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Abstract

Text augmentation is an effective technique
for addressing the problem of insufficient data
in natural language processing. However, ex-
isting text augmentation methods tend to fo-
cus on few-shot scenarios and usually perform
poorly on large public datasets. Our research
indicates that existing augmentation methods
often generate instances with shifted feature
spaces, which leads to a drop in performance
on the augmented data (for example, EDA gen-
erally loses ≈ 2% in aspect-based sentiment
classification). To address this problem, we
propose a hybrid instance-filtering framework
(BOOSTAUG) based on pre-trained language
models that can maintain a similar feature space
with natural datasets. BOOSTAUG is transfer-
able to existing text augmentation methods
(such as synonym substitution and back transla-
tion) and significantly improves the augmenta-
tion performance by ≈ 2− 3% in classification
accuracy. Our experimental results on three
classification tasks and nine public datasets
show that BOOSTAUG addresses the perfor-
mance drop problem and outperforms state-of-
the-art text augmentation methods. Addition-
ally, we release the code to help improve exist-
ing augmentation methods on large datasets.

1 Introduction

Recent pre-trained language models (PLMs) (De-
vlin et al., 2019; Brown et al., 2020; He et al., 2021;
Yoo et al., 2021) have been able to learn from large
amounts of text data. However, this also leads to a
critical problem of data insufficiency in many low-
resource fine-tuning scenarios (Chen et al., 2020;
Zhou et al., 2022a; Miao et al., 2021; Kim et al.,
2022; Wang et al., 2022b; Yang et al., 2022). De-
spite this, existing augmentation studies still en-
counter failures on large public datasets. While
some studies(Ng et al., 2020; Body et al., 2021;
Chang et al., 2021; Luo et al., 2021) have attempted
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Figure 1: The visualization of feature space shift of
the Laptop14 dataset based on t-SNE. We calculate
the shift metric S of feature space between augmented
and natural instances. The augmentation methods are
BoostAug, MonoAug, and EDA augmentation, re-
spectively. Our BoostAug has the least feature space
shift.

to leverage the language modeling capabilities of
PLMs in text augmentation, these methods still
suffer from performance drops on large datasets.

To explore the root cause of this failure mode,
we conducted experiments to explain the differ-
ence between “good” and “bad” augmentation in-
stances. Our study found that existing augmen-
tation methods (Wei and Zou, 2019; Coulombe,
2018; Li et al., 2019; Kumar et al., 2019; Ng et al.,
2020) usually fail to maintain the feature space
in augmentation instances, which leads to bad in-
stances. This shift in feature space occurs in both
edit-based and PLM-based augmentation methods.
For example, edit-based methods can introduce
breaking changes that corrupt the meaning of the
text, while PLM-based methods can introduce out-
of-vocabulary words. In particular, for the edit-
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based methods, the shifted feature space mainly
comes from breaking text transformations, such as
changing important words (e.g., ‘but ’ ) in senti-
ment analysis. As for PLM-based methods, they
usually introduce out-of-vocabulary words due to
word substitution and insertion, which leads to an
adverse meaning in sentiment analysis tasks.

To address the performance drop in existing aug-
mentation methods caused by shifted feature space,
we propose a hybrid instance-filtering framework
(BOOSTAUG) based on PLMs to guide augmen-
tation instance generation. Unlike other existing
methods (Kumar et al., 2020), we use PLMs as
a powerful instance filter to maintain the feature
space, rather than as an augmentor. This is based
on our finding that PLMs fine-tuned on natural
datasets are familiar with the identical feature space
distribution. The proposed framework consists of
four instance filtering strategies: perplexity filter-
ing, confidence ranking, predicted label constraint,
and a cross-boosting strategy. These strategies are
discussed in more detail in section Section 2.3.
Compared to prominent studies, BOOSTAUG is
a pure instance-filtering framework that can im-
prove the performance of existing text augmenta-
tion methods by maintaining the feature space.

With the mitigation of feature space shift,
BOOSTAUG can generate more valid augmenta-
tion instances and improve existing augmentation
methods’ performance, which more augmentation
instances generally trigger performance sacrifice
in other studies (Coulombe, 2018; Wei and Zou,
2019; Li et al., 2019; Kumar et al., 2020)). Ac-
cording to our experimental results on three fine-
grained and coarse-grained text classification tasks,
BOOSTAUG1 significantly alleviates feature space
shifts for existing augmentation methods.

Our main contributions are:
• We propose the feature space shift to explain the

performance drop in existing text augmentation
methods, which is ubiquitous in full dataset aug-
mentation scenarios.

• We propose a universal augmentation instance
filter framework to mitigate feature space shift
and significantly improve the performance on the
ABSC and TC tasks.

• Our experiments show that the existing text aug-
mentation methods can be easily improved by
employing BOOSTAUG.

1We release the source code and experiment scripts of
BOOSTAUG at: https://github.com/yangheng95/
BoostTextAugmentation.

Algorithm 1: The pseudo code of
BOOSTAUG

1 Split D into k folds, D := {F i}ki=1;
2 Daug := ∅;
3 for i← 1 to k do
4 Di

aug := ∅, Di
boost := F i;

5 Randomly pick up k − 2 folds except F i to
constitute Di

train;
6 Di

valid := F \ (F i ⋃Di
train);

7 Use the DeBERTa on Di
train and Di

valid to build
the surrogate language model;

8 forall dorg ∈ Di
boost do

9 Di
aug := F (diorg, Ñ ,Θ);

10 forall daug ∈ Di
aug do

11 Use the surrogate language model to
predict P(daug), C(daug), and the
ℓ̃aug of daug;

12 if P(daug) ≥ α ∥ C(daug) ≤
β ∥ ℓ̃daug ̸= ℓ̃dorg then

13 Di
aug := Di

aug \ {daug};

14 Daug := Daug

⋃Di
aug;

15 Daug := Daug

⋃Di
boost;

16 return Daug

2 Proposed Method

The workflow of BOOSTAUG is shown in Figure 2
and the pseudo code is given in Algorithm 1. Differ-
ent from most existing studies, which focus on un-
supervised instance generation, BOOSTAUG serves
as an instance filter to improve existing augmen-
tation methods. The framework consists of two
main phases: 1) Phase #1: the training of sur-
rogate language models; 2) Phase #2: surrogate
language models guided augmentation instance fil-
tering. The following paragraphs will provide a
detailed explanation of each step of the implemen-
tation.

2.1 Surrogate Language Model Training

At the beginning of Phase #1, the original train-
ing dataset is divided into k ≥ 3 folds where the
k−2 ones are used for training (denoted as the train-
ing fold) while the other two are used for the vali-
dation and augmentation purposes, denoted as the
validation and boosting fold, respectively2 (lines 4-
6). Note that the generated augmentation instances,
which will be introduced in Section 2.2, can be

2We iteratively select the i-th fold, i ∈ 1, · · · , k, as the
boosting fold (line 3 in Algorithm 1). The validation fold is
used to select the best checkpoint of the surrogate language
model to filter the augmented instances. This process is re-
peated k times to ensure that all the folds have been used
for validation and boosting at least once, thus avoiding data
overlapping between the training and validation folds.
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filtering
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Figure 2: The workflow of BOOSTAUG can be divided into two phases: Phase #1 and Phase #2. In Phase
#1, we fine-tune a DeBERTa-based classification model using re-split training and validation sets and extract the
fine-tuned DeBERTa to build a surrogate language model. In Phase #2, BOOSTAUG employs a text augmentation
backend to generate raw augmentations and filters out low-quality instances identified by the surrogate language
model. To avoid data overlapping between the training folds and validation fold, BOOSTAUG performs k-fold
cross-boosting, meaning that Phase #1 and #2 are repeated k times.

identical to the instances in training folds the surro-
gate language model. This data overlapping prob-
lem will lead to a shifted feature space. We argue
that the proposed k-fold augmentation approach,
a.k.a. “cross-boosting”, can alleviate the feature
space shift of the augmentation instances, which
will be validated and discussed in detail in Sec-
tion 4.3. The main crux of Phase #1 is to build
a surrogate language model as a filter to guide the
elimination of harmful and poor augmentation in-
stances.

We construct a temporary classification model
using the DeBERTa (He et al., 2021) architecture.
This model is then fine-tuned using the data in
the k − 2 training folds and the validation fold to
capture the semantic features present in the data
(line 7). It is important to note that we do not
use the original training dataset for this fine-tuning
process. Once the fine-tuning is complete, the lan-
guage model constructed from the DeBERTa clas-
sification model is then utilized as the surrogate
language model in the instance filtering step in
Phase #2 of BOOSTAUG.

This is different from existing works that use
a pre-trained language model to directly generate
augmentation instances. We clarify our motivation
for this from the following two aspects.
• In addition to modeling the semantic feature, the

surrogate language model can provide more infor-
mation that can be useful for the quality control
of the augmentation instances, such as text per-

plexity, classification confidence, and predicted
label.

• Compared to the instance generation, we argue
that the instance filtering approach can be readily
integrated with any existing text augmentation
approach.

2.2 Augmentation Instance Generation

As a building block of Phase #2, we apply some
prevalent data augmentation approaches as the
back end to generate the augmentation instances
in BOOSTAUG (line 9). More specifically, let
Dorg := {diorg}Ni=1 be the original training dataset.
diorg := ⟨si, ℓi⟩ is a data instance where si indi-
cates a sentence and ℓi is the corresponding label,
i ∈ 1, · · · , N . By applying the transformation
function F (·, ·, ·) upon diorg as follows, we expect
to obtain a set of augmentation instances Di

aug for
diorg:

Di
aug := F (diorg, Ñ ,Θ), (1)

where Ñ ≥ 1 is used to control the maximum num-
ber of generated augmentation instances. In the
end, the final augmentation set is constituted as
Daug :=

⋃N
i=1Di

aug (line 14). Note that depending
on the specific augmentation back end, there can
be more than one strategy to constitute the trans-
formation function. For example, EDA (Wei and
Zou, 2019) has four transformation strategies, in-
cluding synonym replacement, random insertion,
random swap, and random deletion. Θ consists
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of the parameters associated with the transforma-
tion strategies of the augmentation back end, e.g.,
the percentage of words to be modified and the
mutation probability of a word.

2.3 Instance Filtering

Our preliminary experiments have shown that
merely using data augmentation can be detrimental
to the modeling performance, no matter how many
augmentation instances are applied in the train-
ing process. In addition, our experiments in Sec-
tion 4.3 have shown a surprising feature space shift
between the original data and the augmented in-
stances in the feature space. To mitigate this is-
sue, BOOSTAUG proposes an instance filtering ap-
proach to control the quality of the augmentation
instances. It consists of three filtering strategies,
including perplexity filtering, confidence ranking,
and predicted label constraint, which will be de-
lineated in the following paragraphs, respectively.
Note that all these filtering strategies are built on
the surrogate language model developed in Phase
#1 of BOOSTAUG (lines 12 and 13).

2.3.1 Perplexity Filtering
Text perplexity is a widely used metric to evaluate
the modeling capability of a language model (Chen
and Goodman, 1999; Sennrich, 2012). Our pre-
liminary experiments have shown that low-quality
instances have a relatively high perplexity. This
indicates that perplexity information can be used
to evaluate the quality of an augmentation instance.
Since the surrogate language model built in Phase
#1 is bidirectional, the text perplexity of an aug-
mentation instance daug is calculated as:

P(daug) =
s∏

i=1

p (wi | w1, · · · , wi−1, wi+1, · · · , ws) ,

(2)
where wi represents the token in the con-
text. s is the number of tokens in daug and
p (wi | w1, · · · , wi−1, wi+1, · · · , ws) is the prob-
ability of wi conditioned on the preceding to-
kens, according to the surrogate language model,
i ∈ 1, · · · , s. Note that daug is treated as a low-
quality instance and is discarded if P(daug) ≥ α
while α ≥ 0 is a predefined threshold.

2.3.2 Confidence Ranking
We observe a significant feature space shift in the
augmentation instances. These instances will be
allocated with low confidences by the surrogate

language model. In this case, we can leverage the
classification confidence as a driver to control the
quality of the augmentation instances. However, it
is natural that long texts can have way more aug-
mentation instances than short texts, thus leading
to the so-called unbalanced distribution. Besides,
the confidence of most augmentation instances is
≥ 95%, which is not selective as the criterion for
instance filtering. To mitigate the unbalanced dis-
tribution in augmentation instances and make use
of confidence, we develop a confidence ranking
strategy to eliminate the redundant augmentation
instances generated from long texts while retain-
ing the rare instances having a relatively low con-
fidence. More specifically, we apply a softmax
operation on the output hidden state learned by the
surrogate language model, denoted as H(daug), to
evaluate the confidence of daug as:

C(daug) = argmax

(
exp(Hdaug)∑c
1 exp(Hdaug)

)
, (3)

where c is the number of classes in the original
training dataset. To conduct the confidence rank-
ing, 2 × Ñ instances are generated at first, while
only the top Ñ instances are selected to carry out
the confidence ranking. By doing so, we expect to
obtain a balanced augmentation dataset even when
there is a large variance in the confidence predicted
by the surrogate language model. After the con-
fidence ranking, the augmentation instances with
Cdaug ≤ β are discarded while β ≥ 0 is a fixed
threshold.

2.3.3 Predicted Label Constraint
Due to some breaking text transformation, text aug-
mentation can lead to noisy data, e.g., changing
a word "greatest" to "worst" in a sentence leads
to an adverse label in a sentiment analysis task.
Since the surrogate language model can predict the
label of an augmentation instance based on its con-
fidence distribution, we develop another filtering
strategy that eliminates the augmentation instances
whose predicted label ℓ̃daug is different from the
ground truth. By doing so, we expect to mitigate
the feature space bias.

2.4 Feature Space Shift Metric

To quantify the shift of the feature space, we pro-
pose an ensemble metric based on the overlapping
ratio and distribution skewness of the t-SNE-based
augmented instances’ feature space.
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The feature space overlapping ratio measures
the diversity of the augmented instances. A larger
overlapping ratio indicates that more natural in-
stances have corresponding augmented instances.
On the other hand, the distribution skewness mea-
sure describes the uniformity of the distribution
of the augmented instances. A smaller distribu-
tion skewness indicates that the natural instances
have approximately equal numbers of correspond-
ing augmented instances. To calculate the feature
space shift, we first calculate the overlapping ratio
and distribution skewness of the natural instances
and their corresponding augmented instances. The
feature space shift is calculated as follows:

S = 1−O + sk, (4)

where O and sk are the feature space convex hull
overlapping ratio and feature space distribution
skewness, which will be introduced in the follow-
ing subsections.

2.4.1 Convex hull overlapping calculation
To calculate the convex hull overlapping rate, we
use the Graham Scan algorithm3 (Graham, 1972)
to find the convex hulls for the test set and target
dataset in the t-SNE visualization, respectively.

Let P1 and P2 represent the convex hulls of two
datasets in the t-SNE visualization; we calculate
the overlapping rate as follows:

O =
P1 ∩ P2

P1 ∪ P2
, (5)

where ∩ and ∪ denote convex hull intersection and
union operations, respectively. O is the overlap-
ping rate between P1 and P2.

2.4.2 Distribution skewness calculation
The skewness of an example distribution is com-
puted as follows:

sk =
m3

m
3/2
2

, (6)

mi =
1

N

N∑

n=1

(xn − x̄)i, (7)

where N is the number of instances in the distribu-
tion; sk is the skewness of an example distribution.
mi and x̄ are the i-th central moment and mean
of the example distribution, respectively. Because
the t-SNE has two dimensions (namely x and y

3https://github.com/shapely/shapely.

axes), we measure the global skewness of the tar-
get dataset (e.g., training set, augmentation set) by
summarizing the absolute value of skewness on the
x and y axes in t-SNE:

skg = |skx|+ |sky|, (8)

where skg is the global skewness of the target
dataset; skx and sky are the skewness on the x
and y axes, respectively.

By combining the convex hull overlapping ra-
tio and distribution skewness, the proposed feature
space shift metric offers a comprehensive view of
how well the augmented instances align with the
original data distribution. This metric can be used
to evaluate the effectiveness of different data aug-
mentation approaches, as well as to inform the
fine-tuning process for better model performance.

3 Experimental Setup

3.1 Datasets

Our experiments are conducted on three classi-
fication tasks: the sentence-level text classifica-
tion (TC), the aspect-based sentiment classifica-
tion (ABSC), and natural language inference (NLI).
The datasets used for the TC task include SST2,
SST5 (Socher et al., 2013) from the Stanford Sen-
timent Treebank, and AGNews10K4(Zhang et al.,
2015). Meanwhile, the datasets used for the ABSC
task are Laptop14, Restaurant14(Pontiki et al.,
2014), Restaurant15 (Pontiki et al., 2015), Restau-
rant16 (Pontiki et al., 2016), and MAMS (Jiang
et al., 2019). The datasets5 used for the NLI
task are the SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018) datasets, respectively.
The split of these datasets is summarized in Table 1.
The commonly used Accuracy (i.e., Acc) and
macro F1 are used as the metrics for evaluating
the performance of different algorithms following
existing research (Wang et al., 2016; Zhou et al.,
2022a). Additionally, all experiments are repeated
five times with different random seeds. Detailed
information on the hyper-parameter settings and
sensitivity tests of α and β can be found in Ap-
pendix A.

4We use the first 10, 000 examples to build the AG-
News10K dataset (7, 000 for training, 1, 000 for validation,
and 2, 000 for testing), which is large enough compared to
other datasets.

5We select the first 1000 training examples as the training
set and keep the original validation/testing sets for experimen-
tal efficiency.
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Table 1: The summary of experimental datasets for the
text classification, aspect-based sentiment analysis and
natural language inference tasks.

Dataset Training Set Validation Set Testing Set
Laptop14 2328 0 638

Restaurant14 3608 0 1120

Restaurant15 1120 0 540

Restaurant16 1746 0 615

MAMS 11186 1332 1336

SST2 6920 872 1821

SST5 8544 1101 2210

AGNews10K 7000 1000 2000

SNLI 1000 10000 10000

MNLI 1000 20000 0

3.2 Augment Backends

We use BOOSTAUG to improve five state-of-the-
art baseline text augmentation methods, all of
which are used as the text augmentation backend
of BOOSTAUG. Please find the introductions of
these baselines in Appendix B and refer to Table 6
for detailed performance of BOOSTAUG based on
different backends.

We also compare BOOSTAUG enhanced EDA
with the following text augmentation methods:
• EDA (TextAttack6) (Wei and Zou, 2019) per-

forms text augmentation via random word in-
sertions, substitutions, and deletions.

• SynonymAug (NLPAug7) (Niu and Bansal,
2018) replaces words in the original text with
their synonyms. This method has been shown
to be effective in improving the robustness of
models on certain tasks.

• TAA (Ren et al., 2021) is a Bayesian
optimization-based text augmentation method.
It searches augmentation policies and automati-
cally finds the best augmentation instances.

• AEDA (Karimi et al., 2021) is based on the EDA,
which attempts to maintain the order of the words
while changing their positions in the context. Be-
sides, it alleviates breaking changes such as criti-
cal deletions and improves the robustness.

• AMDA (Si et al., 2021) linearly interpolates the
representations of pairs of training instances,
which has a diversified augmentation set com-
pared to discrete text adversarial augmentation.
In our experiments, LSTM, BERT-BASE(Devlin

et al., 2019), and DeBERTa-BASE(He et al., 2021)
are used as the objective models for the TC task.
FastLCF is an objective model available for the

6https://github.com/QData/TextAttack
7https://github.com/makcedward/nlpaug

ABSC task.

4 Experimental Results

4.1 Main Results

From the results shown in Table 2, it is clear
that BOOSTAUG consistently improves the perfor-
mance of the text augmentation method EDA across
all datasets and models. It is also worth noting that
some traditional text augmentation methods can
actually harm the performance of the classifica-
tion models. Additionally, the performance im-
provement is relatively small for larger datasets
like SST-2, SST-5, and MAMS. Furthermore, the
performance of LSTM is more affected by text aug-
mentation, as it lacks the knowledge gained from
the large-scale corpus that is available in PLMs.

When comparing the different text augmenta-
tion methods, it is apparent that EDA performs
the best, despite being the simplest method. On
the other hand, SplitAug performs the worst
for LSTM because its augmentation instances are
heavily biased in the feature space due to the
word splitting transformation. The performance
of SpellingAug is similar to EDA. This can
be attributed to the fact that PLMs have already
captured some common misspellings during pre-
training. Additionally, PLM-based augmentation
methods like WordsEmbsAug tend to generate in-
stances with unknown words, further exacerbating
the feature space shift of the augmented texts.

We also compare the performance of
BOOSTAUG with several state-of-the-art text
augmentation methods. The results of these
comparisons can be found in Table 3. From the
results, it can be seen that even when using EDA
(Wei and Zou, 2019) as the backend, BOOSTAUG
outperforms other state-of-the-art methods such
as AEDA (Karimi et al., 2021), AMDA (Si et al.,
2021), and Bayesian optimization-based TAA
(Ren et al., 2021) on the full SST2 dataset.

4.2 Ablation Study

To gain a deeper understanding of the work-
ing mechanism of BOOSTAUG, we conduct ex-
periments to evaluate the effectiveness of cross-
boosting, predicted label constraint, confidence
ranking, and perplexity filtering. The results, which
can be found in Table 4, show that the performance
of the variant MonoAug is significantly lower than
that of BOOSTAUG. This is because MonoAug
trains the surrogate language model using the entire
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Table 2: The performance comparison between BOOSTAUG-enhanced EDA and baseline augmentation methods.
The best and second-best metric values are highlighted in bold and underlined faces, respectively. None indicates
the vanilla version without using text augmentation. † indicates that BOOSTAUG is significantly better than the
backend according to the Wilcoxon’s rank sum test at a 0.05 significance level. “-” indicates that FastLCF is not
available for text classification or the results are not considered due to resource limitation.

Augmentation Model Laptop14 Restaurant14 Restaurant15 Restaurant16 MAMS SST2 SST5 AGNews10K
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

None

LSTM 71.32 65.45 77.54 66.89 78.61 58.54 87.40 64.41 56.96 56.18 84.36 84.36 45.29 44.61 87.60 87.36
BERT 79.47 75.70 85.18 78.31 83.61 69.73 91.3 77.16 82.78 82.04 90.88 90.88 53.53 52.06 92.47 92.26

DeBERTa 83.31 80.02 87.72 81.73 86.58 74.22 93.01 81.93 83.31 82.87 95.07 95.07 56.47 55.58 92.30 92.13
FastLCF 83.23 79.68 88.5 82.7 87.74 73.69 93.69 81.66 83.46 82.88 - - - - - -

EDA

LSTM 68.65 62.09 76.18 62.41 76.30 56.88 85.59 61.78 56.59 55.33 84.79 84.79 43.85 43.85 87.72 87.46
BERT 78.37 74.23 83.75 75.38 81.85 65.63 91.38 77.27 81.81 81.10 91.16 91.16 51.58 50.49 92.50 92.28

DeBERTa 80.96 78.65 86.79 79.82 84.44 70.40 93.01 77.59 81.96 81.96 94.07 94.07 56.43 53.88 92.55 92.33
FastLCF 81.97 79.57 87.68 81.52 86.39 72.51 93.17 78.96 82.19 81.63 - - - - - -

SpellingAug

LSTM 67.24 60.30 75.36 63.01 73.52 49.04 84.72 53.92 55.99 55.16 83.14 83.14 41.45 40.40 87.25 86.96
BERT 73.59 69.11 82.54 73.18 79.63 62.32 89.76 74.74 81.89 81.42 91.00 91.00 52.26 50.90 92.42 92.22

DeBERTa 80.17 76.01 85.13 76.67 85.83 71.54 92.76 78.33 81.89 81.24 93.68 93.68 55.95 53.78 92.68 92.50
FastLCF 79.62 74.81 86.03 78.73 87.41 75.14 92.60 75.27 82.19 81.66 - - - - - -

SplitAug

LSTM 62.98 56.53 73.43 58.57 70.19 45.71 83.93 54.41 56.74 55.34 84.29 84.29 44.00 42.10 87.23 87.01
BERT 75.47 70.56 82.86 74.48 82.87 65.19 90.98 77.51 81.74 81.35 90.88 90.88 51.99 50.95 92.45 92.16

DeBERTa 79.15 75.72 86.03 79.28 85.46 70.43 92.76 79.79 81.59 81.09 94.29 94.29 55.51 49.77 92.52 92.29
FastLCF 81.82 78.46 86.34 78.36 86.67 70.87 93.09 76.50 82.07 81.53 - - - - - -

ContextualWordEmbsAug

LSTM 67.40 61.57 75.62 62.13 74.44 51.67 84.98 58.67 56.06 55.10 83.14 83.14 44.07 42.03 87.53 87.24
BERT 75.63 70.79 83.26 75.11 78.61 61.48 90.24 72.37 81.29 80.50 91.02 91.02 51.27 50.27 92.10 91.86

DeBERTa 76.88 71.98 85.49 77.22 84.63 70.50 92.28 77.42 81.66 81.32 94.12 94.12 55.48 53.60 92.80 92.62
FastLCF 79.08 74.61 85.62 76.88 84.91 70.06 91.38 76.27 81.89 81.09 - - - - - -

BackTranslationAug

LSTM 68.50 62.22 78.12 66.70 78.85 59.08 86.97 63.47 - - - - - - - -
BERT 79.94 76.19 85.54 78.51 84.42 72.05 92.02 85.78 - - - - - - - -

DeBERTa 84.17 81.15 88.93 83.54 89.42 78.67 93.97 80.52 - - - - - - - -
FastLCF 82.76 79.82 89.46 84.94 88.13 75.70 94.14 81.82 - - - - - - - -

BOOSTAUG (EDA)

LSTM 73.20† 67.46† 79.12† 68.07† 80.06† 59.61† 87.80† 65.33† 59.21† 59.58† 85.83† 85.83† 45.93† 43.59† 88.45 88.16
BERT 80.10† 76.48† 86.34† 79.99† 86.12† 73.79† 91.95† 79.12† 84.01† 83.44† 92.33† 92.33† 53.94† 52.80† 92.48 92.25

DeBERTa 84.56† 81.77† 89.02† 83.35† 88.33† 76.77† 93.58† 81.93† 84.51† 83.97† 96.09† 96.09† 57.78† 56.15† 92.95 92.76
FastLCF 85.11† 82.18† 90.38† 85.04† 89.81† 77.92† 94.37† 82.67† 84.13† 82.97† - - - - - -

Table 3: The performance comparison on augmented
SST2 dataset between different augmentation methods.
We list the standard deviations for each method, while
“-” indicates the standard deviation is not available. ∗ is
derived from our experiments.

Augmentation Model Acc F1
None∗ BERT 90.88 (0.31) 90.87 (0.31)
EDA∗ BERT 90.99 (0.46) 90.99 (0.46)

SynonymAug∗ BERT 91.32 (0.55) 91.31 (0.55)
TAA∗ BERT 90.94 (0.31) 90.94 (0.31)
AEDA BERT 91.76 ( - ) —
AMDA BERT 91.54 ( - ) —

BOOSTAUG(EDA) BERT 92.33 (0.29) 92.33 (0.29)

training set, leading to a high degree of similarity
between the original and augmentation instances.
This data overlapping problem, as discussed in Sec-
tion 2.1, results in biased instance filtering and over-
fitting of the instances to the training fold data dis-
tribution. Additionally, the variant without the per-
plexity filtering strategy performs the worst, indi-
cating that the perplexity filtering strategy is crucial
in removing instances with syntactical and gram-
matical errors. The performance of the variants
without the predicted label constraint and confi-
dence ranking is similar, with the label constraint
helping to prevent the mutation of features into an
adverse meaning and the confidence ranking help-
ing to eliminate out-of-domain words and reduce
feature space shift.

4.3 Feature Space Shift Investigation
In this subsection, we explore the feature space
shift problem in more detail by using visualizations
and the feature space shift metric. We use t-SNE
to visualize the distribution of the features of the
testing set and compare it to different augmented
variants. The full results of feature space shift met-
rics are available in Figure 6. The results of feature
space shift metrics in our experiment show that the
augmentation instances generated by BOOSTAUG
have the least shift of feature space. Specifically,
the overlapping ratio and skewness in relation to
the testing set are consistently better than those
of the training set. This explains the performance
improvement seen when using BOOSTAUG in pre-
vious experiments. In contrast, the augmentation
instances generated by EDA, which was the best
peer text augmentation method, have a worse over-
lapping rate compared to even the training set. This
explains the performance degradation when using
EDA on the baseline classification models. It is also
noteworthy that the quality of the augmentation in-
stances generated by MonoAug is better than EDA.

4.4 Effect of Augmentation Instances Number
To further understand the effectiveness of
BOOSTAUG, we conduct an experiment to analyze
the relationship between the number of augmen-
tation instances generated and the performance of
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Table 4: The performance comparison between different ablated variants of BOOSTAUG.

Ablation Model MAMS SST2 SST5 AGNews10K
Acc F1 Acc F1 Acc F1 Acc F1

BOOSTAUG(EDA)
LSTM 59.21 59.58 85.77 85.77 45.79 43.84 88.45 88.16
BERT 84.01 83.44 92.33 92.33 52.38 51.70 92.48 92.25

DeBERTa 84.51 83.97 96.09 96.09 57.78 56.15 92.95 92.76

MonoAug
LSTM 57.26 55.70 84.62 84.62 45.25 42.91 87.55 87.32
BERT 83.68 83.04 91.16 91.16 52.90 52.12 92.40 92.19

DeBERTa 83.38 82.87 94.18 94.18 56.92 55.81 92.32 92.09

w/o Confidence
LSTM 56.19 55.94 85.08 85.08 45.48 44.89 86.98 86.61
BERT 83.26 82.62 91.16 91.16 53.21 52.27 92.20 92.00

DeBERTa 83.47 82.08 95.22 95.22 57.10 55.97 92.93 92.75

w/o Perplexity
LSTM 55.54 55.46 85.67 85.67 46.47 43.25 87.40 86.99
BERT 83.16 82.58 92.04 92.04 52.67 51.02 92.50 92.30

DeBERTa 83.53 83.04 95.39 95.39 58.10 56.78 92.60 92.36

w/o Label Constraint
LSTM 56.06 55.00 84.90 84.88 44.75 43.44 86.55 86.23
BERT 83.01 82.57 92.04 92.03 52.58 51.33 91.80 91.60

DeBERTa 82.41 82.01 95.06 95.06 56.70 54.91 92.85 92.60

Figure 3: Trajectories of the Acc and the F1 values with error bars versus the number of augmentation instances
generated for an example by using BOOSTAUG(EDA). The trajectory visualization plot of MonoAug and EDA can
be found in Figure 7

the classification models. We use Acc and F1 as
the evaluation metrics and plot the trajectories of
these metrics with error bars against the number
of augmentation instances generated for an exam-
ple by using BOOSTAUG. The results are shown
in Figure 3. For comparison, the trajectory visu-
alization plots of MonoAug and EDA can also be
found in Figure 7. From the results, it is clear to see
that the performance of the classification models
improves as the number of augmentation instances
increases, but eventually reaches a saturation point.
Furthermore, it is observed that the performance
improvement achieved by BOOSTAUG is consis-
tently better than that of MonoAug and EDA. This
further confirms the effectiveness of BOOSTAUG
in mitigating the feature space shift problem and
improving the performance of the classification
models.

However, it is also important to consider the
computational budgets required to generate a large

number of augmentation instances, as this can im-
pact the overall efficiency of the text augmentation
method being used.

4.5 Hyper-parameter Sensitivity Analysis

We find that there is no single best setting for the
two hyper-parameters, α and β, in different situa-
tions such as different datasets and backend aug-
mentation methods. To explore the sensitivity of
these hyper-parameters, we conducted experiments
on the Laptop14 and Restaurant14 datasets
and show the Scott-Knott rank test (Mittas and An-
gelis, 2013) plots and performance box plots in Fig-
ure 4 and Figure 5, respectively. We found that the
best value of α highly depends on the dataset. For
the Laptop14 and Restaurant14 datasets, a
value of α = 0.5 was found to be the best choice
according to Figure 4. However, it’s worth not-
ing that the smaller the value of α, the higher the
computation complexity due to the need for more
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augmentation instances. To balance efficiency and
performance, we recommend a value of α = 0.99
(α = 1 means no augmentation instances survive)
in BOOSTAUG, which reduces computation com-
plexity. Additionally, we found that β is relatively
easy to determine, with a value of β = 4 being
commonly used.
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Figure 4: The Scott-knott rank test plots under different
α and β in BOOSTAUG(EDA). The bigger rank means
better performance.

5 Related Works

As pretraining has advanced, text augmentation
techniques have become an increasingly popular
area of research (Sennrich et al., 2016; Coulombe,
2018; Li et al., 2019; Wei and Zou, 2019; Kumar
et al., 2020; Lewis et al., 2020; Xie et al., 2020; Bi
et al., 2021; Ren et al., 2021; Haralabopoulos et al.,
2021; Wang et al., 2022c; Yue et al., 2022; Zhou
et al., 2022a; Kamalloo et al., 2022; Wang et al.,
2022a). Many of these techniques focus on low-
resource scenarios (Chen et al., 2020; Zhou et al.,
2022a; Kim et al., 2022; Zhou et al., 2022b; Wu
et al., 2022; Yang et al., 2022; Wang et al., 2022b;
Yang et al., 2022). However, they tend to fail when
applied to large public datasets (Zhou et al., 2022a).
Recent prominent works (Sennrich et al., 2016; Ku-
mar et al., 2020; Lewis et al., 2020; Ng et al., 2020;
Body et al., 2021; Chang et al., 2021; Luo et al.,
2021; Wang et al., 2022b) recognize the signifi-
cance of pre-trained language models (PLMs) for
text augmentation and propose PLM-based meth-
ods to improve text augmentation. However, the
quality of augmentation instances generated by un-
supervised PLMs cannot be guaranteed. Some re-

search (Dong et al., 2021) has attempted to use ad-
versarial training in text augmentation, which can
improve robustness, but these methods are more
suitable for low-sample augmentation scenarios
and cause shifted feature spaces in large datasets.

While recent studies have emphasized the impor-
tance of quality control for augmentation instances
(Lewis et al., 2021; Kamalloo et al., 2022; Wang
et al., 2022b), there remains a need for a trans-
ferable augmentation instance-filtering framework
that can serve as an external quality controller to
improve existing text augmentation methods.

Our work aims to address the failure mode of
large dataset augmentation and improve existing
augmentation methods more widely. Specifically,
BOOSTAUG is a simple but effective framework
that can work with a variety of existing augmen-
tation backends, including EDA (Wei and Zou,
2019) and PLM-based augmentation (Kumar et al.,
2020).

6 Conclusion

Existing text augmentation methods usually lead
to performance degeneration in large datasets due
to numerous low-quality augmentation instances,
while the reason for performance degeneration has
not been well explained. We find low-quality aug-
mentation instances usually have shifted feature
space compare to natural instances. Therefore, we
propose a universal augmentation instance filter
framework BOOSTAUG to widely enhance exist-
ing text augmentation methods. BOOSTAUG is an
external and flexible framework, all the existing
text augmentation methods can be seamless im-
proved. Experimental results on three TC datasets
and five ABSC datasets show that BOOSTAUG is
able to alleviate feature space shift in augmenta-
tion instances and significantly improve existing
augmentation methods.
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7 Limitations

We propose and solve the feature space shift prob-
lem in text augmentation. However, there is a lim-
itation that remains. BOOSTAUG cannot preserve
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the grammar and syntax to a certain extent. We
apply the perplexity filtering strategy, but it is an
implicit constraint and cannot ensure the syntax
quality of the augmentation instances due to some
breaking transformations, such as keyword dele-
tions and modifications. However, we do not need
precise grammar and syntax information in most
classification tasks, especially in PLM-based clas-
sification. For some syntax-sensitive tasks, e.g.,
syntax parsing and the syntax-based ABSC (Zhang
et al., 2019; Phan and Ogunbona, 2020; Dai et al.,
2021), ensuring the syntax quality of the aug-
mented instances is an urgent problem. Therefore,
BOOSTAUG may not be an best choice for some
tasks or models requiring syntax as an essential
modeling objective (Zhang et al., 2019). In other
words, the syntax quality of BOOSTAUG depends
on the backend.
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A Hyperparameter Settings

A.1 Hyperparameter Settings for BOOSTAUG

Some important parameters are set as follows.
• k is set to 5 for the k-fold cross-boosting on all

datasets.
• The number of augmentation instances per exam-

ple Ñ is 8.
• The transformation probability of each token in a

sentence is set to 0.1 for all augmentation meth-
ods.

• The fixed confidence and perplexity thresholds
are set as α = 0.99 and β = 5 based on grid
search. We provide sensitivity test of α and β in
Appendix C.2.

• The learning rates of base models LSTM and
DeBERTa-BASE are set as 10−3 and 10−5, re-
spectively.

• The batch size and maximum sequence modeling
length are 16 and 80, respectively.

• The L2 regularization parameter λ is 10−8; we
use Adam as the optimizer for all models during
the training process.

B Baseline Backends

We use BOOSTAUG to improve five state-of-the-art
baseline text augmentation methods, all of which
are used as the text augmentation back end of
BOOSTAUG. Please refer to Table 6 for detailed
experimental results.
• EDA(TextAttack8) (Wei and Zou, 2019) performs

text augmentation via random word insertions,
substitutions and deletions.

• SynonymAug(NLPAug9) (Niu and Bansal,
2018) replaces words in the original text with
their synonyms. This method has been shown
to be effective in improving the robustness of
models on certain tasks.

• SpellingAug (Coulombe, 2018): it substi-
tutes words according to spelling mistake dic-
tionary.

• SplitAug (Li et al., 2019) (NLPAug): it splits
some words in the sentence into two words ran-
domly.

• BackTranslationAug (Sennrich et al.,
2016) (NLPAug): it is a sentence level augmen-
tation method based on sequence translation.

• ContextualWordEmbsAug (Kumar et al.,
2020) (NLPAug): it substitutes similar words ac-

8https://github.com/QData/TextAttack
9https://github.com/makcedward/nlpaug
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cording to the PLM (i.e., Roberta-base (Liu
et al., 2019)) given the context.

C Additional Experiments

C.1 Natural Language Inference Experiments

The experimental results in Table 5 show that the
performance of both BERT and DeBERTa models
can be improved by applying BOOSTAUG. With
BOOSTAUG, the accuracy of the BERT model on
SNLI improves from 70.72% to 73.08%, and on
MNLI from 51.11% to 52.49%. The DeBERTa
model also shows significant improvement with
EDA, achieving 86.39% accuracy on SNLI and
78.04% on MNLI. These results demonstrate the
effectiveness of BOOSTAUG in improving the gen-
eralizability of natural language inference models,
and its compatibility with different state-of-the-art
pre-trained models such as BERT and DeBERTa.

Table 5: The additional experimental results on the
SNLI and MNLI datasets for natural language inference.
The back end of BOOSTAUG is EDA.

Augmentation Model
SNLI MNLI

Acc F1 Acc F1

None
BERT 70.72 72.8 51.11 50.47

DeBERTa 83.50 83.47 74.75 74.62

BOOSTAUG
BERT 73.08 71.57 52.49 50.91

DeBERTa 86.39 86.16 78.04 77.04
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Figure 5: The performance box plots under different α
and β in BOOSTAUG(EDA).

C.2 Hyper-parameter Sensitivity Experiment

We provide the experimental results of BOOSTAUG
on the Laptop14 and Restaurant14 datasets
in Figure 5.

C.3 Performance of BOOSTAUG on Different
Backends

To investigate the generalization ability of
BOOSTAUG, we evaluate its performance based
on the existing augmentation backends. From the
results shown in Table 6, we find that the perfor-
mance of these text augmentation back ends can
be improved by using our proposed BOOSTAUG.
Especially by cross-referencing the results shown
in Table 2, we find that the conventional text aug-
mentation methods can be enhanced if appropriate
instance filtering strategies are applied.

Another interesting observation is that PLMs
are not effective for text augmentation, e.g.,
WordEmdsAug is outperformed by EDA in most
comparisons10. Moreover, PLMs are resource-
intense and usually cause a biased feature space.
This is because PLMs can generate some unknown
words, which are outside the testing set, during the
pre-training stage. Our experiments indicate that
using PLM as an augmentation instance filter, in-
stead of a text augmentation tool directly, can help
alleviate the feature space shift.

C.4 Visualization of feature space
Figure 6 shows the feature space shift of the ABSC
datasets, where the augmentation back end of
BOOSTAUG is EDA.

C.5 Trajectory Visualization of RQ4
Figure 7 shows the performance trajectory visu-
alization of MonoAug and EDA. Compared to
BOOSTAUG, MonoAug and existing augmenta-
tion methods usually trigger performance sacrifice
while augmentation instances for each example are
more than 3.

10In fact, we also tried some other PLM-based augmenta-
tion back ends, e.g., BackTranslationAug, and we come
up with same observation.
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Table 6: Performance comparison of BOOSTAUG based on different augment back ends.

Backend Model
MAMS SST2 SST5 AGNews10K

Acc F1 Acc F1 Acc F1 Acc F1

None
LSTM 56.96 56.18 82.37 82.37 44.39 43.60 87.60 87.36
BERT 82.78 82.04 90.77 90.76 52.90 53.02 92.47 92.26

DeBERTa 83.31 82.87 95.28 95.28 56.47 55.58 92.30 92.13

EDA
LSTM 59.21 59.58 85.83 85.83 45.93 43.59 88.45 88.16
BERT 84.01 83.44 92.33 92.33 53.94 52.80 92.48 92.25

DeBERTa 84.51 83.97 96.09 96.09 57.78 56.15 92.95 92.76

SpellingAug
LSTM 58.50 57.65 85.23 85.23 43.39 42.45 87.93 87.63
BERT 83.23 82.70 92.01 92.01 52.26 51.03 91.82 91.59

DeBERTa 83.98 83.44 95.22 95.22 57.91 55.88 92.77 92.54

SplitAug
LSTM 58.65 57.23 85.64 85.64 46.04 43.97 87.65 87.42
BERT 83.05 82.49 92.20 92.20 51.86 51.39 91.92 91.69

DeBERTa 82.67 82.26 94.76 94.76 57.67 55.90 92.70 92.51

WordEmdsAug
LSTM 59.54 57.58 86.30 86.30 46.47 44.15 88.38 88.10
BERT 83.31 82.72 91.76 91.76 52.49 50.27 92.43 92.24

DeBERTa 83.35 82.87 95.33 95.33 57.22 56.08 93.88 93.70
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Figure 6: This figure shows the feature space shift (S) of four ABSC datasets as visualized by t-SNE. The results
demonstrate that BOOSTAUG has the least feature space shifts in comparison to other augmentation methods, such
as MonoAug and EDA.
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Figure 7: The performance (i.e., classification accuracy and F1 score) visualization of how BOOSTAUG perform as
the number of augmentation instances per example increases.
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