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Abstract

Alzheimer’s Disease (AD) is a neurodegener-
ative disorder that significantly impacts a pa-
tient’s ability to communicate and organize lan-
guage. Traditional methods for detecting AD,
such as physical screening or neurological test-
ing, can be challenging and time-consuming.
Recent research has explored the use of deep
learning techniques to distinguish AD patients
from non-AD patients by analysing the sponta-
neous speech. These models, however, are lim-
ited by the availability of data. To address this,
we propose a novel contrastive data augmen-
tation method, which simulates the cognitive
impairment of a patient by randomly deleting
a proportion of text from the transcript to cre-
ate negative samples. The corrupted samples
are expected to be in worse conditions than
the original by a margin. Experimental results
on the benchmark ADReSS Challenge dataset
demonstrate that our model achieves the best
performance among language-based models'.

1 Introduction

Alzheimer’s Disease (AD) is a debilitating neurode-
generative disorder characterized by a progressive
cognitive decline that is currently incurable. It ac-
counts for up to 70% of all cases of dementia (As-
sociation, 2020). With an aging population, the
prevalence of AD is on the rise. As symptoms of
Alzheimer’s disease can be mistaken for a variety
of other cognitive disorders, traditional diagnostic
methods, such as physical screening or neurologi-
cal testing, can be challenging and time-consuming.
Furthermore, they require a certain degree of clini-
cian expertise (Prabhakaran et al., 2018).
Consequently, the development of automatic de-
tection methods for Alzheimer’s disease is essential
to the advancement of current medical treatment.
The use of machine learning methods to detect
*Corresponding author

'Our code is publicly available at https://github.com/
CSU-NLP-Group/CDA-AD.

AD or other diseases automatically has gained in-
creasing attention in recent years (Luz et al., 2018;
Martinc and Pollak, 2020; Liu et al., 2021; Yu et al.,
2023). Nevertheless, these approaches have limita-
tions due to a lack of data and the generalizability
of the models. Some studies have attempted to
address this problem by model ensembling (Syed
etal., 2021; Rohanian et al., 2021), multi-task learn-
ing (Li et al., 2022; Duan et al., 2022) or data aug-
mentation (Woszczyk et al., 2022), but the improve-
ment in performance is not always substantial.

Inspired by previous research that AD patients
often have language disorders, such as difficul-
ties in word finding and comprehension (Rohanian
et al., 2021), we propose a novel Contrastive Data
Augmentation (CDA) approach for automatic AD
detection. In our study, we simulated cognitive
decline associated with Alzheimer’s disease by ran-
domly deleting words from the speech transcript
to create negative samples. It is expected that the
corrupted samples are in worse condition than the
original due to the degradation of coherence and
semantic integrity. Compared to traditional data
augmentation methods, the CDA method expands
the dataset scale and utilizes augmented data more
effectively. We have demonstrated in our experi-
ments on the ADReSS Challenge dataset that our
approach uses linguistic features alone, is more
generalizable to unseen data, and achieves superior
results compared to strong baselines.

2 Data and Preprocessing

We use the data from the ADReSS Challenge
(Alzheimer’s Dementia Recognition through Spon-
taneous Speech) (Luz et al., 2020), a subset of the
DementiaBank’s English Pitt Corpus (Becker et al.,
1994). It consists of recordings and transcripts of
spoken picture descriptions from the Boston Diag-
nostic Aphasia Examination. During the examina-
tion, the subject is shown a picture and is asked to
describe its content in their own language.
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Figure 1: The overview of our proposed method.

A total of 156 speech audio recordings and tran-
scripts were obtained from English-speaking partic-
ipants in the ADReSS dataset, with an equal num-
ber of participants (N=78) diagnosed with and not
suffering from Alzheimer’s disease, as shown in
Table 1. Annotated transcripts in the dataset are in
CHAT format (MacWhinney, 2014). Participants’
ages and genders are also balanced to minimize the
risk of bias in prediction. As some of the tokens in
CHAT format are highly specific and are unlikely
to be included in BERT tokenizers, we converted
them into actual repetitions of words. We remain
with only words, punctuation, and pauses for input
into the BERT model. Our method uses only the
transcripts from the dataset.

AD non-AD

M F M F

Train 24 30 24 30
Test 11 13 11 13
Total 35 43 35 43

Table 1: Statistics of ADReSS Dataset

3 Methods

Figure 1 illustrates the framework of the proposed
model. Firstly, for each transcript, we generate a
number of augmented instances, which are then
input to Text Encoder along with the original tran-
scripts to obtain their corresponding representa-
tions. Then the classifier uses feature vectors ac-
quired in Text Encoder and output a probability of
being AD for each transcript and its corresponding
augmented samples. We will discuss more details
in the following subsections.

3.1 Text Encoder and Classifier

For  fair  comparisons  with  previous
work (Woszczyk et al., 2022), the input text
is encoded using the pre-trained BERT (bert-
base-uncased) and represented by [CLS] after
bert_pooler. Given a text sequence x;, we can
get the encoded representations h; through the
encoder.

h; = BERT(x;) €Y

After obtaining the embedding of the transcript,
we pass it through a simple linear classifier (Eq. 2)
to get final prediction scores, we use the commonly
used binary cross-entropy (BCE) as our classifi-
cation loss function, and the classification loss is
denoted as Lpcr (Eq. 3).

Ui = o(Wh; +b) 2
N

Lpce = — Z yi log(9;) 3)
=1

, where y; is the golden label for x;, W and b are
trainable parameters in classifier.

3.2 Contrastive Data Augmentation

The performance of previous work is limited due to
a lack of data availability. To alleviate this, we pro-
pose the contrastive data augmentation approach
(CDA) to replicate the cognitive decline associated
with AD to expand the data size and improve the
model robustness.

Negative Sample Generation Assuming that the
dataset {mz,yz}fi , contains N training samples.
We randomly delete a proportion of p € [0, 1]
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words from each sample for n,., times to create
Nneg Negative samples. After that we can get an
augmented set {x;, y;, ﬁbeg}iv 1» Where Xfmg =
{:13] "9 are from x;. We can further augment the
tramlng set by repeating the whole process for 74,4
. N Xnaug
times to get {x;, y;, X, eg}

data size by n,ug.

and expand the

Positive Sample Generation Inspired by Gao
et al. (2021), we resort to the randomness of
dropout to construct positive samples. Dropout
is a popular regularization technique due to its sim-
plicity, but the randomness it introduces may hinder
further improvements in the model’s generalization
performance. R-Drop (Wu et al., 2021) is proposed
to fix the aforementioned problem by ensuring con-
sistency between the outputs of two forward-pass
with the same data. We deploy the R-Drop algo-
rithm as a regularization method for generating
positive instances. More specifically, the original
sample x; is fed to the model twice at each step,
and two corresponding predictions, denoted as Qll
and §?, are obtained. Then we try to minimize
the bidirectional Kullback-Leibler (KL) divergence
between them, which is denoted as Lx 1, (Eq. 4):

N
Lier =" 5Pk + Picn (1] @
i=1
Contrastive Loss It is reasonable to assume that
the negative samples are more likely to have AD
than the original ones in view of the degradation in
semantic coherence and integrity. To achieve this,
we regularize their differences to be larger than a
margin m.

Particularly, the encoder receives x; and X;Leg
input and outputs their corresponding embedding
representations h; and Hneg Then, their represen-
tations are fed to the classifier to get a final score
¥; and y] for «; and &, respectively. Their differ-
ences becomes Eq 5:

>
margm Zmaa: 0 m—g; +

nneg ~J

Y;
——) ®)
TNneg
, Where m is the margin between positive and nega-
tive samples. The final loss is a combination of the
above three loss terms LpcE, Lmargin and Lk ..

L = LpcE + Lmargin + LKL (6)

, where o and p are hyperparameters that control
the impact of positive and negative samples, and
we set « = 0.5 and px = 0.5 in our model.

4 Experiments

We employ 10-fold cross-validation to estimate the
generalization error and adjust the model’s param-
eter settings. The best setting is used to retrain
models on the whole train set with five different
random seeds and is then applied to the test set.
The results reported in this paper are the average of
these models. The accuracy is used as the primary
metric of task performance since the dataset is bal-
anced. Recall, precision, and F1 are also reported
for the AD class to provide a more comprehensive
assessment. The hyperparameters in our model
are: learning rate=1e-04, batch size=8, epoch=5,
Naug=3, Mneg=3, p=0.3, margin=0.1.

4.1 Baselines

We compare our method with: 1) LDA, which is
the challenge baseline linear discriminant analysis
(LDA) (Luz et al., 2020); 2) BERT, Balagopalan
et al. (2021) compared BERT models with feature-
based Models and obtained relatively better results
using the former; 3) Fusion, Campbell et al. (2021)
fused the features of language and audio for classifi-
cation; 4) SVM(BT RU)(Woszczyk et al., 2022), is
the SVM model using Back-translation from Rus-
sian that achieves the best results over the BERT
model using Back-translation from German (BT
DE); 5) Ensemble methods, Sarawgi et al. (2020)
take a majority vote between three individual mod-
els. ERNIEOp and ERNIE3p are based on ERNIE-
large (Sun et al., 2020) that use original transcripts
and transcripts with pauses manually inserted for
AD classification, respectively.

4.2 Results

The main experimental results are shown in Table
2. We can observe that the performance signif-
icantly improves when BERT is applied. Back-
translation data augmentation results in consistent
improvements in both BERT (BT DE) and SVM
(BT RU), suggesting that data argumentation is a
promising strategy. Our method achieves accuracy
(87.5%), precision (88.1%), and F1 score (86.9%),
outperforming the baseline method by a substantial
margin, suggesting the effectiveness of cognitive
impairment simulation in our method. By ensem-
bling our models on five models with a majority
vote mechanism, the performance improves signif-
icantly (4.2% absolute improvements in accuracy
and 4% absolute improvements in F1 score, re-
spectively) and achieves the best results among all
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Methods Accuracy% Precision% Recall% F1%
LDA (Luz et al., 2020) 75.0 83.0 62.0 71.0
BERT (Balagopalan et al., 2021) 83.3 83.9 83.3 83.3
Fusion (Campbell et al., 2021) 83.3 80.1 87.5 84.0
BERT(BT DE) (Woszczyk et al., 2022) 84.0 - 75.0 -
SVM(BT RU) (Woszczyk et al., 2022)  85.0 - 79.0 -
CDA (single-model, ours) 87.5 88.1 83.3 86.9
Ensemble Methods

Sarawgi et al. (2020) 83.0 83.0 83.0 83.0
ERNIEOp (Yuan et al., 2020) 85.4 94.7 75.0 83.7
ERNIE3p (Yuan et al., 2020) 89.6 95.2 83.3 88.9
CDA (ensembled, ours) 91.7 100.0 83.3 90.9

Table 2: Results of our method and the baselines on the test set.

methods, outperforming even ERINE, a larger and
knowledge-richer pre-trained model.

4.3 Ablation Study

To determine the effectiveness of the main mod-
ules, namely random deletion (RD) and regular-
ized dropout (R-Drop), we removed them from
the model one by one and tested their impact on
performance in 10-fold cross-validation.

Methods Accuracy% Recall%
BERT 72.3 71.9
CDA (ours) 717.5 75.2
-w/o RD 72.3 74.2
-w/o R-Drop 76.7 76.5

Table 3: Result of the AD classification in cross-
validation. The average accuracy(%) and recall(%) is
reported. w/o RD indicates CDA without the random
deletion module and w/o R-Drop indicates CDA without
the R-Drop module.

As shown in Table 3, by combining the con-
trastive data augmentation strategy with the base
BERT, our model outperforms it by a large mar-
gin. However, when either module is removed,
the model experiences a significant loss of perfor-
mance, suggesting their positive contributions to
the performance.

4.4 Parameter Analysis

We also perform parameter analysis under the same
experimental settings. As illustrated in Figure 2,
we can see that a lower deletion rate leads to rela-
tively higher accuracy, as the more words deleted,
the less informative the transcript is. But a large
margin negatively impacts both recall and accuracy.

As for ngyg, the model performs better regarding
recall and accuracy when it is set to 3, and lower
or higher values will affect the performance. The
same conclusion applies to 1,4, Where a break-
down of the model is observed when n,,,=7. The
model performance also improves as the number
of negative samples increases. However, this will
take more computing resources.
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Figure 2: Accuracy and recall scores at different dele-
tion rate, margin, 14,9 and nyeq.

5 Conclusion

Our experiments show the potential of contrastive
data argumentation in improving the accuracy of
models for Alzheimer’s disease diagnosis. As a
comparison to large, complex multimodal mod-
els, and other techniques of data augmentation, we
obtain the best results by simulating cognitive im-
pairment caused by AD. Despite the small size of
the dataset, the results of this study provide a basis
for further research into more complex issues.
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Limitations

The limitation of our study is that we only evaluated
our model on a limited set of spoken language
transcripts. We believe that additional attention
should be given to features specific to AD patients,
such as pauses and filler words in speech.

Furthermore, the lack of diversity in the data
may also adversely affect the model’s performance
on unseen samples. Our model would benefit from
further testing on a wider range of data, including
different languages and different modalities, to see
if it is capable of generalizing to other domains in
the future.

Ethics Statement

The dataset we use in this paper is from the public
ADReSS challenge, which contains the minimum
amount of personal information and restricts unau-
thorized access. Data usage and data sharing for
ADReSS data has been conducted in accordance
with the Ground Rules and Code of Ethics. Further-
more, it is important to note that the study does not
include all possible diagnoses of Alzheimer’s dis-
ease since it is based on transcript text data from an
English-speaking cultural context. As this model
was designed primarily for academic research, it
is unlikely to provide a valid diagnosis in every
situation and will be risky if applied to real-world
clinical diagnosis situations.
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