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Abstract

Natural language contains rich logical struc-
tures and logical information, and correctly
detecting and accurately understanding these
logical structures and information underlying
natural language texts is very crucial for NLP
models’ performance on many important NLU
and NLG tasks. Existing pre-trained language
models based on the transformer architecture
mostly adopt a classical design for constructing
their input embeddings that ignores the logical
structures underlying natural language texts,
thus limiting their ability to better capture and
encode key logical information in the input se-
quences. To overcome such limitations, in this
paper we first propose a novel approach to con-
struct logic-aware input embeddings for trans-
former language models through a combination
of logic detection, logic mapping and hierar-
chical logical projections, and then develop a
corresponding new modeling paradigm that can
upgrade existing transformer language models
into logical transformers to boost their perfor-
mance on different NLU and NLG tasks. Our
empirical experiments on four important and
challenging NLU and NLG tasks demonstrate
that our proposed logical transformer language
models can achieve superior performance over
their baseline transformer models through a
deeper understanding of the logical structures
of texts.

1 Introduction

Natural language contains rich logical structures
and logical information (Lakoff, 1970; Van Ben-
them, 1986) that are crucial to a deep and accurate
understanding of its meaning. Therefore, the abil-
ity to correctly detect and accurately understand
the logical structures and information within natu-
ral language texts is very crucial for NLP models’

* This work was done when Borui Wang was a research
intern at Microsoft Research.

t This work was done when Daniel McDuff was at Mi-
crosoft Research.

performance on many important Natural Language
Understanding (NLU) and Natural Language Gen-
eration (NLG) tasks.

The types of logics contained in natural language
are very diverse, including not only mathemat-
ically well-defined propositional logic and first-
order logic (Lu et al., 2022; Han et al., 2022), but
also more general types of natural and structural
logical relationships that people frequently use in
natural language texts to convey and communi-
cate their ideas and meanings more effectively and
clearly.

In recent years we have witnessed huge progress
and success in many fields of natural language pro-
cessing brought about by the introduction of all dif-
ferent kinds of pre-trained language models (Devlin
etal., 2019; Liu et al., 2019; Lan et al., 2020; Yang
et al., 2019; Clark et al., 2020; Lewis et al., 2020;
Raffel et al., 2020; Zhang et al., 2020) based on
the transformer architecture (Vaswani et al., 2017).
Most existing pre-trained language models adopt
the classical approach for constructing the input
embeddings that are fed into the encoder parts of
the language models, which can be summarized as
the summation of the following three key compo-
nents (Devlin et al., 2019):

(1) Token Embeddings - that are used to encode
and represent the semantics and meaning of
each token in the vocabulary;

(2) Position Embeddings - that are used to encode
the positional information of each token in the
input sequence;

(3) Segment Embeddings - that are used to indi-
cate which segment of the input sequence each
token belongs to.

This classical design of the input embeddings
has been proven to be very effective at capturing
important semantic and positional features from
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natural language texts and helping pre-trained lan-
guage models to learn good contextualized repre-
sentations of the input textual sequences (Devlin
et al., 2019). However, it also has a very important
limitation - it doesn’t consider or try to explicitly
encode the logical structures underlying the text
inputs, which are also very crucial for the deep and
accurate understanding of the meaning of the text
inputs.

Therefore, in order to overcome this limitation
and to enable pre-trained language models to better
capture and understand the important logical struc-
tures underlying natural language texts, in this pa-
per we propose a novel approach to construct logic-
aware input embeddings for transformer-based
pre-trained language models and a corresponding
new modeling framework that can upgrade existing
transformer language models into logical trans-
formers to boost their performance on different
NLU and NLG tasks.

Our new approach consists of two major mod-
ules: (1) logic detection and mapping, and (2)
multi-layer hierarchical logical projections. It has
the following key advantages:

» Strong Generalizability: Our proposed new
approach for constructing logic-aware input
embeddings doesn’t alter the main architec-
ture of transformer language models and only
modifies the input embeddings at the front
end before they are fed into the encoder part
of the language models. Therefore, our new
approach enjoys strong generalizability and
can be smoothly added to many different pre-
trained language models based on the trans-
former architecture.

* Consistent Boost in Model Performance: Our
proposed new approach is empirically shown
to consistently boost the performance of differ-
ent transformer language models on different
NLU and NLG tasks.

* Negligible Increase in Model Size: Our pro-
posed new approach will only increase the
number of parameters of transformer language
models by a negligible amount.

* Low Overhead on Training Time: Our pro-
posed new approach will not significantly in-
crease the training time of transformer lan-
guage models by a large amount. The major-
ity of the overhead in training time will come

from the initial text processing steps of logic
detection and logic mapping, which only need
to be executed once before the actual training
epochs start.

2 Logical Relationships and Keywords

In this work, we consider logical relationships in
natural language texts as the underlying relation-
ships among different language constituents that
carry meaningful information regarding logical un-
derstanding and reasoning of the texts. In natu-
ral language, such logical relationships are usually
indicated by logically-connective keywords and
phrases. In this paper, we define a taxonomy of 12
most commonly seen types of logical relationships
and their corresponding sets! of logical keywords
(including phrases?) for natural language?:

1. Conjunction: a conjunction logical relation-
ship indicates that the two language con-
stituents involved are presented jointly in ad-
dition to each other. Its logical keywords are:

and, as well, as well as, also, at
the same time.

2. Disjunction: a disjunction logical relation-
ship indicates that the two language con-
stituents involved are presented alternatively
next to each other. Its logical keyword is:

or.

3. Negation: a negation logical relationship in-
dicates that the meaning of the language con-
stituent mapped by it is negated. Its logical
keywords are:

not, no, none, n’t, nothing.

4. Conditional: a conditional logical relation-
ship indicates that the content of one language
constituent is the premise of the content of
another language constituent. Its logical key-
words are:

IThe sets of logical keywords listed here are not necessarily
the most exhaustive sets that contain all possible keywords in
each category, but rather serve as the preliminary and exemplar
sets that can already cover the majority of the most frequently
appearing logical keywords in real-world texts. These sets are
open to extension.

ZFor conciseness, in this paper we will use the term ‘logical
keywords’ to refer to both logical keywords and logical key
phrases.

3Here the logical keywords are all defined in English, but
similar categorization of logical relationships and sets of logi-
cal keywords can also be defined in other languages as well.
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5. Negative Conditional: a negative conditional
logical relationship indicates that the negation
of the content of one language constituent is
the premise of the content of another language
constituent. Its logical keywords are:

unless, otherwise.

. Analogy: an analogy logical relationship in-
dicates that the content of one language con-
stituent is analogous to the content of another
language constituent. Its logical keywords
are:

as if, as though, just as,
like, likewise, similarly.

just

. Comparative: a comparative logical relation-
ship indicates that the two language compo-
nents involved are presented in comparison to
each other. Its logical keywords are:

but, however, in comparison, while,
yet, rather than, unlike, on the
other hand, in contrast, contrary to,
on the contrary.

. Adversative: an adversative logical relation-
ship indicates that the content of one language
constituent is adversative to the content of
another language constituent. Its logical key-
words are:

nevertheless, nonetheless,
notwithstanding, although, though,
despite, despite of, in spite of,

regardless of, albeit.

9.

10.

11.

12.
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Figure 1: The constituency parse tree for the example sentence ‘But I try very hard not to go that way because it
would be too easy for them.” generated by the Berkeley Neural Parser (Kitaev and Klein, 2018).

Temporal: a temporal logical relationship in-
dicates that the content of one language con-
stituent signifies the time when the content of
another language constituent takes place. Its
logical keywords are:

during, after, in, when, since,
before, as, as soon as, while, then,
until, meanwhile.

Causal: a causal logical relationship indicates
that the content of one language constituent is
the cause or reason for the content of another
language constituent. Its logical keywords
are:

because, thanks to, since, as a
result, in order to, as, therefore,
hence, so that, due to, thus,

consequently, thereby, now that.

Progression: a progression logical relation-
ship indicates that the content of one language
constituent goes one step further on top of the
content of another language constituent. Its
logical keywords are:

moreover, furthermore, in addition,
besides.

Example: an example logical relationship in-
dicates that the content of one language con-
stituent exemplifies the content of another lan-
guage constituent. Its logical keywords are:

for example, as an example, like,
such as, for instance, including.
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Figure 2: 2-dimensional PCA (Hotelling, 1933) projec-
tion of the contextualized last-layer hidden state vectors
for 20 randomly sampled different occurrences of the
logical keyword ‘since’ encoded by the ALBERT model
(Lan et al., 2020). Occurrences with the causal logical
meaning ‘because’ is colored in pink, and occurrences
with the temporal logical meaning ‘from a time in the
past’ is colored in yellow.

As an example, we sample a news article from
the training set of the CNN/Dailymail dataset (Nal-
lapati et al., 2016) and manually annotate the ap-
pearances of the above defined types of logical
relationship in the article. See Figure 6 for the an-
notation of the logical relationships in this example
article, where the logical keywords associated with
different logical relationships are highlighted with
different colors.

2.1 Categorization of Logical Relationships

According to how many logical components (in the
form of text spans) are associated with each logical
keywords and how different logical components
are mapped by the logical keywords, we categorize
the set of all logical keywords into three different
categories:

2.1.1 Unary Logical Relationships

The logical keywords indicating unary logical re-
lationships are those that each only maps to one
single logical component (text span). For exam-
ple, most keywords of negation relationship and
example relationship are indicating unary logical
relationships, such as not, for example, such as, etc.

2.1.2 Intrinsically-Mapped Binary Logical
Relationships

The logical keywords indicating intrinsically-
mapped binary logical relationships are those that
each maps to two separate logical components (text
spans) that are both contained within the parent
sentence constituent of the logical keyword itself.
For example, most keywords of conjunction rela-

Algorithm 1

Input: Sentence s
Constituency parserC : S — T
Set of logical keywords K
Output: List of logic mapping dictionaries M
1: Run C over s to obtain its constituency parse tree T°(s)
2: Nkey(s) — 1
3 M+ []
4: for each constituent node n in 7'(.S) do
5 if str(n) € K then
6: Niey(8) = Niey(s) +n
7: for n* in Nyey(s) do
8
9

Logic Detection and Mapping

DR ()
: Dk ‘keyword’] = str(n®)
10: if str(n®) € KY then

11: DF[‘a’] = str(pa(n®) \ n*)

12: else if str(n*) € B then

13: Use str(n®) to segment st7( pa(nk)) into 3 seg-
ments: str( pa(n®)) = A+ str(n®) + B

14: D‘a’1= A, D*[‘81=B

15:  elseif str(n®) € K> then

16: if 3 pa(pa(n®)) then

17: DF[‘a’] = str(pa(pa(n®)) \ pa(n®))

18: D*[8°] = str(pa(n®) \ n*)

19: else if 3 another sentence s’ right before s then

20: D*[‘a’l=s', DF[‘B’]=str(pa(n®)\ n*)

21: else

22: D*[‘a’l1=0, D*[‘B’] = str(pa(n®) \ n*)

23 M+ M+DF

24: return M

tionship and disjunction relationship are indicating
intrinsically-mapped binary logical relationships,
such as and, as well as, or, etc.

2.1.3 Extrinsically-Mapped Binary Logical
Relationships

The logical keywords indicating extrinsically-
mapped binary logical relationships are those that
each maps to two separate logical components (text
spans) where one is contained within the parent
sentence constituent of the logical keyword itself
while the other is outside (usually appears before)
the span of this parent sentence constituent. For ex-
ample, most keywords of conditional, comparative,
temporal and causal relationships are indicating
extrinsically-mapped binary logical relationships,
such as if, but, during, because, etc.

3 Logic Detection and Mapping

In this section, we describe our logic detection
and mapping module based on keyword detection
and constituency parsing. For each sentence s in
the source text, we first perform constituency pars-
ing (Kitaev and Klein, 2018) over s to obtain its
constituency parsing tree 7'(s). In this paper, we
use the Berkeley Neural Parser (Kitaev and Klein,
2018) to perform constituency parsing.
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(c) Execution of Algorithm 1 over the logical keyword ‘not’.

Figure 3: An example execution of Algorithm 1 on the
example sentence ‘But I try very hard not to go that way
because it would be too easy for them.” over the three
detected logical keywords ‘But’, ‘because’, ‘not’.

Then we search through all the constituent nodes
in T'(s) to detect the ones that exactly matches
the keyword strings of the logical keywords as de-
fined in Section 2. Let AN, (s) denote the set
of constituent node in 7'(s) that matches logical
keywords. Then for each logical keyword node
n* e N key($), we fetch its parent constituent node
pa(n*). Now we have three different cases:

1. If n* corresponds to a unary logical relation-
ship (i.e. negation and example), then the «
component of n* is detected as: pa(n¥) \ n*.

causal 3

causal (v

negation

comparative 3

Figure 4: Detected logical structure for an example
sentence ‘But I try very hard not to go that way because
it would be too easy for them.” taken from the example
article in Figure 6.

2. If n* corresponds to a binary logical re-
lationship and the relationship is intrinsi-
cally mapped, then str(pa(n¥)) will be di-
vided by str(n*) into three different segments:
str(pa(n®)) = A + str(n¥) + B. Now the o
component of n* is detected as A and the 3
component of n¥ is detected as B.

3. If n¥ corresponds to a binary logical rela-
tionship and the relationship is extrinsically
mapped, then the o component of n* is de-
tected as: pa(pa(n*))\pa(n*), and the 3 com-
ponent of 1 is detected as: pa(n¥) \ n*.

Our proposed methods for logic detection and
mapping described above are summarized in Algo-
rithm 1. See Figure 3 for an example of executing
Algorithm 1 on an example sentence taken from
the example article in Figure 6, based on the con-
stituency parsing tree depicted in Figure 1.

3.1 Sense Disambiguation of Logical
Keywords

In English, certain logical keywords have multiple
meanings and can indicate different logical rela-
tionships under different contexts. For example,
the logical keyword ‘since’ has two different mean-
ings: (1) ‘from a time in the past’, which indi-
cates a temporal logical relationship; (2) ‘because’,
which indicates a causal logical relationship. In
our categorization of logical relationships and key-
words (described in Section 2), there are a total of
3 keywords that can have multiple logical mean-
ings: since, as, and while. Therefore, in order to
increase accuracy of our proposed logic detection
module, we need to first perform accurate logical
sense disambiguation when we detect these logi-
cally ambiguous keywords.

In our empirical experiments over a set of ran-
domly sampled sentences that contain ambiguous
logical keywords, each manually-labelled with its
ground-truth logical relationship under the context,
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we found that different uses of ambiguous logical
keywords have very strong clustering tendency and
are largely linearly-separable under the contextu-
alized encoding of transformer language models.
For example, we use the ALBERT model (Lan
et al., 2020) to encode 20 different occurrences
of the logical keyword ‘since’ randomly sampled
from the CNN/Dailymail dataset (Nallapati et al.,
2016), and project the last-layer hidden state vec-
tors for these 20 ‘since’ onto their first two principal
components using Principal Component Analysis
(PCA) (Hotelling, 1933), which is depicted in Fig-
ure 2. As we can see from Figure 2 the contextual-
ized embeddings of the logical keyword ‘since’ are
largely linearly separable between the two different
logical meanings.

Therefore, in order to improve the accuracy of
our logic detection module, we first manually col-
lected logical relationship annotations for the set
of ambiguous logical keywords in English. Then
we encode them using the ALBERT model (Lan
et al., 2020) and train individual support vector
machine (SVM) (Cortes and Vapnik, 1995) classi-
fiers for each of the ambiguous logical keywords
to accurately disambiguate their different logical
meanings.

4 Logical Transformers

4.1 Logical Embedding Vectors

The major new parameters that we introduce in
our proposed modeling framework of logical trans-
formers are a set of parametrized and trainable log-
ical embedding vectors. These logical embedding
vectors share the same dimensionality, but their
dimensionality doesn’t necessarily equal to the di-
mensionality of the transformer language model’s
token embedding vectors. Below we describe how
to construct these logical embedding vectors in de-
tail.

First of all, the 12 types of logical relationships
we defined in Section 6 can be classified into two
different categories: (1) ‘unary logical relationship’
that maps to only one logical component; (2) ‘bi-
nary logical relationship’ that maps to two logical
components. More specifically, negation and ex-
ample are unary logical relationships and all the
other 10 types are binary logical relationships.

For each unary logical relationship U, we con-
struct two parametrized logical embedding vectors:
v%ey and v¥. In the logical embedding layer of I,
we assign v,ﬁ’ey to each token detected to be part of

Pre-Trained Language Model

Token’s Position Embedding

+

Tokenj’s Segment Embedding
+

00000000
+

activation

Tokenj’s Token Embedding

linear projection

(00000000)00000000)

(00000000)>P«{00000000)

activation

Tokeny’s Logical
Embedding @ Level 3

linear projection

(0©000000)00000000)

(e@000000)>PH«{00000000)

Token;’s Logical
Embedding @ Level 2

activation

linear projection

(00000000)(00000000)

(00000000 >P«{(00000000)

concatenate Token's Logical

Embedding @ Level 1

Token;'s
Token Embedding

Figure 5: Illustration of our proposed multi-layer hier-
archical logical projections for an example token with
logic depth K = 3.

an appearance of some logical keyword in I/, and
assign v to all the tokens that are within some text
span mapped by some logical keyword in /.

For each binary logical relationship B, we con-
struct three parametrized logical embedding vec-
Eey, vB and vg . In the logical embedding
layer of BB, we assign vfey to each token detected to
be part of an appearance of some logical keyword
in B, assign % to all the tokens that are within
some left text span mapped by some logical key-
word in B, and assign vg to all the tokens that
are within some right text span mapped by some
logical keyword in B.

tors: v

And finally we construct another special
parametrized logical embedding vector v that cor-
responds to empty logical association. For each to-
ken that doesn’t belong to any logical relationships
in a logical embedding layer, it will be assigned v*
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Logical

Sentence Tokens

Embeddings But 1 try very hard not to go that way  bec. it wld be too easy  for them
Comparative key B B8 B B B B B B B B B B B B B B B B
Causal a a a a a a a a [kgm B B B B B B B
key «a - -

Table 1: Illustration of our proposed multi-layer logical embeddings for an example sentence ‘But I try very hard not
to go that way because it would be too easy for them.” taken from the example article in Figure 6. The assignment
of logical embedding vectors are based on the parsed logical structure depicted in Figure 4. In the second row the
token ‘because’ is abbreviated into ‘bec.” and the token ‘would’ is abbreviated into ‘wld’ due to space limit.

for this layer. See Table 1 for a concrete example
of assigning multiple layers of logical embedding
vectors to tokens in an input sequence based on the
results of logic detection and mapping.

Therefore, based on the 12 different types of
logical relationships that we defined in Section 6,
we will construct atotal of 2x 2+ 10x 341 =35
different logical embedding vectors for our logical
transformers.

4.2 Multi-Layer Hierarchical Logical
Projections

Now we describe how to compute the logic-aware
input embeddings through multi-layer hierarchi-
cal logical projections using the set of logical em-
bedding vectors that we defined in Section 4.1.
Let Nj4;c denote the dimensionality of the logi-
cal embedding vectors, and let N denote the di-
mensionality of the token embedding vectors of
the transformer language model. We first define
a parametrized and trainable linear transformation
layer £ that projects a (N + Nj,4ic)-dimensional
vector into an /NV-dimensional vector.

Then for each token ¢ in the input token se-
quence, we collect all the logical embedding vec-
tors assigned to it during the logic detection and
mapping process and sort them in order according
to their associated logical keywords’ depth in the
constituency parse tree of the input sentence. Let’s
denote this sorted set of all the logical embedding
vectors assigned to token ¢ as: {v}, ..., v/}, where
K is the maximum number of logical layers to be
considered and should be treated as a hyperparam-
eter.

Now let’s denote the original token embedding
vector for token ¢ as wy, then to compute a logic-
aware token embedding vector w!°9" for ¢, we first
initialize u = wy, and then recursively apply the
following computation®:

*This series of (linear projection + nonlinear activation)
can also be replaced by a series of multilayer perceptrons.

up = f(L(u;" @ vp)),
for: = 1,..., K, where & denotes vector con-
catenation and f is some non-linear activation func-
tion, such as GELU (Hendrycks and Gimpel, 2016).
Then we have:

logic

K
W =w + Uy .

Now let p; denote the position embedding vector
of token ¢ and s; denote the segment embedding
vector of token ¢, then the final logic-aware input
embedding vector for each token ¢ in the input se-
quence would be computed as: wiogw + py + st
Then at the front end of our proposed logical trans-
formers, we use these logic-aware input embed-
dings to replace the traditional input embeddings
and feed them into transformer encoders to help
language models better encode and learn logical
information from the textual inputs. See Figure 5
for an illustration of multi-layer hierarchical logical
projections for an example token with logic depth
K=3.

4.3 Model Training

During the training of our proposed logical trans-
formers, we set both the set of 35 logical embed-
ding vectors and the linear transformation layer £
to be fully parametrized and trainable, and then ini-
tialize them with random values. All these added
new parameters will be updated together with the
original trainable parameters in the transformer lan-
guage models during the model training process.

4.4 Negligible Increase in Model Size

The only new parameters introduced in our pro-
posed logical transformers, compared with their
corresponding baseline transformer language mod-
els, are the set of 35 logical embedding vectors and
the linear transformation linear £ used in hierar-
chical logical projections. Let Ny, denote the di-
mensionality of the logical embedding vectors, then
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ReClor LogiQA DREAM
Model Acc Acc Acc

RoBERTa-large 62.6 353 82.1
Logical-RoBERTa-large  67.4 37.8 84.9

Table 2: Our NLU experiment results on the ReClor
dataset (Yu et al., 2020), the LogiQA dataset (Liu et al.,
2020) and the DREAM dataset (Sun et al., 2019). Acc
denotes accuracy percentage. The higher value in each
pair of comparison is highlighted in bold.

DialogSum
Model R-1 R-2 R-L R-LSum
BART-large 46.10 20.32 38.04  40.98
Logical-BART-large 46.97 20.69 38.33  41.30

Table 3: Our NLG experiment results on the DialogSum
dataset (Chen et al., 2021). The higher value in each
pair of comparison is highlighted in bold.

the total increase in model size can be calculated
as: Nlogic X 35+ (N+ Nlogic) X Nlogic + Nlogic =
NIQOgZ'C + N - Nlogic + 36Nlogic-

For all the recently proposed transformer lan-
guage models, this increase in model size is rather
small and negligible compared with their very
large number of parameters. For example, for
the RoBERTa-large model (Liu et al., 2019), its
total number of parameters is 355M and the di-
mensionality of its embedding vectors is 1024. If
we set Njggic = 1024 as well, then after we use
our proposed new modeling paradigm to upgrade
RoBERTa-large into Logical-RoBERTa-large, the
percentage of increase in model size is only:
(1024 + 1024 x 1024 + 36 x 1024) =+ 355M =~
0.601%, which is almost negligible. This efficiency
in model size guarantees that the logical transform-
ers take roughly the same amount of computation
time during both training and inference as their
baseline transformer language models.

5 Experiments

In order to evaluate our proposed logical trans-
former architecture’s performance boost on differ-
ent NLU and NLG tasks with different transformer
language models, in our experiments, we test it on
three NLU datasets and one NLG dataset.

5.1 Natural Language Understanding Tasks

In the NLU part of our experiments, we test the
RoBERTa model (Liu et al., 2019) and our Logical-

RoBERTa model on three logically-challenging nat-
ural language understanding tasks over three corre-
sponding datasets: (1) reading comprehension on
the ReClor dataset (Yu et al., 2020); (2) question
answering on the LogiQA dataset (Liu et al., 2020);
and (3) dialogue-based reading comprehension on
the DREAM dataset (Sun et al., 2019). All of these
three datasets require logical reasoning.

5.2 Natural Language Generation Task

In the NLG part of our experiments, we test the
BART model (Lewis et al., 2020) and our Logical-
BART model on the task of dialogue summariza-
tion over the DialogSum (Chen et al., 2021) dataset.

5.3 Results

The results of our three NLU experiments are
shown in Table 2, and the results of NLG experi-
ment are shown in Table 3. As we can see from
Table 2 and Table 3, the accuracy scores and the
ROUGE scores of our logical transformer language
models are consistently higher than their corre-
sponding baseline transformer language models
across all the different NLU and NLG tasks. This
consistent boost demonstrates that the important
logical structures and information extracted and
captured by our proposed logical transformers are
indeed very effective and useful in further improv-
ing transformer language models’ performance on
logically-challenging NLU and NLG tasks.

6 Related Work

Recently there has been increasing interest in im-
proving pre-trained language models’ logical rea-
soning ability (Xu et al., 2022; Pi et al., 2022).
For example, Lu et al. (2022) proposed a new
method for parsing natural language into the forms
of propositional logic and first-order logic using
dual reinforcement learning. Pi et al. (2022) pro-
posed a new unsupervised adversarial pre-training
method, called LogiGAN, in order to enhance lan-
guage models’ abilities of logical reasoning. Xu
et al. (2022) proposed a new Logiformer archi-
tecture based on a two-branch graph transformer
network to improve language models’ performance
on interpretable logical reasoning.

In contrast to these previous work that mostly
focus on introducing new training methods or con-
structing complex model architectures, our pro-
posed method in this paper only modifies the in-
put embeddings and is thus more straightforward
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LONDON, England (Reuters) -- Harry Potter star Daniel Radcliffe gains access to a reported £20 million ($41.1 million)
fortune as he turns 18 on Monday, . he insists the money won't cast a spell on him. Daniel Radcliffe as Harry Potter in
"Harry Potter and the Order of the Phoenix" To the disappointment of gossip columnists around the world, the young
actor says he has no plans to fritter his cash away on fast cars, drink and celebrity parties. "I don't plan to be one of those
people who, as soon as they turn 18, suddenly buy themselves a massive sports car collection or something similar," he
told an Australian interviewer earlier this month. "I don't think I'll be particularly extravagant. "The things | like buying are
things that cost about 10 pounds -- books and CDs and DVDs." At 18, Radcliffe will be able to gamble in a casino, buy a
drink in a pub or see the horror film "Hostel: Part II," currently six places below his number one movie on the UK box
office chart. Details of how he'll mark his landmark birthday are under wraps. His agent and publicist had hg comment on
his plans. "I'll definitely have some sort of party," he said in an interview. "Hopefully none of you will be reading about it."
Radcliffe's earnings from the first five Potter films have been held in a trust fund which he has not been able to touch.
- his growing fame and riches, the actor says he is keeping his feet firmly on the ground. "People are always
looking to say 'kid star goes off the rails,'" he told reporters last month. . | try very hard not to go that way because it
would be too easy for them." His latest outing as the boy wizard in "Harry Potter and the Order of the Phoenix" is
breaking records on both sides of the Atlantic and he will reprise the role in the last two films. Watch |-Reporter give her
review of Potter's latest » . There is life beyond Potter, - The Londoner has filmed a TV movie called "My Boy
Jack," about author Rudyard Kipling and his son, due for release later this year. He will also appear in "December Boys,"
an Australian film about four boys who escape an orphanage. Earlier this year, he made his stage debut playing a tortured
teenager in Peter Shaffer's "Equus." Meanwhile, he is braced for even closer media scrutiny now that he's legally an adult:

"| just think I'm going to be more sort of fair game," he told Reuters. E-mail to a friend . Copyright 2007 Reuters. All
rights reserved.This material may not be published, broadcast, rewritten, or redistributed.

Figure 6: Detected logical keywords in an example article from the CNN/Dailymail dataset (Nallapati et al., 2016).
It contains 7 different types of logical relationships: conjunction, disjunction, negation, comparative, adversative,

temporal, and causal.

and easily generalizable to different types of trans-
former language models.

7 Conclusion

In this paper we introduced a new modeling
paradigm for transformer language models that
detects and extracts important logical structures
and information from input texts and then inte-
grates them into the input embeddings through
carefully designed multi-layer hierarchical logical
projections to infuse logical structures into pre-
trained language models. Our empirical experi-
ments on four important and challenging NLU and
NLG tasks showed that our proposed logical trans-
former language models consistently perform bet-
ter than their corresponding baseline transformer
language models through a deeper understanding
of the key logical structures underlying natural lan-
guage texts.

8 Limitations

In theory, the method proposed in this paper can
be applied to different types of transformer lan-
guage models for both pre-training and fine-tuning.
Due to limit of computational resource, we cur-
rently haven’t had the chance to test our proposed
method in the very promising setting of large-scale
language model pre-training yet. In future work,

we plan to further test our proposed logical trans-
former architecture on large-scale language model
pre-training to see how much performance boost it
can achieve.
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