that, in certain cases, as many as 90% adversar-
ial examples constructed using automated methods
are invalid, they perform human validations to en-
sure that only valid adversarial perturbations are
included in this benchmark dataset.

3.1 Implementation Details

Evaluation Protocol: Our experimental setup in-
volves taking each FSL method described earlier
and training the model using K randomly sampled

3https://www.quora.com/profile/Ricky-Riche-2/
First-Quora-Dataset-Release-Question-Pairs

examples per class from the original in-domain
train set. We then evaluate the performance of
the resulting models on two evaluation sets for
each task: the original GLUE evaluation set (in-
domain) and the corresponding adversarial ver-
sion in AdvGLUE. For our main results, we use
K = 64 examples per class. We also perform abla-
tions by varying K ∈ {16, 32, 64, 128, 256}. For
each of the aforementioned FSL approaches, we
use ALBERT-xxlarge-v2 (Lan et al., 2019) as the
pre-trained language model for our experiments.
We conduct ablations by varying the ALBERT
encoder size to be base (12M), large (18M),
xlarge (60M), xxlarge (235M), and encoder type
as BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and ALBERT (Lan et al., 2019). We quan-
tify the performance of these models using Ac-
curacy values (and F1 score for QQP). We also
quantify the gap between in-domain and adversar-
ial performance using a relative percent drop in
Accuracy/F1 scores.

Prompting: Since LM-BFF, PET, and iPET are
prompt-based fine-tuning methods, an important
consideration while comparing their performance
is to use comparable prompts. A prompt comprises
of two parts: a template phrase that is appended
to the input and a verbalizer that maps to the out-
put label. For instance, for a sentence s1 = “this
was probably the best pizza in entire city”, the
prompt p = “It was [MASK]” is concatenated (i.e.,
s_1 ⊕ p), and the model is trained to predict the
words “great” and ‘terrible” that map to the senti-
ment labels ‘positive’ and ‘negative,’ respectively.
We use the prompts (i.e., templates as well as ver-
balizers) identified by Gao et al. (2020) for all the
approaches; we list them in Table 1. Experiments
with PET require additional prompts to isolate the
effect of ensembling predictions of models trained
using different prompts; we list the prompts used
for training PET in Table 2.

3.2 Method-specific Design Choices

As mentioned earlier, for our main experiments, we
used the xxlarge variant of the ALBERT encoder
(Albert-xxlarge-v2) as the MLM encoder. All our
experiments were conducted using a single GPU
with 48GB RAM (NVIDIA Quadro RTX 8000). To
eliminate the need for an extensive hyper-parameter
search, for each of the prompting methods, unless
otherwise stated, we use the same set of hyperpa-
rameters as recommended in Gao et al. (2020);
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Task Template Verbalizer

SST-2 < S1 > It was [MASK] . positive: great, negative: terrible
QQP < S1 > [MASK] , < S2 > equivalent: Yes, not_equivalent: No

MNLI < S1 > ? [MASK] , < S2 > entailment: Yes, neutral: Maybe, contradiction: No
RTE < S1 > ? [MASK] , < S2 > entailment: Yes, not_entailment: No

QNLI < S1 > ? [MASK] , < S2 > entailment: Yes, not_entailment: No

Table 1: Prompts used in this study adopted from Gao et al. (2020). < S1 > and < S2 > are the input sentences.

Task Template Verbalizer

SST-2

It was [MASK] . < S1 > bad / good
< S1 > . All in all, it was [MASK] . bad / good
Just [MASK] ! < S1 > bad / good
< S1 > In summary, the movie was [MASK] . bad / good

QQP

< S1 > [MASK] , < S2 > No / Yes
< S1 > [MASK], I want to know < S2 > No / Yes
< S1 > [MASK], but < S2 > No / Yes
< S1 > [MASK], please , < S2 > No / Yes

MNLI

< S1 > ? [MASK] , < S2 > Wrong/Right/Maybe
< S1 > ? [MASK] , < S2 > No/Yes/Maybe
" < S1 >" ? [MASK] , " < S2 > " No/Yes/Maybe
" < S1 >" ? [MASK] , " < S2 > " Wrong/Right/Maybe

RTE

" < S2 > " ? [MASK] , " < S1 > " No/Yes
< S2 > ? [MASK] , " < S1 > " No/Yes
" < S1 > " ? [MASK] . < S2 > No/Yes
< S1 > ? [MASK] . < S1 > No/Yes

QNLI

< S1 > ? [MASK] , < S2 > No/Yes
< S1 > ? [MASK] , < S2 > Wrong/Right
" < S1 >" ? [MASK] , " < S2 > " No/Yes
" < S1 >" ? [MASK] , " < S2 > " Wrong/Right No/Yes

Table 2: Manual template and verbalizer pairs used for
PET. < S1 > and < S2 > are the input sentences.

most notably, batch size of 8, learning rate set to
10−5, and max sequence length of 256.

LM-BFF Considerations: We used demonstra-
tions along with manual prompts listed in Table
1. We do not use automatic prompt generation as
specifying a manual prompt allows controlled com-
parison across different prompting methods, some
of which can only use manually-specified prompts.
Furthermore, automated prompts increase the train-
ing cost. For demonstrations, we concatenate one
semantically similar example per class to the input
example during the training phase. During infer-
ence, for each test example, we ensemble the pre-
dictions over different possible sets of demonstra-
tions. To control for the sensitivity of prompting to
the selected sample, we perform random sampling
and subsequent training of LM-BFF for N = 5
times and 1000 training steps, for each task.

iPET Considerations: For iPET, we train the mod-
els on two randomly sampled data folds, with each
fold having K= 64 examples per class, for a total of
3 generations and 250 training steps to speed up the

training process. The unlabeled dataset size is lim-
ited to 500 examples with a scale factor of 3 (i.e.,
in every generation, the total training dataset size is
increased by a factor of 3). In the subsequent gen-
eration stage, the model trained on one data fold is
used to generate the pseudo-labeled training set for
the model trained on the other fold. We evaluate
the models obtained after the final generation.

PET Considerations: We train the model on
four different sets of manual template-verbalizer
pairs for 250 training steps. The manual template-
verbalizer pairs used for different tasks are listed
in Table 2. We arrive at these prompts based on the
templates proposed for similar tasks by Schick and
Schütze (2020), and by using the prompts specified
for LM-BFF by Gao et al. (2020). During infer-
ence, we evaluate the ensemble of models trained
on all the different prompts.

4 Results

Robustness of FSL Methods: In Table 3 we show
the performance of few-shot learning methods on
in-domain GLUE and AdvGLUE evaluation sets
using accuracy values (along with F1 score for
QQP). In Table 4, we present the relative decrease
in performance on the AdvGLUE benchmark with
respect to the performance on the GLUE evalua-
tion set. This relative drop is critical to quantify
as our focus is on understanding the surprise in
terms of a fine-tuned model’s performance on an
adversarial test set with respect to its performance
on the in-domain evaluation set. In other words,
the relative drop answers the following question:
is the classification performance on the in-domain
evaluation set a reliable estimate of performance
in the face of adversarial inputs?

We find that classic fine-tuning experiences a
lesser relative drop in performance (i.e. it is more
robust) in 5 out of 6 GLUE tasks, when compared
to LM-BFF. However, as expected, ClassicFT also
leads to subpar performance on the original GLUE
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Method Setting Average ↑ Tasks
SST-2 ↑ QQP ↑ MNLI-m ↑ MNLI-mm ↑ RTE ↑ QNLI ↑

Full FT Org 91.7 95.2 92.3/89.5 89.3 89.9 88.4 95.3
Adv 59.3 66.8 56.4 / 32.4 51.8 44.2 73.0 63.8

Classic FT
Org 66.2 85.6 (±3.1) 75.0 (±3.0) / 68.3 (±6.0) 52.3 (±5.0) 53.5 (±4.8) 56.9 (±1.6) 76.8 (±3.2)

Adv 50.9 56.2 (±2.2) 57.2 (±8.8) / 52.9 (±9.8) 37.7 (±9.3) 41.6 (±9.3) 53.3 (±1.6) 59.6 (±5.6)

LM-BFF
Org 81.4 94.0 (±0.4) 80.1 ±0.7 / 75.6 (±0.9) 76.7 (±1.2) 78.3 (±1.3) 78.1 (±2.5) 81.4 (±2.0)

Adv 51.3 54.1 (±0.9) 46.2 (±6.4) / 46.1 (±6.1) 47.1 (±1.5) 40.1 (±3.2) 58.8 (±3.8) 61.5 (±4.2)

iPET
Org 80.8 93.4 (±0.4) 79.4 (±0.4) / 74.5 (±0.8) 76.1 (±0.9) 77.3 (±0.6) 74.2 (±0.2) 84.6 (±1.3)

Adv 58.1 65.9 (±1.4) 59.6 (±9.9) / 59.4 (±8.9) 60.3 (±1.2) 47.2 (±1.3) 58.1 (±5.2) 57.4 (±3.8)

PET
Org 78.6 93.4 (±0.5) 73.7 (±4.5) / 68.6 (±2.4) 74.6 (±3.8) 75.7 (±3.6) 72.5 (±7.2) 81.6 (±1.5)

Adv 57.2 61.7 (±1.7) 59.3 (±1.6) / 55.2 (±5.2) 55.6 (±4.5) 44.8 (±5.8) 54.0 (±4.1) 67.9 (±1.6)

Table 3: Performance comparison of different methods on in-domain evaluation sets of GLUE (Org) and Adversarial
GLUE (Adv) benchmarks. ALBERT-xxlarge-v2 is used as the large pre-trained language model. We report the
average and standard deviation in the accuracy values of 5 different runs. For these results, we set K = 64. ↑
denotes that a higher value indicates better performance. Average is the average accuracy across all tasks.

Method Average Tasks
Drop ↓ SST-2 ↓ QQP ↓ MNLI-m ↓ MNLI-mm ↓ RTE ↓ QNLI ↓

Full FT 35.3 30.4 38.7 / 63.7 42.3 50.8 15.7 32.2

Classic FT 23.1 34.3 23.7 / 22.5 27.9 22.2 06.3 22.4

LM-BFF 36.9 42.4 42.3 / 39.0 38.6 48.8 24.7 24.4

iPET 28.1 29.4 24.9 / 20.2 20.8 38.9 21.7 32.1

PET 27.2 33.9 19.5 / 18.9 24.6 40.8 25.5 16.8

Table 4: Relative performance drop between in-domain evaluation set of GLUE (Org) and AdvGLUE (Adv) test
set of different methods given by (Org −Adv)/Org × 100. ALBERT-xxlarge-v2 is used as the large pre-trained
language model. We report the average and standard deviation of accuracy values of 5 different runs. For these
results, we set K = 64. ↓ denotes that a lower value indicates better performance. Average Drop is the relative drop
in average accuracy values computed in Table 3.

evaluation set, which limits its usability as an ef-
ficient FSL technique. While LM-BFF provides
good few-shot performance on the GLUE bench-
mark, it demonstrates poorer adversarial robustness
than full fine-tuning in 4 out of 6 tasks. Moving
to iPET, we observe that including unlabeled data
with prompt-based FSL leads to a lesser relative
performance drop in 5 out of 6 tasks when com-
pared to full fine-tuning. Finally, the inclusion of
multiple prompts in PET demonstrates a similar
effect – that is, a lesser relative performance drop
in 4 out of 6 tasks over full fine-tuning. Collec-
tively, these trends demonstrate the benefits of us-
ing unlabeled data and ensembling towards greater
adversarial robustness of prompt-based FSL. Note
that the trends described using the observed rela-
tive performance drops on the majority of tasks are
the same as the trends observed with average accu-
racy values across tasks (i.e., ‘Average’ & ‘Average
Drop’ in Tables 3 & 4).

Overall, our experiments demonstrate that

prompt-based FSL methods that use only demon-
strations (i.e., LM-BFF) severely lag in terms of
their adversarial robustness, performing worse than
simple classic fine-tuning (i.e., ClassicFT) with the
same number of examples. However, leveraging
unlabeled data and ensembles trained with differ-
ent prompts separately (i.e., via iPET and PET,
respectively) improve the adversarial robustness
of prompt-based FSL over fully supervised fine-
tuning (i.e., FullFT). We briefly discuss the role of
these modeling choices when used with prompting
in improving the adversarial performance relative
to in-domain performance.

iPET uses unlabeled training data during fine-
tuning by iteratively training the models on pseudo-
labels generated by previous models. In the process,
the model is exposed to more diverse samples of
the data than simple prompt-based learning (i.e.,
LM-BFF in our case). Alayrac et al. (2019) show
that unlabeled data is an effective alternative to la-
beled data for training adversarially robust models.
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K Setting Tasks
SST-2 MNLI-m

16 Org 92.6 (1.2) 69.1 (2.0)
Adv 56.5 (5.0) 49.1 (4.8)

32 Org 93.2 (1.0) 75.2 (1.3)
Adv 55.3 (3.0) 49.9 (3.2)

64 Org 94.0 (0.4) 76.7 (1.2)
Adv 54.1 (0.9) 47.1 (1.5)

128 Org 94.2 (0.3) 80.8 (0.4)
Adv 58.8 (2.3) 51.7 (3.4)

256 Org 94.7 (0.3) 83.2 (0.7)
Adv 63.1 (2.9) 53.6 (1.5)

Table 5: Effect of varying the number of few-shot la-
beled examples (K) on adversarial (Adv) and in-domain
(Org) performance for SST-2 and MNLI-m tasks.

Our findings in the context of prompting language
models for few-shot learning support their original
claims made in the context of image classification
tasks. Additionally, prior work has shown that
prompt-based few-shot performance is sensitive to
the prompts used for training and has used that ob-
servation to automatically find prompts that provide
maximum performance on in-domain evaluation
sets (Gao et al., 2020). Similarly, ensembling pre-
dictions of models trained using multiple prompts
is also found to be better than relying on a single
prompt (Zheng et al., 2021). From our results, we
observe that ensembling also helps overcome the
sensitivity of a single model to variations in input
data, especially adversarial variations.

Effect of the number of few-shot examples, the
encoder size and type: To isolate the effect of
the number of few-shot examples, the encoder size
(in terms of the number of learnable parameters),
and the encoder type, we fix the FSL method to
LM-BFF and vary these factors one at a time. Ad-
ditionally, we conduct ablation experiments on two
representative tasks, SST-2 and MNLI-m.

Table 5 and Figure 2 show that increasing the
number of examples for few-shot learning im-
proves performance on both in-domain GLUE and
Adversarial GLUE evaluation sets. Interestingly,
the relative performance drop on the adversarial
set with respect to the in-domain set diminishes
slightly, indicating that more examples are help-
ful in bridging the gap between in-domain perfor-
mance and adversarial robustness. The results are
consistent across both tasks. Since the essence of

Version Size Setting Tasks
SST-2 MNLI-m

base 12M Org 85.6 (0.7) 52.5 (2.5)
Adv 34.2 (4.0) 32.9 (4.6)

large 18M Org 88.0 (0.7) 61.2 (0.9)
Adv 36.4 (3.8) 39.5 (2.8)

xlarge 60M Org 89.3 (0.8) 67.4 (2.9)
Adv 45.7 (4.6) 39.3 (4.8)

xxlarge 235M Org 94.0 (0.4) 76.7 (1.2)
Adv 54.1 (0.9) 47.1 (1.5)

Table 6: Effect of variation in encoder size on in-domain
(Org) and adversarial (Adv) performance for SST-2 and
MNLI-m tasks.

Encoder Size Setting Tasks
SST-2 MNLI-m

BERT-large-uncased 334M Org 89.8 (0.9) 57.8 (0.3)
Adv 29.9 (2.8) 35.5 (5.0)

RoBERTa-large 355M Org 93.5 (0.5) 77.5 (0.6)
Adv 58.8 (4.2) 53.5 (2.1)

ALBERT-xxlarge-v2 235M Org 94.4 (0.4) 77.5 (1.1)
Adv 54.1 (0.9) 51.6 (3.7)

Table 7: Effect on in-domain (Org) and adversar-
ial (Adv) performance with variation in encoder type.
We experiment with three different encoders (BERT,
RoBERTa, and ALBERT) of comparable sizes (∼ 108).

FSL methods is in learning effectively with little
data, this observation provides further evidence that
current few-shot models demonstrate a trade-off be-
tween in-domain performance and adversarial ro-
bustness. Another key aspect of resource-efficient
learning (besides data-efficient learning) is learn-
ing with a limited number of parameters. Next, we
investigate the effect of model size on the model’s
adversarial robustness.

In Table 6 and Figure 3, we present the results
by varying the encoder size of the ALBERT model
used in LM-BFF, while keeping the number of ex-
amples used for training as 64. Results show that
as the size of the encoder increases in the number
of learnable parameters, the performance on both
evaluation set increases, and the gap between in-
domain performance and adversarial robustness de-
creases. The performance gap is drastic in smaller
encoders like base (12M) and large (18M). The
observed results are consistent across both tasks.

Finally, we again keep the number of exam-
ples as 64 and vary the encoder type to be one
of the three widely-used large language models:
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Figure 2: Variation in in-domain (Org; solid) and ad-
versarial performance (Adv; dash-dotted) in terms of
accuracy with respect to the number of few-shot exam-
ples K, for SST-2 and MNLI-m. We also show the
variation in the relative percentage drop in accuracy
given by (org − adv)/org % using bar charts.

BERT, RoBERTa, and ALBERT. To control the
effect of different encoder sizes, we keep the en-
coder parameters in a similar range (108). We no-
tice that RoBERTa encoder is the most effective
in balancing the trade-off between in-domain per-
formance and adversarial robustness. ALBERT
demonstrates on-par in-domain performance but
lags slightly in adversarial robustness. This obser-
vation could be attributed to RoBERTa having 34%
more parameters than ALBERT. BERT demon-
strates the worst trade-off between in-domain per-
formance and adversarial robustness. Since the
fine-tuning strategy adopted with these models is
the same, the observed trends could be attributed
to the pre-training approach for these encoders.
For instance, whole-world masking (used for pre-
training RoBERTa) is found to be more adversari-
ally robust than masked language modeling (used
for pre-training BERT) (Dong et al., 2021), indi-
cating that that the former leads to adversarially
reliable textual representations that also model syn-
tax and sentence structure better.

5 Discussion and Conclusion

Adversarial robustness versus OOD robustness:
Recent prior work by Awadalla et al. and (Liu
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Figure 3: Variation in in-domain (Org; solid) and ad-
versarial performance (Adv; dash-dotted) in terms of
accuracy with respect to the model size, for SST-2 and
MNLI-m. We also show the variation in the relative per-
centage drop in accuracy given by (org − adv)/org %)
using bar charts.

et al., 2022) explore the out-of-distribution (OOD)
robustness of prompt-based FSL methods and find
that prompting leads to more robust models than
fully fine-tuned models. However, we find that
these results do not extend to adversarial robust-
ness where the examples are crafted by adversaries
(either humans or machines) to fool the models.
While prompting methods can improve the end-
user experience with language technologies by per-
forming better on OOD samples, they also leave
such technologies more vulnerable to adversarial
attacks by malicious agents. We encourage the
community to consider robustness along both of
these axes while developing and evaluating future
prompting methods.

Considering adversarial robustness is especially
important because prompt-based few-shot learning
has recently found applications in societal tasks
like hate speech detection (Wang et al., 2021b),
toxicity detection (Wang and Chang, 2022), and
author profiling (Chinea-Rios et al., 2022). Prompt-
ing allows us to leverage ever-evolving data in the
real world with limited annotation efforts. How-
ever, prompt-based FSL methods can be manipu-
lated by well-coordinated adversaries using care-
fully crafted inputs on social platforms, and the end-
users could be exposed to incorrectly filtered, and
potentially harmful, content by these language tech-
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nologies. Therefore, we recommend researchers
and practitioners exercise caution while applying
prompt-based few-shot learning to societal tasks.
Costs of obvious solutions: In our work, we have
isolated different factors that impact the adversarial
robustness of prompt-based FSL. However, each
of these factors is associated with additional costs.
Reliance on unlabeled data during fine-tuning re-
quires curation, albeit no annotation. Few-shot
learning with multiple prompts incurs additional
training costs and inference time as predictions
from multiple models are ensembled. Increasing
the number of few-shot examples goes against the
premise of few-shot learning. Similarly, increas-
ing model size leads to models that are difficult to
deploy in practice. These pose new challenges for
NLP researchers and practitioners as adversarial
robustness is a critical constraint along with other
constraints like in-domain performance, OOD ro-
bustness, data, energy, & parameter efficiency.

6 Limitations and Broader Perspective

Limitations and Future Work: As the first study to
assess the adversarial robustness of prompt-based
FSL methods, we focus on representative methods
that cover different design choices. Future work
could expand the set of prompt-based FSL methods
considered in this study. Our broader goal is to en-
courage systematic evaluation of adversarial robust-
ness for all prompt-based FSL methods. Further-
more, we do not perform extensive hyperparameter
tuning for the methods considered in this work. It
is worth noting that “true” few-shot learning setting
has been argued not to involve any development
set (as that would involve collecting more labeled
data) (Perez et al., 2021; Schick and Schütze, 2022).
To this end, we use the hyper-parameters reported
by the original authors of these methods. Future
work could explore settings where access to a lim-
ited development set is assumed for exhaustive hy-
perparameter tuning. Finally, for adversarial evalu-
ation of prompt-based FSL approaches, we utilize a
pre-constructed dataset — AdvGLUE (Wang et al.,
2021a). Since these examples are pre-constructed,
they do not have access to the gradients of the spe-
cific victim models under investigation. Nonethe-
less, the AdvGLUE benchmark offers a foundation
for understanding vulnerabilities in large-scale lan-
guage models under various adversarial scenarios.
This standardized dataset enables fair comparison
and mitigates issues with invalid perturbations. For

instance, Wang et al. (2021a) found that over
90% of adversarial perturbations generated using
the gradients of victim models for NLP tasks are
invalid. Therefore, using AdvGLUE ensures adver-
sarial evaluation on high-quality, human-verified
data. Future work could extend the study by con-
sidering adversarial examples generated using the
gradients of victim models and validating them for
correctness.
Broader Social Impact: The authors do not fore-
see any negative social impacts of this work. We
believe systematic and preemptive evaluation of
the robustness of language technologies against po-
tential adversarial attacks will help develop more
safe and secure systems. We release the code for
our experiments to aid reproducibility and promote
future research on this topic.
Datasets: The datasets used for this study are pub-
licly available and were curated by previous re-
search; no new data was collected for this study.
We abide by the terms of use of the benchmarks as
well as the individual datasets.
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