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Abstract

Multimedia summarization with multimodal
output (MSMO) is a recently explored appli-
cation in language grounding. It plays an es-
sential role in real-world applications, i.e., au-
tomatically generating cover images and ti-
tles for news articles or providing introduc-
tions to online videos. However, existing meth-
ods extract features from the whole video and
article and use fusion methods to select the
representative one, thus usually ignoring the
critical structure and varying semantics with
video/document. In this work, we propose a
Semantics-Consistent Cross-domain Summa-
rization (SCCS) model based on optimal trans-
port alignment with visual and textual seg-
mentation. Our method first decomposes both
videos and articles into segments in order to
capture the structural semantics, and then fol-
lows a cross-domain alignment objective with
optimal transport distance, which leverages
multimodal interaction to match and select the
visual and textual summary. We evaluated our
method on three MSMO datasets, and achieved
performance improvement by 8% & 6% of tex-
tual and 6.6% &5.7% of video summarization,
respectively, which demonstrated the effective-
ness of our method in producing high-quality
multimodal summaries.

1 Introduction

New multimedia content in the form of short videos
and corresponding text articles has become a sig-
nificant trend in influential digital media. This pop-
ular media type has been shown to be successful in
drawing users’ attention and delivering essential in-
formation in an efficient manner. Multimedia sum-
marization with multimodal output (MSMO) has
recently drawn increasing attention. Different from
traditional video or textual summarization (Gygli
et al., 2014; Jadon and Jasim, 2020), where the
generated summary is either a keyframe or textual
description, MSMO aims at producing both visual
and textual summaries simultaneously, making this
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Figure 1: We proposed a segment-level cross-domain
alignment model to preserve the structural semantics
consistency within two domains for MSMO. We solve
an optimal transport problem to optimize the cross-
domain distance, which in turn finds the optimal match.

task more complicated. Previous works addressed
the MSMO task by processing the whole video and
the whole article together which overlooked the
structure and semantics of different domains (Duan
et al., 2022; Haopeng et al., 2022; Sah et al., 2017;
Zhu et al., 2018; Mingzhe et al., 2020; Fu et al.,
2021, 2020).

The video and article can be regarded as being
composed of several topics related to the main idea,
while each topic specifically corresponds to one
sub-idea. Thus, treating the whole video or article
uniformly and learning a general representation ig-
nores these structural semantics and easily leads
to biased summarization. To address this problem,
instead of learning averaged representations for the
whole video & article, we focus on exploiting the
original underlying structure. The comparison of
our approach and previous works is illustrated in
Figure 1. Our model first decomposes the video &
article into segments to discover the content struc-
ture, then explores the cross-domain semantics re-
lationship at the segment level. We believe this is a
promising approach to exploit the consistency lie in
the structural semantics between different domains.

Previous models applied attention or fusion
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Figure 2: A real example of the summarization process given by our SCCS method. Here we conduct OT-based
cross-domain alignment to each keyframe-sentence pair, and a smaller OT distance means better alignment. (For
example, the best-aligned text and image summary (0.08) delivers the flooding content clearly and comprehensively.)

mechanisms to compute image-text relevance
scores, finding the best match of the sen-
tences/images within the whole document/video,
regardless of the context, which used one domain
as an anchor. However, an outstanding anchor
has more weight in selecting the corresponding
pair. To overcome this, we believe the semantics
structure is a crucial characteristic that can not be
ignored. Based on this hypothesis, we propose
Semantics-Consistent Cross-domain Summariza-
tion (SCCS), which explores segment-level cross-
domain representations through Optimal Transport
(OT) based multimodal alignment to generate both
visual and textual summaries. We decompose the
video/document into segments based on its seman-
tic structure, then generate sub-summaries of each
segment as candidates. We select the final summary
from these candidates instead of a global search, so
all candidates are in a fair competition arena.

Our contributions can be summarized as follow:

* We propose SCCS (Semantics-Consistent
Cross-domain Summarization), a segment-
level alignment model for MSMO tasks.

* Our method preserves the structural semantics
and explores the cross-domain relationship
through optimal transport to match and select
the visual and textual summary.

* On three datasets, our method outperforms
baselines in both textual and video summa-
rization results qualitatively and quantitatively.

* Our method serves as a hierarchical MSMO
framework and provides better interpretability
via OT alignment. The OT coupling shows
sparse patterns and specific temporal structure
for the embedding vectors of ground-truth-
matched video and text segments, providing
interpretable learned representations.

Since MSMO generates both visual & textual sum-
maries, We believe the optimal summary comes

from the video and text pair that are both 1) seman-
tically consistent, and 2) best matched globally in a
cross-domain fashion. In addition, our framework
is more computationally efficient as it conducts
cross-domain alignment at the segment level in-
stead of inputting whole videos/articles.

2 Related Work

Multimodal Alignment Aligning representa-
tions from different modalities is important in mul-
timodal learning. Exploring the explicit relation-
ship across vision and language has drawn signifi-
cant attention (Wang et al., 2020a). Xu et al. (2015);
Torabi et al. (2016); Yu et al. (2017) adopted atten-
tion mechanisms, Dong et al. (2021) composed
pairwise joint representation, Chen et al. (2020b);
Wray et al. (2019); Zhang et al. (2018) learned
fine-grained or hierarchical alignment, Lee et al.
(2018); Wu et al. (2019) decomposed the inputs
into sub-tokens, Velickovic et al. (2018); Yao et al.
(2018) adopted graph attention for reasoning, and
Yang et al. (2021); Gutmann and Hyvirinen (2010);
van den Oord et al. (2018); Radford et al. (2021)
applied contrastive learning algorithms.

Multimodal Summarization Multimodal sum-
marization explored multiple modalities, i.e., au-
dio signals, video captions, transcripts, video titles,
etc, for a summary generation. Otani et al. (2016);
Yuan et al. (2019); Wei et al. (2018); Fu et al. (2020)
learned the relevance or mapping in the latent space
between different modalities. In addition to only
generating visual summaries, Li et al. (2017); Atri
et al. (2021); Zhu et al. (2018) generated textual
summaries by taking audio, transcripts, or docu-
ments as input along with videos or images, using
seq2seq model (Sutskever et al., 2014) or atten-
tion mechanism (Bahdanau et al., 2015). Recent
trending on the MSMO task has also drawn much
attention (Zhu et al., 2018; Mingzhe et al., 2020;
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Figure 3: (a) The computational framework of the SCCS model, which takes multimodal inputs (videos &
text documents) and generates multimodal summaries. The framework includes five modules: video temporal
segmentation, visual summarization, textual segmentation, textual summarization, and multimodal alignment. (b)
The structure of the video segmentation encoder. (c) The architecture of the textual segmentation module. (d) The

multimodal alignment module for multimodal summaries.

Fu et al., 2021, 2020; Zhang et al., 2022). More
related works are shown in Appendix B.

3 Methods

SCCS is a segment-level cross-domain seman-
tics alignment model for the MSMO task, where
MSMO aims at generating both visual and lan-
guage summaries. We follow the problem setting
in Mingzhe et al. (2020), for a multimedia source
with documents and videos, the document Xp =
{z1,x2,...,24} has d words, and the ground truth
textual summary Yp = {y1,¥2,...,Y4} has g
words. A corresponding video Xy is associated
with the document in pair, and there exists a ground
truth cover picture Yy that can represent the most
important information to describe the video. Our
SCCS model generates both textual summaries Y7,
and video keyframes Y7,.

SCCS consists of five modules, as shown in
Figure 3(a): video temporal segmentation (Sec-
tion 3.1), visual summarization (Section 3.3), tex-
tual segmentation (Section 3.2), textual summa-
rization (Section 3.4), and cross-domain alignment
(Section 3.5). Each module will be introduced in
the following subsections.

3.1 Video Temporal Segmentation

Video temporal segmentation splits the original
video into small segments, which summarization
tasks build upon. The segmentation is formulated
as a binary classification problem on the segment
boundaries, similar to Rao et al. (2020). For a video
Xy, the video segmentation encoder separates the
video sequence into segments [ X1, Xy2, ..; Xym)
where n is the number of segments.

As shown in Figure 3(b), the video segmentation
encoder contains a VTS module and a Bi-LSTM
(Graves and Schmidhuber, 2005). Video Xy is
first split into shots [Sy1, Sy2, ..., Syn] (Castellano,
2021), then the VTS module takes a clip of the
video with 2wy shots as input and outputs a bound-
ary representation b;. The boundary representation
captures both differences and relations between
the shots before and after. VTS consists of two
branches, VTS, and VTS, as shown in Equation 1.

b8 ([5 15ve])
B VTSq Sm_(_,b_l)w" ;Pvi} s [Suit1ys - ,Sm'erb])
B VTS, Svi—(oq,—l)’“‘ ,P1,i,S,U(,i+1),-~- ’S”i"'“’b )

VTS, is modeled by two temporal convolution
layers, each of which embeds the w; shots be-
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fore and after the boundary, respectively, follow-
ing an inner product operation to calculate the
differences. VTS, contains a temporal convolu-
tion layer followed by a max pooling, aiming at
capturing the relations of the shots. It predicts
a sequence binary labels [py1, py2, ..., Dun| based
on the sequence of representatives [by, ba, ..., by,].
A Bi-LSTM (Graves and Schmidhuber, 2005) is
used with stride w; /2 shots to predict a sequence of
coarse score [$1, $2, ..., Sn|, as shown in Equation 2,

[S1, 82, ..., Sp] = Bi-LSTM ([b1, ba, - - - ,by]) (2)

where s; € [0, 1] is the probability of a shot bound-
ary being a scene boundary. The coarse predic-
tion p,; € {0,1} indicates whether the i-th shot
boundary is a scene boundary by binarizing s; with
1 ifs;>7
0 otherwise
with p,; = 1 result in the learned video segments
[ X1, Xv2, ooy Xom)-

a threshold 7, p,; = . The results

3.2 Textual Segmentation

The textual segmentation module takes the whole
document or articles as input and splits the original
input into segments based on context understand-
ing. We used a hierarchical BERT as the textual
segmentation module (Lukasik et al., 2020), which
is the current state-of-the-art method. As shown
in Figure 3(c), the textual segmentation module
contains two-level transformer encoders, where the
first-level encoder is for sentence-level encoding,
and the second-level encoder is for article-level
encoding. The hierarchical BERT starts by encod-
ing each sentence with BERT| porgg independently,
then the tensors produced for each sentence are fed
into another transformer encoder to capture the rep-
resentation of the sequence of sentences. All the
sequences start with a [CLS] token to encode each
sentence with BERT at the first level. If the seg-
mentation decision is made at the sentence level,
we use the [CLS] token as input for the second-
level encoder. The [CLS] token representations
from sentences are passed into the article encoder,
which can relate the different sentences through
cross-attention.

3.3 Visual Summarization

The visual summarization module generates visual
keyframes from each video segment as its corre-
sponding summary. We use an encoder-decoder
architecture with attention as the visual summariza-
tion module (Ji et al., 2020), taking each video

segment as input and outputting a sequence of
keyframes. The encoder is a Bi-LSTM (Graves
and Schmidhuber, 2005) to model the temporal
relationship of video frames, where the input is
X = [z1,22,...,z7] and the encoded represen-
tation is £ = [e1,e2,...er]. The decoder is a
LSTM (Hochreiter and Schmidhuber, 1997) to
generate output sequences D = [dy,da, ..., dy].
To exploit the temporal ordering across the en-
tire video, an attention mechanism is used: E; =
S ade;, st Yor ot = 1. Similar in Hochre-
iter and Schmidhuber (1997), the decoder function
can be written as:

p(de | {di [P <t}, EY)

St

=Y (st-1,di—1,E) ()

where s; is the hidden state, F is the attention vec-
tor at time ¢, ! is the attention weight between
the inputs and the encoder vector, v is the de-
coder function (LSTM). To obtain ozf;, the relevance
score 7 is computed by v/ = score(s;_1,€;),
where the score function decides the relationship
between the ¢-th visual features e; and the out-
put scores at time ¢: vf = e?Wast,l, aé =

exp(f)/ YTy exp(17).
3.4 Textual Summarization

Language summarization can produce a concise
and fluent summary which should preserve the crit-
ical information and overall meaning. Our textual
summarization module takes BART (Lewis et al.,
2020) as the summarization model to generate ab-
stractive textual summary candidates. BART is a
denoising autoencoder that maps a corrupted docu-
ment to the original document it was derived from.
As in Figure 3(a), BART is an encoder-decoder
Transformer pre-trained with a denoising objective
on text. We take the fine-tuned BART on CNN
and Daily Mail datasets for the summarization task
(See et al., 2017b; Nallapati et al., 2016).

3.5 Cross-Domain Alignment via OT

Our cross-domain alignment (CDA) module learns
the alignment between keyframes and textual sum-
maries to generate the final multimodal summaries.
Our alignment module is based on OT, which
has been explored in several cross-domain tasks
(Chen et al., 2020a; Yuan et al., 2020; Lu et al.,
2021). More OT introductions can be found in
Appendix A.

As shown in Figure 3(d), in CDA, the image fea-
tures V = {vy} 5:1 are extracted from pre-trained
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ResNet-101 (He et al., 2016) concatenated to faster
R-CNN (Ren et al., 2015) as Yuan et al. (2020),
where an image can be represented as a set of de-
tected objects, each associated with a feature vec-
tor. For text features, every word is embedded as
a feature vector and processed by a Bi-GRU (Cho
et al., 2014) to account for context (Yuan et al.,
2020). The extracted image and text embeddings
are V = {v;}, E = {e;}}, respectively.

As in Yuan et al. (2020), we take image and
text sequence embeddings as two discrete distribu-
tions supported on the same feature representation
space. Solving an OT transport plan between the
two naturally constitutes a matching scheme to re-
late cross-domain entities (Yuan et al., 2020). To
evaluate the OT distance, we compute a pairwise
similarity between V' and E using cosine distance:

T
Crom = Clex,vm) =1 — —EPk @
llex]| [|vm ||
Then the OT can be formulated as:
K M
Lor(V,E) = mlin ; Z_l TimCrm ©)
where Zm Trm = tk, Zk Tim = Vm,

Vk€[1,K], me[1,M], TeREM is the
transport matrix, d; and d,, are the weight of
v and e,, in a given image and text sequence,
respectively. We assume the weight for different
features to be uniform, i.e., pp = %,vm = ﬁ
The objective of optimal transport involves
solving linear programming and may cause
potential computational burdens since it has O(n?)
efficiency. To solve this issue, we add an entropic
regularization term equation (5), and the objective
of our optimal transport distance becomes:

K M
Lor(V,E) = meZ Z TimCrm + AH(T)  (6)

k=1m=1

where H(T) = 3, ; T; jlog T; ; is the entropy,
and X is the hyperparameter that balance the effect
of the entropy term. Thus, we are able to apply the
celebrated Sinkhorn algorithm (Cuturi, 2013) to
efficiently solve the above equation in O(nlogn).
The optimal transport distance computed via the
Sinkhorn algorithm is differentiable and can be
implemented by Flamary et al. (2021). The algo-
rithm is shown in Algorithm 1, where (3 is a hyper-
parameter, C is the cost matrix, ® is Hadamard
product, < -, - > is Frobenius dot-product, matri-
ces are in bold, the rest are scalars.

Algorithm 1 Compute Alignment Distance

: Input: E = {e;}}, V = {0}, 8
. C= C(VvE)a g < %]‘m?T(D «— 11T

1
2
3: Gij < exp —%
4: for t=1,2,3,....N do
55 Q+GoTW
. 1 1
6 6<——KQG70-<—7MQT5
7 T  diag(8)Q diag(o)
8: end for
9: Dis =< CT, T >

3.6 Multimodal Summaries

During training the alignment module, the Wasser-
stein distance (WD) between each keyframe-
sentence pair of all the visual & textual summary
candidates is computed, where the best match is
selected as the final multimodal summaries.

4 Datasets and Baselines

4.1 Datasets

We evaluated our models on three datasets:
VMSMO dataset, Daily Mail dataset, and CNN
dataset from Mingzhe et al. (2020); Fu et al. (2021,
2020). The VMSMO dataset contains 184,920 sam-
ples, including articles and corresponding videos.
Each sample is assigned with a textual summary
and a video with a cover picture. We adopted the
available data samples from Mingzhe et al. (2020).
The Daily Mail dataset contains 1,970 samples, and
the CNN dataset contains 203 samples, which in-
clude video titles, images, and captions, similar
to Hermann et al. (2015). For data splitting, we
take the same experimental setup as Mingzhe et al.
(2020) for the VMSMO dataset. For the Daily Mail
dataset and CNN dataset, we split the data by 70%,
10%, and 20% for train, validation, and test sets,
respectively, same as Fu et al. (2021, 2020).

4.2 Baselines

We select state-of-the-art MSMO baselines and rep-
resentative pure video & textual summarization
baselines for comparison. For the VMSMO dataset,
we compare our method with (i) multimodal sum-
marization baselines (MSMO, MOF (Zhu et al.,
2018, 2020), and DIMS (Mingzhe et al., 2020), (ii)
video summarization baselines (Synergistic (Guo
et al., 2019) and PSAC (Li et al., 2019)), and (iii)
textual summarization baselines (Lead (See et al.,
2017a), TextRank (Mihalcea and Tarau, 2004), PG
(See et al., 2017b), Unified (Hsu et al., 2018), and
GPG (Shen et al., 2019)). For Daily Mail and
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CNN datasets, we compare our method with (i)
multimodal baselines (MSMO (Zhu et al., 2018),
Img+Trans (Hori et al., 2019), TEN (Zadeh et al.,
2017), HNNattTI (Chen and Zhuge, 2018), and
M?2SM (Fu et al., 2021, 2020)), (ii) video summa-
rization baselines (VSUMM (De Avila et al., 2011)
and DR-DSN (Zhou et al., 2018a)), and (iii) textual
summarization baselines (Lead3 (See et al., 2017a),
NN-SE (Cheng and Lapata, 2016), BART (Lewis
et al., 2020), TS5 (Raffel et al., 2019), and Pega-
sus (Zhang et al., 2019a)). More details about the
baselines are introduced in Appendix C.

5 Experiments

5.1 Experimental Setting and Implementation

For the VTS module, we used the same model set-
ting as Rao et al. (2020); Castellano (2021) and the
same data splitting setting as Mingzhe et al. (2020);
Fu et al. (2021, 2020) in the training process.

The visual summarization model is pre-trained
on the TVSum (Song et al., 2015) and SumMe
(Gygli et al., 2014) datasets. TVSum dataset con-
tains 50 edited videos downloaded from YouTube
in 10 categories, and SumMe dataset consists of 25
raw videos recording various events. Frame-level
importance scores for each video are provided for
both datasets and used as ground-truth labels. The
input visual features are extracted from pre-trained
GoogleNet on ImageNet, where the output of the
pool5 layer is used as visual features.

For the textual segmentation module, due to
the quadratic computational cost of transformers,
we reduce the BERT’s inputs to 64-word pieces
per sentence and 128 sentences per document as
Lukasik et al. (2020). We use 12 layers for both
the sentence and the article encoders, for a to-
tal of 24 layers. In order to use the BERTgAsE
checkpoint, we use 12 attention heads and 768-
dimensional word-piece embeddings. The hier-
archical BERT model is pre-trained on the Wiki-
727K dataset (Koshorek et al., 2018), which con-
tains 727 thousand articles from a snapshot of the
English Wikipedia. We used the same data splitting
method as Koshorek et al. (2018).

For textual summarization, we adopted the pre-
trained BART model from Lewis et al. (2020),
which contains 1024 hidden layers and 406M pa-
rameters and has been fine-tuned using CNN and
Daily Mail datasets.

In the cross-domain alignment module, the fea-
ture extraction and alignment module is pretrained

by MS COCO dataset (Lin et al., 2014) on the
image-text matching task. We added the OT loss as
a regularization term to the original matching loss
to align the image and text more explicitly.

5.2 Evaluation Metrics

The quality of generated textual summary is evalu-
ated by standard Rouge F1 (Lin, 2004) following
previous works (See et al., 2017b; Chen et al., 2018;
Mingzhe et al., 2020). ROUGE-1 (R-1), ROUGE-2
(R-2), and ROUGE-L (R-L) refer to the overlap of
unigram, bigrams, and the longest common sub-
sequence between the decoded summary and the
reference, respectively (Lin, 2004). Due to the limi-
tation of ROUGE, we also adopt BertScore (Zhang
et al., 2019b) for evaluation.

For the VMSMO dataset, the quality of the cho-
sen cover frame is evaluated by mean average pre-
cision (MAP) and recall at position (R,,@Qk) (Zhou
etal., 2018c; Tao et al., 2019), where (R,,@Qk) mea-
sures if the positive sample is ranked in the top
k positions of n candidates. For the Daily Mail
dataset and CNN dataset, we calculate the cosine
image similarity (Cos) between image references
and the extracted frames (Fu et al., 2021, 2020).

5.3 Results and Discussion

The comparison results on the VMSMO dataset of
multimodal, video, and textual summarization are
shown in Table 1. Synergistic and PSAC are pure
video summarization approaches, which did not
perform as well as multimodal methods, like MOF
or DIMS, which means taking additional modality
into consideration actually helps to improve the
quality of the generated video summaries. Table 1
also shows the absolute performance improvement
or decrease compared with the MSMO baseline,
where the improvements are marked in red and de-
creases in blue. Overall, our method shows the
highest absolute performance improvement than
the previous methods on both textual and video
summarization results. Our method shows the abil-
ity to preserve the structural semantics and is able
to learn the alignment between keyframes and tex-
tual deceptions, which shows better performance
than the previous ones. If comparing the quality
of generated textual summaries, our method still
outperforms the other multimodal baselines, like
MSMO, MOF, DIMS, and also traditional textual
summarization methods, like Lead, TextRank, PG,
Unified, and GPG, showing the alignment obtained
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Table 1: Comparison with multimodal baselines on the VMSMO dataset. The absolute performance comparison
with the baseline MSMO method is marked in red (better) and blue (worse).

Category ‘ Methods ‘ Textual Video
| | R-1 R-2 R-L MAP Rip@Q1 R10@2 R10@5
Video Synergistic 0.558 0.444 0.557 0.759
PSAC 0.524 0.363 0.481 0.730
Lead 16.2 53 13.9 - - - -
TextRank 13.7 4.0 12.5 - - - -
Textual PG 19.4 6.8 17.4 - — - —
4 Unified 23.0 6.0 20.9 - - - -
GPG 20.1 4.5 17.3 - - - -
MSMO 20.1 4.6 17.3 0.554 0.361 0.551 0.820
Multimodal | MOF 213(108) 57(t1.1) 179(10.6) 0.615(10.061) 0.455(10.094) 0.615(70.064) 0.817 (4 -0.003)
DIMS 251(150) 9.6(150) 232(159) 0.654(10.100) 0.524 (1 0.163)  0.634 (10.083)  0.824 (1 0.004)
Ours-textual 26.2 9.6 24.1 - - - -
Ours Ours-video - - - 0.678 0.561 0.642 0.863
Ours 271 (17.0) 9.8(152) 254(18.1) 0.697(10.143) 0.582(10.221) 0.688 (1 0.137)  0.895 (1 0.075)

by optimal transport can help to identify the cross-
domain inter-relationships.

In Table 2, we show the comparison results with
multimodal baselines on the Daily Mail and CNN
datasets. We can see that for the CNN datasets, our
method shows competitive results with Img+Trans,
TFN, HNNattTI, and M2SM on the quality of gen-
erated textual summaries. While on the Daily Mail
dataset, our approach showed better performance
on both textual summaries and visual summaries.
We also compare with the traditional pure video
summarization baselines and pure textual summa-
rization baselines on the Daily Mail dataset, and
the results are shown in Table 2. We can find that
our approach performed competitive results com-
pared with NN-SE and M2SM for the quality of
the generated textual summary. For visual summa-
rization comparison, we can find that the quality of
generated visual summary by our approach still out-
performs the other visual summarization baselines.
Still, we also provide absolute performance com-
parison with baseline MSMO (Zhu et al., 2018), as
shown in Table 2, our model achieved the highest
performance improvement in both Daily Mail and
CNN datasets compared with previous baselines.
If comparing the quality of generated textual sum-
maries with language model (LM) baselines, our
method also outperforms T35, Pegasus, and BART.

5.4 Human Evaluation

To provide human evaluation results, we asked 5
people (recruited from the institute) to score the re-
sults generated by different approaches of CNN and
DailyMail datasets. We asked the human judges
to score the results of 5 models: MSMO, TFN,
HNNattTI, M2SM, and SCCS, as 1-5, where 5 rep-
resents the best results. We averaged the voting
results from 5 human judges. The performances of

5 models are listed in Table 3, showing the result
by SCCS is better than the baselines.

Table 3: Human evaluation results.
Method | MSMO TFN HNNatTI M?SM  SCCS
Score | 1.84 2.36 3.24 3.4 4.16

5.5 Factual Consistency Evaluation

Factual consistency is used as another important
evaluation criterion for evaluating summarization
results (Honovich et al., 2022). For factual consis-
tency, we adopted the method in Xie et al. (2021)
and followed the same setting. The same human an-
notators from Sec 5.4 provided human judgments.
We report Pearson correlation coefficient Coep
here. The results of MSMO, Img+Trans, TFEN,
HNNaatTI, M2SM, and ours, are shown in Table 4.
In summary, our methods show better results than
baselines on factual consistency evaluations.

Table 4: Factual consistency evaluation results.

Datasets ‘ MSMO Img+Trans TFN  HNNattTI M2?SM  SCCS
CNN 40.12 41.23 41.52 42.33 4259  44.37
DailyMail | 50.31 50.65 50.72 51.37 51.69  53.16

5.6 Ablation Study

To evaluate each component’s performance, we per-
formed ablation experiments on different modali-
ties and different datasets. For the VMSMO dataset,
we compare the performance of using only visual
information, only textual information, and mul-
timodal information. The comparison result is
shown in Table 1. We also carried out experiments
on different modalities using Daily Mail dataset to
show the performance of unimodal and multimodal
components, and the results are shown in Table 2.

For ablation results, when only textual data is
available, we adopt BERT (Devlin et al., 2019) to
generate text embeddings and K-Means clustering
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Table 2: Comparisons of multimodal baselines on the Daily Mail and CNN datasets. The absolute performance
comparison with the baseline MSMO method is marked in red (better) and blue (worse).

Category | Methods | CNN dataset Daily Mail dataset
‘ ‘ R-1 R-2 R-L BertScore R-1 R-2 R-L BertScore Cos(%)

Video VSUMM - - - - - - 68.74
DR-DSN - - - - - - - - 68.69
Lead3 - - - - 41.07 17.87 30.90 - -
NN-SE - - - - 41.22 18.15 31.22 - -

Textual T5 27.31 8.78 18.22 - 4232 18.23 33.45 - -
Pegasus 27.28 8.83 18.59 - 43.01 18.63 33.54 - -
BART 27.50 8.76 18.83 - 42.49 18.67 33.92 - -
MSMO 26.83 8.11 18.34 12.13 3538 14.79 25.41 16.25 69.17
Img+Trans 27.04 (10.21)  829(10.18) 18.54(10.20) 12.35(10.22) 39.28 (13.90) 16.64 (1 1.85)  28.53(13.12) 1643 (10.18) -

Multimodal | TEN 27.68 (10.85) 8.69 (10.58) 18.71(10.37) 1259 (10.46) 3937 (13.99) 1638(11.59) 28.09 (12.68)  16.71 (1 0.46) -

wimodal | NNattTI 27.61 (10.78) 8.74(10.63) 18.64(10.30) 12.67(10.54) 39.58 (14.20) 1671 (11.92) 29.04 (13.63) 1679 (1 0.54) 68.76 (| -0.41)

M2SM 27.81(10.98) 887 (10.76) 18.73(10.39) 12.72(10.59) 41.73 (1 6.35) 18.59 (1 3.80)  31.68 (1 6.27) 16.93 (1 0.68)  69.22 (1 0.05)
Ours-textual - - - 12.68 40.28 17.93 31.89 16.98 -

Ours Ours-video - - - - - - - - 70.56
Ours-Multimodal | 28.02 (1 1.19)  8.94 (1 0.83) 18.89 (1 0.55) 13.21(} 1.08) 44.52(19.14) 19.87 (1 5.08) 3579 (1 10.38) 17.45 (1 1.20)  73.19 (} 4.02)

to identify sentences closest to the centroid for tex-
tual summary selection. While if only video data is
available, we solve the visual summarization task
in an unsupervised manner, using K-Means clus-
tering to cluster frames using the image histogram
and then select the best frame from clusters based
on the variance of laplacian as the visual summary.

From Table 1 and Table 2, we can find that mul-
timodal methods outperform unimodal approaches,
showing the effectiveness of exploring the rela-
tionship and taking advantage of the cross-domain
alignments of generating high-quality summaries.

5.7 Interpretation

To show a deeper understanding of the multimodal
alignment between the visual domain and language
domain, we compute and visualize the transport
plan to provide an interpretation of the latent repre-
sentations, which is shown in Figure 4. When we
are regarding the extracted embedding from both
text and image spaces as the distribution over their
corresponding spaces, we expect the optimal trans-
port coupling to reveal the underlying similarity
and structure. Also, the coupling seeks sparsity,
which further helps to explain the correspondence
between the text and image data.

Figure 4 shows comparison results of matched
image-text pairs and non-matched ones. The top
two pairs are shown as matched pairs, where there
is an overlap between the image and the correspond-
ing sentence. The bottom two pairs are shown as
non-matched ones, where the overlapping of mean-
ing between the image and text is relatively small.
The correlation between the image domain and
the language domain can be easily interpreted by
the learned transport plan matrix. In specific, the
optimal transport coupling shows the pattern of
sequentially structured knowledge. However, for

non-matched image-sentences pairs, the estimated
couplings are relatively dense and barely contain
any informative structure. As shown in Figure 4,
we can find that the transport plan learned in the
cross-domain alignment module demonstrates a
way to align the features from different modalities
to represent the key components. The visualization
of the transport plan contributes to the interpretabil-
ity of the proposed model, which brings a clear
understanding of the alignment module.

Emma Horton, who works
at the z00, pictured with
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replicas in new enclosure.
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Figure 4: The OT coupling shows sparse patterns and
specific temporal structure for the embedding vectors of
ground-truth-matched video and text segments.

6 Conclusion

In this work, we proposed SCCS, a segment-level
Semantics-Consistent Cross-domain Summariza-
tion model for the MSMO task. Our model decom-
posed the video & article into segments based on
the content to preserve the structural semantics, and
explored the cross-domain semantics relationship
via optimal transport alignment at the segment level.
The experimental results on three MSMO datasets
show that SCCS outperforms previous summariza-
tion methods. We further provide interpretation by
the OT coupling. Our approach provides a new di-
rection for the MSMO task, which can be extended
to many real-world applications.
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7 Limitations

Due to the absence of large evaluation databases,
we only evaluated our method on three publicly
available datasets that can be used for the MSMO
task. The popular video databases, i.e., COIN and
Howto100M datasets, can not be used in our task,
since they lack narrations and key-step annotation.
So a large evaluation database is highly needed for
evaluating the performance of MSMO approaches.

As the nature of the summarization task, human
preference has an inevitable influence on the perfor-
mance, since the ground-truth labels were provided
by human annotators. It’s somehow difficult to
quantitatively specify the quality of the summariza-
tion result, and current widely used evaluation met-
rics may not reflect the performance of the results
very well. So we are seeking some new directions
to find another idea for quality evaluation.

The current setting is short videos & short doc-
uments, due to the constrain of available data. To
extend the current MSMO to a more general set-
ting, i.e., much longer videos or documents, new
datasets should be collected. However, this re-
quires huge human effort in annotating and orga-
nizing a high-value dataset, which is extremely
time-consuming and labor-intensive. Nevertheless,
we believe the MSMO task is promising and can
provide valuable solutions to many real-world prob-
lems. So if such a dataset is collected, we believe it
could significantly boost the research in this field.

8 Ethics Statement

Our work aims at providing a better user experi-
ence when exploring online multimedia, and there
is no new dataset collected. To the best of our
knowledge, this application does not involve ethi-
cal issues, and we do not foresee any harmful uses
of this study.
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A Optimal Transport (OT) Basis

OT is the problem of transporting mass between
two discrete distributions supported on latent fea-
ture space X. Let p = {@;, pu;}, and v =
{yj, v, };n:l be the discrete distributions of inter-
est, where x;, y; € X’ denotes the spatial locations
and p;, v, respectively, denoting the non-negative
masses. Without loss of generality, we assume
Yok = ;v; = 1. 7€ RY™ is a valid trans-
port plan if its row and column marginals match
v and v, respectively, which is ), m;; = v; and
> ;Tij = pq- Intuitively, 7 transports 7;; units
of mass at location x; to new location Yj- Such
transport plans are not unique, and one often seeks
a solution 7* € II(, v) that is most preferable in
other ways, where I1(u, v) denotes the set of all
viable transport plans. OT finds a solution that is
most cost effective w.r.t. cost function C(x, y):

D(p,v) = Zm*jC (@i, y,) = ‘rrEli'II%i,v) ijC (@i, y,)
) ]

where D(u, v) is known as OT distance. D(u, v)

minimizes the transport cost from p to v w.r.t.

C(x,y). When C(x,y) defines a distance met-

ric on X, and D(p, v) induces a distance metric

on the space of probability distributions supported

on X, it becomes the Wasserstein Distance (WD).

B More Related Work

Optimal Transport OT studies the geometry of
probability spaces (Villani, 2003), a formalism for
finding and quantifying mass movement from one
probability distribution to another. OT defines the
Wasserstein metric between probability distribu-
tions, revealing a canonical geometric structure
with rich properties to be exploited. The earliest
contribution to OT originated from Monge in the
eighteenth century. Kantorovich rediscovered it
under a different formalism, namely the Linear
Programming formulation of OT. With the devel-
opment of scalable solvers, OT is widely applied
to many real-world problems and applications (Fla-
mary et al., 2021; Chen et al., 2020a; Yuan et al.,
2020; Zhu et al., 2021; Klicpera et al., 2021; Alqah-
tani et al., 2021; Lee et al., 2019; Chen et al., 2019;
Duan et al., 2022).

Video Summarization Video summarization
aims at generating a short synopsis that summa-
rizes the video content by selecting the most in-
formative and vital parts. The summary usually

contains a set of representative video keyframes
or video key-fragments that have been stitched in
chronological order to form a shorter video. The
former type is known as video storyboard, and the
latter one is known as video skim (Apostolidis et al.,
2021). Traditional video summarization methods
only use visual information, extracting important
frames to represent the video content. For instance,
Gygli et al. (2014); Jadon and Jasim (2020) gener-
ated video summaries by selecting keyframes us-
ing SumMe and TVSum datasets. Some category-
driven or supervised training approaches were pro-
posed to generate video summaries with video-
level labels (Song et al., 2015; Zhou et al., 2018a;
Xiao et al., 2020; Zhou et al., 2018b).

Textual Summarization Textual summarization
takes textual metadata, i.e., documents, articles,
tweets, etc, as input, and generates textual sum-
maries, in two directions: abstractive summariza-
tion and extractive summarization. Abstractive
methods select words based on semantic under-
standing, and even the words may not appear in
the source (Tan et al., 2017; See et al., 2017b). Ex-
tractive methods attempt to summarize language
by selecting a subset of words that retain the most
critical points, which weights the essential part of
sentences to form the summary (Narayan et al.,
2018; Wu and Hu, 2018). Recently, the fine-tuning
approaches have improved the quality of generated
summaries based on pre-trained language models
in a wide range of tasks (Liu and Lapata, 2019;
Zhang et al., 2019c).

Video Temporal Segmentation Video temporal
segmentation aims at generating small video seg-
ments based on the content or topics of the video,
which is a fundamental step in content-based video
analysis and plays a crucial role in video analysis.
Previous work mostly formed a classification prob-
lem to detect the segment boundaries in the super-
vised manner (Sidiropoulos et al., 2011; Zhou et al.,
2013; Poleg et al., 2014; Sokeh et al., 2018; Aakur
and Sarkar, 2019). Recently, unsupervised methods
have also been explored (Gygli et al., 2014; Song
et al., 2015). Temporal segmentation of actions
in videos has also been widely explored in previ-
ous works (Wang et al., 2019; Zhao et al., 2017;
Lea et al., 2017; Kuehne et al., 2020; Sarfraz et al.,
2021; Wang et al., 2020b). Video shot boundary de-
tection and scene detection tasks are also relevant
and has been explored in many previous studies
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(Hassanien et al., 2017; Hato and Abdulmunem,
2019; Rao et al., 2020; Chen et al., 2021; Zhang
etal., 2021), which aim at finding the visual change
or scene boundaries.

Textual Segmentation Textual segmentation aim
at dividing the text into coherent, contiguous,
and semantically meaningful segments (Nicholls,
2021). These segments can be composed of words,
sentences, or topics, where the types of text include
blogs, articles, news, video transcript, etc. Pre-
vious work focused on heuristics-based methods
(Koshorek et al., 2018; Choi, 2000), LDA-based
modeling algorithms (Blei et al., 2003; Chen et al.,
2009), or Bayesian methods (Chen et al., 2009;
Riedl and Biemann, 2012). Recent developments in
NLP developed large models to learn huge amount
of data in the supervised manner (Mikolov et al.,
2013; Pennington et al., 2014; Li et al., 2018; Wang
et al., 2018). Besides, unsupervised or weakly-
supervised methods has also drawn much attention
(Glavas et al., 2016; Lukasik et al., 2020).

C Baselines

C.1 Baselines for the VMSMO dataset

For the VMSMO dataset, we compare with mul-
timodal summarization baselines and textual sum-
marization baselines:

Multimodal summarization baselines:
Synergistic (Guo et al., 2019): Guo et al. (2019)
proposed a image-question-answer synergistic net-
work to value the role of the answer for precise
visual dialog, which is able to jointly learn the rep-
resentation of the image, question, answer, and
history in a single step.

PSAC (Li et al., 2019): The Positional Self-
Attention with Coattention (PSAC) model adopted
positional self-attention block to model the data
dependencies and video-question co-attention to
help attend to both visual and textual information.
MSMO (Zhu et al., 2018): MSMO was the first
model on producing multimodal output as sum-
marization results, which adopted the pointer-
generator network, added attention to text and im-
ages when generating textual summary, and used
visual coverage by the sum of visual attention dis-
tributions to select pictures.

MOF (Zhu et al., 2020): Zhu et al. (2020) proposed
a multimodal objective function with the guidance
of multimodal reference to use the loss from the
summary generation and the image selection to

solve the modality-bias problem.

DIMS (Mingzhe et al., 2020): DIMS is a dual in-
teraction module and multimodal generator, where
conditional self-attention mechanism is used to cap-
ture local semantic information within video, and
the global-attention mechanism is applied to handle
the semantic relationship between news text and
video from a high level.

Textual summarization baselines:

Lead (Nallapati et al., 2017): The Lead method
simply selects the first sentence of article/document
as the textual summary.

TexkRank (Mihalcea and Tarau, 2004): TexkRank
is a graph-based extractive summarization method
which adds sentences as nodes and uses edges to
weight similarity.

PG (See et al., 2017b): PG is a hybrid pointer-
generator model with coverage, which copied
words via pointing, and generated words from a
fixed vocabulary with attention.

Unified (Hsu et al., 2018): The Unified model
combined the strength of extractive and abstractive
summarization, where a sentence-level attention is
used to modulate the word-level attention and an in-
consistency loss function is introduced to penalize
the inconsistency between two levels of attentions.
GPG (Shen et al., 2019): Generalized Pointer
Generator (GPG) replaced the hard copy compo-
nent with a more general soft “editing” function,
which learns a relation embedding to transform the
pointed word into a target embedding.

C.2 Baselines for the Daily Mail and CNN
datasets

For Daily Mail and CNN datasets, we have mul-
timodal baselines, video summarization baselines,
and textual summarization baselines:

Multimodal summarization baselines:

MSMO (Zhu et al., 2018): MSMO was the first
model on producing multimodal output as sum-
marization results, which adopted the pointer-
generator network, added attention to text and im-
ages when generating textual summary, and used
visual coverage by the sum of visual attention dis-
tributions to select pictures.

Img+Trans (Hori et al., 2019): (Hori et al., 2019)
applied multi-modal video features including video
frames, transcripts, and dialog context for dialog
generation.

TFN (Zadeh et al., 2017): Tensor Fusion Network
(TEN) models intra-modality and inter-modality
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dynamics for multimodal sentiment analysis which
explicitly represents unimodal, bimodal, and tri-
modal interactions between behaviors.

HNNattTI (Chen and Zhuge, 2018): HNNattTI
aligned the sentences and accompanying images
by using attention mechanism.

M?2SM (Fu et al., 2021, 2020): M?SM is a multi-
modal summarization model with a bi-stream sum-
marization strategy for training by sharing the abil-
ity to refine significant information from long ma-
terials in text and video summarization.

Video summarization baselines:

VSUMM (De Avila et al., 2011): VSUMM is a
methodology for the production of static video sum-
maries, which extracted color features from video
frames and adopted k-means for clustering.
DR-DSN (Zhou et al., 2018a): Zhou et al. (2018a)
formulated video summarization as a sequential de-
cision making process and developed a deep sum-
marization network (DSN) to summarize videos.
DSN predicted a probability for each frame, which
indicates the likelihood of a frame being selected,
and then takes actions based on the probability
distributions to select frames to from video sum-
maries.

Textual summarization baselines:

Lead3 (See et al., 2017a): Similar to Lead, Lead3
means picking the first three sentences as the sum-
mary result.

NN-SE (Cheng and Lapata, 2016): NN-SE is a gen-
eral framework for single-document summarization
composed of a hierarchical document encoder and
an attention-based extractor.

TS (Raffel et al., 2019): T5 is an encoder-decoder
model pre-trained on a multi-task mixture of unsu-
pervised and supervised tasks and for which each
task is converted into a text-to-text format. TS5
works well on a variety of tasks out-of-the-box by
prepending a different prefix to the input corre-
sponding to each task, inluding summarization.
Pegasus (Zhang et al., 2019a): Pre-training with
Extracted Gap-sentences for Abstractive SUm-
marization Sequence-to-sequence models (PEGA-
SUS) uses self-supervised objective Gap Sentences
Generation (GSG) to train a transformer encoder-
decoder model.

BART (Lewis et al., 2020): BART is a sequence-
to-sequence model trained as a denoising autoen-
coder, and showed great performance a variety of
text summarization datasets.
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