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Abstract

Event Coreference Resolution (ECR) is the task
of linking mentions of the same event either
within or across documents. Most mention
pairs are not coreferent, yet many that are coref-
erent can be identified through simple tech-
niques such as lemma matching of the event
triggers or the sentences in which they appear.
Existing methods for training coreference sys-
tems sample from a largely skewed distribution,
making it difficult for the algorithm to learn
coreference beyond surface matching. Addi-
tionally, these methods are intractable because
of the quadratic operations needed. To address
these challenges, we break the problem of ECR
into two parts: a) a heuristic to efficiently fil-
ter out a large number of non-coreferent pairs,
and b) a training approach on a balanced set
of coreferent and non-coreferent mention pairs.
By following this approach, we show that we
get comparable results to the state of the art on
two popular ECR datasets while significantly
reducing compute requirements. We also ana-
lyze the mention pairs that are "hard" to accu-
rately classify as coreferent or non-coreferent1.

1 Introduction

Event coreference resolution (ECR) is the task of
finding mentions of the same event within the same
document (known as “within-document corefer-
ence resolution,” or WDCR) or across text (known
as “cross-document coreference resolution,” or
CDCR) documents. This task is used for knowl-
edge graph construction, event salience detection
and question answering (Postma et al., 2018).

Traditionally, ECR is performed on pairs of
event mentions by calculating the similarity be-
tween them and subsequently using a clustering
algorithm to identify ECR relations through tran-
sitivity. The pairwise similarity is estimated using
a supervised machine learning method, where an

1code repo: github.com/ahmeshaf/lemma_ce_coref

algorithm is trained to distinguish between posi-
tive and negative examples based on ground truth.
The positive examples are all pairs of coreferent
mentions, while the negative examples are all pairs
of non-coreferent mentions. To avoid comparing
completely unrelated events, the negative pairs are
only selected from documents coming from the set
of related topics.

Many coreferent pairs are similar on the sur-
face, meaning that the event triggers (the words
or phrases referring to the event) have the same
lemma and appear in similar sentences. We can
use these features in a heuristic to further classify
the positive (P+) and negative (P−) pairs into four
categories:

1. P+
easy: coreferent/positive mention pairs with

high surface similarity.

2. P+
FN: coreferent/positive mention pairs with

low surface similarity.

3. P−
hard: non-coreferent/negative mention pairs

with high surface similarity.

4. P−
TN: non-coreferent/negative mention pairs

with low surface similarity

As shown in Figure 1, P+
easy represents coreferent

mention pairs that can be correctly identified by the
heuristic, but P−

hard are non-coreferent pairs that
might be difficult for the heuristic to identify. Simi-
larly, P−

TN (True Negatives) are non-coreferent pairs
that the heuristic can correctly infer, but P+

FN (False
Negatives) require additional reasoning (that In-
dianapolis is coreferent with Colts) to make the
coreference judgement.

Most mention pairs are non-coreferent, compris-
ing all pairs corresponding to P−

hard and P−
TN. How-

ever, we observe that that the distribution of the
three categories (P+

easy, P−
hard, and P+

FN) is fairly
similar across most ECR datasets, with P−

TN caus-
ing the imbalance between positive and negative
pairs. Previous methods do not differentiate be-
tween these four categories and randomly select
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P+
easy
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Colts clinch playoff spot by beating Jags.
Indianapolis made a comeback this season to lock up
the five seed in the AFC with this win.

P+
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Colts clinch playoff berth with 20 - 13 win in K . C . 
Game slips away late as Jaguars fall to Indy.
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Figure 1: In this approach, we use a lemma-based heuristic to identify coreference, or the relationship between
two mentions in a text that refer to the same event. We compare the similarity between the event trigger, which
is highlighted in bold and italic, and the lemmas, or base forms, of the sentences. The heuristic classifies the
mention pairs "P+

easy" and "P−
hard" as coreferent, and "P+

FN" and "P−
TN" as not coreferent. "P+

easy" and "P−
TN" are correct

predictions, meaning they are classified correctly as coreferent and not coreferent. "P−
hard" and "P+

FN" are incorrect
predictions, meaning they are misclassified as coreferent and not coreferent.

the positive and negative pairs to train their corefer-
ence systems from this heavily skewed distribution.
This makes it challenging for the coreference al-
gorithm to identify coreferent links among a large
number of non-coreferent ones. Furthermore, as
ECR is performed on n2 number of mention pairs,
where n is the number of mentions in the corpus,
these methods can become intractable for a large
corpus.

To improve the efficiency of the ECR process
while achieving near sate of the art (SOTA) results,
we divide the problem into two manageable sub-
tasks: a) a heuristic to efficiently and accurately
filter out a large number of P−

TN as a way of balanc-
ing the skewed distribution, and b) an ECR system
trained on the balanced set of coreferent and non-
coreferent mention pairs (P+

easy and P−
hard). This

approach also eases the analysis of some of the
mention pairs that are difficult to classify with an
ECR system, which we present in this paper.

2 Related Work
Pre-Transformer Methods Pre-Transformer lan-
guage model-related works in event coreference
such as Kenyon-Dean et al. (2018) trained neu-
ral models with customized objective (loss) func-
tions to generate richer representations of mention-
pairs using “static” embeddings such as con-
textual Word2Vec (Mikolov et al., 2013) as
well as document-level features such as TF-IDF
and heuristically-motivated features like mention-
recency, word overlap, and lemma overlap, etc. As
such, they improved upon the baselines established
by Cybulska and Vossen (2015) on the ECB+ cor-
pus. Similarly, works such as Barhom et al. (2019)
suggest both disjoint and joint-clustering of events

mentions with their related entity clusters by using
a predicate-argument structure. In this, their dis-
joint model surpassed Kenyon-Dean et al. (2018)
by 9.5 F1 points using the CoNLL scorer (Pradhan
et al., 2014) whereas their joint model improved
upon the disjoint model by 1.2 points for entities
and 1 point for events.
Transformer-based Cross-encoding Most re-
cent works (Meged et al., 2020; Zeng et al., 2020;
Cattan et al., 2021; Allaway et al., 2021; Caciularu
et al., 2021; Held et al., 2021; Yu et al., 2022a)
in CDCR have shown success in using pairwise
mention representation learning models, a method
popularly known as cross-encoding. These meth-
ods use distributed and contextually-enriched “non-
static” vector representations of mentions from
large, Transformer-based language models like var-
ious BERT-variants to calculate supervised pair-
wise scores for those event mentions. At inference,
such works use variations of incremental or ag-
glomerative clustering techniques to form predicted
coreference links and evaluate their chains on gold
coreference standards. The methods vary with the
context they use for cross-encoding. Cattan et al.
(2021) use only sentence-level context, Held et al.
(2021) use context from sentences surrounding the
mentions, and Caciularu et al. (2021) use context
from entire documents.

In our research, we have focused on the CDLM
model from Caciularu et al. (2021) and their
methodology, which uses a combination of en-
hanced pretraining using the global attention
mechanism inspired by Beltagy et al. (2020) as
well as finetuning on a task-specific dataset us-
ing pretrained special tokens to generate more
semantically-enhanced embeddings for mentions.



Beltagy et al. (2020) and Caciularu et al. (2021)
cleverly use the global attention mechanism to lin-
early scale the oft-quadratic complexity of pairwise
scoring of mentions in coreference resolution while
also accommodating longer documents (up to 4,096
tokens). Previous works such as Baldwin (1997),
Stoyanov and Eisner (2012), Lee et al. (2012), and
Lee et al. (2013) also reduce computation time by
strategically using deterministic, rule-based sys-
tems along with neural architectures.

Recently, pruning P−
TN for ECR has been shown

to be effective by Held et al. (2021). They cre-
ate individual representations for mentions and use
them in a bi-encoder method to retrieve potential
coreferent candidates, which are later refined using
a cross-encoder trained on hard negative examples.
In contrast, our approach utilizes a computation-
ally efficient pruning heuristic and trains the cross-
encoder on a smaller dataset. We also conduct an
error analysis on all hard examples that are misclas-
sified by the cross-encoder, which is made feasible
by the heuristic.

3 Datasets
We experiment with two popular ECR datasets dis-
tinguished by the effectiveness of a lemma heuristic
on the dataset.

3.1 Event Coreference Bank Plus (ECB+)
The ECB+ corpus (Cybulska and Vossen, 2014) is
a popular English corpus used to train and evaluate
systems for event coreference resolution. It extends
the Event Coref Bank corpus (ECB; Bejan and
Harabagiu (2010)), with annotations from around
500 additional documents. The corpus includes
annotations of text spans that represent events, as
well as information about how those events are
related through coreference. We divide the doc-
uments from topics 1 to 35 into the training and
validation sets2, and those from 36 to 45 into the
test set, following the approach of Cybulska and
Vossen (2015).

3.2 Gun Violence Corpus (GVC)
The Gun Violence Corpus (Vossen et al., 2018) is
a recent English corpus exclusively focusing on
event coreference resolution. It is intended to be a
more challenging dataset than ECB+ which has a
very strong lemma baseline (Cybulska and Vossen,
2014). It is a collection of texts surrounding a

2Validation set includes documents from the topics 2, 5,
12, 18, 21, 34, and 35

ECB+ GVC
Train Dev Test Train Dev Test

T/ST 25 8 10/20 1/170 1/37 1/34
D 594 196 206 358 78 74
M 3808 1245 1780 5313 977 1008
C 1464 409 805 991 228 194
S 1053 280 623 252 70 43

Table 1: ECB+ and GVC Corpus statistics for event
mentions. T/ST = topics/sub-topics, D = documents, M
= event mentions, C = clusters, S = singletons.

single topic (gun violence) and various sub-topics.
Since it does not have coreference links across sub-
topics, we only consider mention pairs within the
sub-topics. We use the data split by Bugert et al.
(2021). Table 1 contains the statistics for ECB+ and
GVC corpora.

4 System Overview
There are two major components in our system:
the heuristic and the discriminator (cross-encoder)
trained on the output of the heuristic.

4.1 Lemma Heuristics (LH, LHOra)

A key feature of ECR is its high baseline achieved
by comparing the lemmas of mention triggers and
sentences. To leverage this feature, we incorpo-
rate it as the first step in our coreference resolution
system. We utilize spaCy3 to extract the lemmas,
a widely-used tool for this task. In addition to
matching lemmas of triggers, we also create and
utilize a set of synonymous4 lemma pairs that com-
monly appear in coreferent mention pairs in our
training set. This approach allows us to identify
coreferent mention pairs that have different triggers
and improve the overall recall. The heuristic, LH,
only utilizes the synonymous lemma pairs from the
training set. We also evaluate the performance of
LHOra, which uses synonymous lemma pairs from
the entire dataset which means it uses the corefer-
ence information of the development and test sets
to create synonymous lemma pairs.

For a mention pair (A, B), with triggers (tA, tB),
head lemmas (lA, lB) and for a given synonymous
lemma pair set (SynP), we consider only lemma
pairs that pass any of the following rules:

• (lA, lB) ∈ SynP

• lA == lB

• tB contains lA
3https://spacy.io/ model en_core_web_md v3.4
4The words need not be synonyms in strict definitions, but

rather appear in coreference chains.



Train Dev Test
0.0

0.5

1.0

R
at

io
ECB+

Train Dev Test
0.0

0.5

1.0

R
at

io

GVC

coreferent non-coreferent

Figure 2: Coreferent vs. non-coreferent mention pairs
ratio across datasets.

• tA contains lB

For mentions that have matching trigger lem-
mas/triggers or are synonymous, we proceed by
comparing the context of the mentions. In this
work, we only compare the mention’s sentence
to check for similarities between two mentions.
To further refine our comparison, we remove stop
words and convert the tokens in the text to their
base form. Then, we determine the overlap be-
tween the two mentions and predict that the pair is
coreferent if the overlap exceeds a certain thresh-
old. We tune the threshold using the development
sets.

4.1.1 Filtering out P−
TN

Cross-document coreference systems often strug-
gle with a skewed distribution of mention pairs, as
seen in Figure 2. In any dataset, only 5-10% of
the pairs are corefering, while the remaining 90%
are non-coreferent. To address this, we use the
heuristic to balance the distribution by selectively
removing non-coreferent pairs (P−

TN), while mini-
mizing the loss of coreferent pairs (P+

FN). We do
this by only considering the mention pairs that the
heuristic predicts as coreferent, and discarding the
non-coreferent ones.

4.1.2 P−
hard, P+

easy, and P+
FN Analysis

P+
easy and P−

hard: As defined earlier, P+
easy are the

mention pairs that the heuristic correctly predicts
as coreferent when compared to the ground-truth,
and P−

hard are the heuristic’s predictions of coref-
erence that are incorrect when compared to the
ground-truth. In §4.2.1, we go through how we fix
heuristic’s P−

hard predictions while minimizing the
errors introduced in terms of P+

easy.
P+
FN: We define a pair as a P+

FN only if it cannot be
linked to the true cluster through subsequent steps.

a b c

a b c

a b c

a b c(1)

(2)

(3)

(4)

Figure 3: Counting size of mention pairs (P+
FN and P+

easy)
in a true cluster {a, b, c} using heuristic’s coreferent
predictions (solid line) and non-coreferent predictions
(dotted line). We count P+

FN after performing transitive
closure, resulting in a size of 0 (instead of 1) in (2).

As shown in Figure 3, if a true cluster is {a, b, c}
and the heuristic discards one pair (a, c), it will
not be considered as a P+

FN because the coreference
can be inferred through transitivity. However, if it
discards two pairs {(a,c), (b,c)}, they will both be
considered as P+

FN. We hypothesize that an ideal
heuristic is one that maintains a balance between
P+
easy and P−

hard while minimizing P+
FN, and there-

fore, we tune the heuristic’s threshold accordingly
using the development sets of the corpora.

We evaluate the heuristics LH and LHOra by plot-
ting the distributions P+

easy, P−
hard, and P+

FN gener-
ated by each for the two corpora. From Figure
4, We observe similar distributions for the test
and development sets with the chosen threshold
value from the development set. We also observe
that LH causes a significant number of P+

FN, while
LHOra has a minimal number of P+

FN. Minimizing
the count of P+

FN is important as it directly affects
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Figure 5: The cross-encoding technique to generate the
coreference score between the mention pair (A, B). This
involves adding special tokens, <m> and </m>, around
the event triggers, and then combining and processing
the two mentions through a transformer-based language
model. Certain outputs of the transformer (ECLS, EA,
EB) are then concatenated and fed into a classifier, which
produces a score between 0 and 1 indicating the degree
of coreference between the two mentions.

the system’s recall. The distributions of P+
easy and

P−
hard remain balanced across all datasets except

when LHOra is used in GVC where there are double
the number of P−

hard to P+
easy. P−

hard should be mini-
mized as it can affect the system’s overall precision.

4.2 Cross-Encoder

A common technique to perform ECR is to use
Transformer-based cross-encoding (CE) on the
mention pair (A, B). This process, depicted in Fig-
ure 5, begins by surrounding the trigger with spe-
cial tokens (<m> and </m>). The mentions are then
combined into a single input for the transformer
(e.g., RoBERTa). The pooled output of the trans-
former (ECLS) and the output corresponding to the
tokens of the event triggers (EA and EB) are ex-
tracted.5 ECLS, EA, EB, and the element-wise prod-
uct of the mention embeddings (EA⊙EB) are all
concatenated to create a unified representation of
the mention pair. This representation is used, with a
classifier, to learn the coreference score, CE (A, B),
between the pair after finetuning the transformer.

5EA and EB represent the sum of the output embedding of
each token for event triggers with multiple tokens.

4.2.1 P+
easy & P−

hard Discriminator (D)
The cross-encoder’s encoding is non-symmetric,
meaning, depending on the order in which the men-
tions are concatenated, it will give different coref-
erence scores. In reality, the order should not mat-
ter for predicting if the two events are the same
or not. We propose a symmetric cross-encoding
scorer where we take the average of the scores pre-
dicted from both combinations of concatenation.
So for a mention pair, p = (A, B), the symmetric
cross-encoder coreference scorer (D) is given as:

D(p) =
CE(A,B) + CE(B,A)

2
(1)

We employ a cross-encoder with a symmetric
scorer, as outlined in Equation 1, as the discrim-
inator for P+

easy and P−
hard. We conduct experi-

ments utilizing two different Transformer models,
RoBERTa (Dsmall) and Longformer (Dlong), which
vary in their maximum input capacity.

5 Experimental Setup

We describe our process of training, prediction, and
hyperparameter choice in this section.

5.1 Mention Pair Generation
We use the gold mentions from the datasets. Fol-
lowing previous methods, we generate all the pairs
(Pall) of mentions (Mv) from documents coming
from the same topic. We use gold topics in the
training phase and predicted topics through doc-
ument clustering in the prediction phase (Bugert
et al., 2021).

5.2 Training Phase
During the training phase, we leverage LH to
generate a balanced set of positive and negative
samples, labeled as P+

easy and P−
hard, respectively.

These samples are then used to train our models,
Dsmall and Dlong separately, using the Binary Cross
Entropy Loss (BCE) function as follows:

L =
∑

p+∈ P+
easy,

p−∈ P−
hard

log D(p+) + log (1− D(p−))

Unlike traditional methods, we do not rely on ran-
dom sampling or artificial balancing of the dataset.
Instead, our heuristic ensures that the positive and
negative samples are naturally balanced (as de-
picted in Figure 6). A side-effect of adopting this
approach is that some of the positive samples are



Algorithm 1 Training Phase

Require: D: training document set
T : gold topics
Mv: gold event mentions in D
Sv: sentences of the mentions
Dv: documents of the mentions
G: gold mention cluster map

P ← TopicMentionPairs(Mv, T )
SynP ← SynonymousLemmaPairs(P,G)
P+
easy,P−

hard,P+
FN,P−

TN ← LH(P,G, SynP, S
v)

Dlong ← TrainCrossEncoder(P+
easy, P−

hard, Dv)
Dsmall ← TrainCrossEncoder(P+

easy, P−
hard, Sv)

return SynP,Dlong,Dsmall

excluded in training. We do this to keep the train-
ing and prediction phases consistent and, to ensure
the cross-encoder is not confused by the inclusion
of these hard positive examples.

Additionally, for D with Longformer, we utilize
the entire document for training, while for D with
RoBERTa, we only use the sentence containing
the mention to provide contextual information. We
employ the Adam optimizer with a learning rate
of 0.0001 for the classifier and 0.00001 for fine-
tuning the Transformer model. This entire process
is illustrated in Algorithm 1.

To ensure optimal performance, we train our sys-
tem separately for both the ECB+ and GVC train-
ing sets. We utilize a single NVIDIA A100 GPU
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Figure 6: Training Samples of previous methods vs.
ours. The heuristic creates a balanced and significantly
smaller training set for ECB+. For GVC, the heuristic
discards half of the negative samples while somewhat
balancing the dataset.

Algorithm 2 Prediction Phase
Require: D: testing document set
T : gold/clustered topics
Mv: gold event mentions in D
Sv: sentences of the mentions
SynP: synonymous lemma pairs from training
Dsmall,Dlong: trained CE discriminators

P ← TopicMentionPairs(Mv, T )
AH,P+ ← LH(P,SynP, S

v)
AP ← Dsmall(P+) > 0.5
AP ← Dlong(P+) > 0.5

return ConnectedComponents(AH),
ConnectedComponents(AP)

with 80GB memory to train Dlong with the Long-
former model, and a single NVIDIA RTX 3090
GPU (24 GB) for training Dsmall with the RoBERTa-
BASE model. We train each system for 10 epochs,
with each epoch taking approximately one hour
for the Longformer model and 15 minutes for the
RoBERTa model.

5.3 Prediction Phase
In the prediction phase, we first pass the mention
pairs through the heuristic and create an adjacency
matrix called AH based on its coreferent predic-
tions. The ones predicted not coreferent by the
heuristic are discarded. This step is crucial in terms
of making the task tractable. Next, we pass the men-
tion pairs that are predicted to be coreferent by the
heuristic through Dsmall and Dlong separately. Using
the subsequent coreferent predictions from these
models, we generate another adjacency matrix AP.
To create event clusters, we use these matrices to
identify connected components.

As a baseline, we use the matrix AH to gener-
ate the clusters. We then use AP to assess the im-
provements made by using Dsmall and Dlong over the
baseline. This process is illustrated in Algorithm
2. The process takes between 6-10 minutes to run
the Longformer model and between 1-2 minutes to
run the RoBERTa one.

6 Results
We evaluate the event clusters formed using the
standard coreference evaluation metrics (MUC, B3,
CEAFe, LEA and CoNLL F1—the average of
MUC, B3 and CEAFe Vilain et al. (1995); Bagga
and Baldwin (1998); Luo (2005); Luo et al. (2014);
Pradhan et al. (2014); Moosavi et al. (2019)). We



CoNLL F1

Methods ECB+ GVC

Bugert et al. (2021) - 59.4
Cattan et al. (2021) 81.0 -
Caciularu et al. (2021) 85.6 -
Held et al. (2021) 85.7 83.7
LH 76.4 51.8
LH + Dsmall 80.3 73.7
LH + Dlong 81.7 75.0

LHOra 81.9 53.4
LHOra + Dsmall 85.9 75.4
LHOra + Dlong 87.4 76.1

Table 2: Results on within and cross-document event
coreference resolution on ECB+ and GVC test sets.

run the baseline results (LH and LHOra) and the
combination of each heuristic with the two discrim-
inators (LH/LHOra+ Dsmall/Dlong). We compare to
previous methods for ECB+ and GVC as shown in
Table 2. Bold indicates current or previous SOTA
and our best model.

CoNLL F1 scores show that LH and LHOra are
strong baselines for the ECB+ corpus, where
LHOra surpasses some of the previous best methods.
From this, we can say that making improvements in
the heuristic by better methods of finding synony-
mous lemma pairs is a viable solution for tackling
ECB+ with a heuristic. However, the heuristics fall
short for GVC, where LHOra is only marginally
better than LH. This may be due to the lower varia-
tion in lemmas in the GVC corpus. We hypothesize
methods that can automatically detect synonymous
lemma pairs will not be beneficial for GVC, and
LH itself is sufficient as a heuristic here.

The discriminators consistently make signifi-
cant improvements over the heuristics across both
datasets. For ECB+, Dlong is nearly 2 points better
than Dsmall in terms of the CoNLL measure. Both
Dsmall and Dlong when coupled with LHOra surpass
the state of the art for this dataset. LH +Dlong beats
Cattan et al. (2021) but falls short of SOTA, albeit
by only 4 points. On GVC, both fall short of SOTA
(Held et al., 2021) by only 8-9 points on CoNLL
F1, with substantially fewer computations. In terms
of computational cost-to-performance ratio, as we
elaborate in §7.1, our methods outperform all the
previous methods.

For ECR, where context is key, we would ex-
pect better performance from encoders with longer
context. Dlong and Dsmall show this trend for both
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Figure 7: Prediction Phase Time Complexity in terms
of Mention Pair Encoding.

ECB+ and GVC datasets. However, the gain we get
from using the entire document is not substantial
for the amount of additional computation required.
An interesting line of future work would to auto-
matically detect the core sections in the document
that contribute to coreference and then only use
that as context for ECR.

7 Discussion

7.1 Time Complexity Analysis

The heuristic is a very fast process that scales lin-
early with the number of mentions in a corpus.
Specifically, by hashing the lemma pairs and sen-
tence token lemmas, this step performs linear com-
parisons of mention pairs at prediction. The men-
tion pair cross-encoding with Transformer is a com-
putationally intensive process. A method that en-
codes all mention pairs in a large corpus can be-
come intractable. Our method, however, is linear in
complexity with the number of mentions, as shown
in Figure 7, and outperforms previous methods
in terms of computational efficiency. While Held
et al. (2021)’s cross-encoding at prediction is linear
(5*n), their pruning step is quadratic. They rely
additionally on training a bi-encoder and a mention
neighborhood detector step that requires GPUs.

7.2 Synonymous Lemma Pairs
We have established an upper limit for ECR us-
ing the LHOra+ Dlong method for ECB+. Previous
methods such as Held et al. (2021), use an ora-
cle coreference scorer after their pruning step. In
other words, their oracle assumption involves us-
ing a perfect cross-encoder. In contrast, we only
use the oracle for pruning by assuming a perfect
set of synonymous lemma pairs. This means that



improved pruning methods can lead to better ECR
performance. We believe that it is possible to cre-
ate a more effective synonymous pair detector than
LHOra by adopting recent work on predicate class
detection (Brown et al., 2014, 2022) that use Verb-
Net (Schuler, 2005). In future research, we aim
to enhance the process of generating synonymous
pairs through the use of cross-encoding or addi-
tional steps such as word sense disambiguation
with the Proposition Bank (Palmer et al., 2005;
Pradhan et al., 2022). Identifying the sense of the
trigger will help refine the lemma pairs that appear
in coreference chains. Additionally, annotating the
sense of the trigger is a straightforward process that
can be easily incorporated into annotation proce-
dures for new datasets, which is more efficient than
coreference annotations.

7.3 Qualitative Error Analysis
We carry out a comprehensive analysis on errors
the discriminator makes after the heuristic’s pre-
dictions. Unlike previous methods (Barhom et al.,
2019) where they sample a subset of mentions to
carry out the error analysis, we do so for the entire
dataset. By efficiently discarding the large number
of P−

TN, we are able to isolate the shortcomings of
the crossencoder, analyze them and offer solutions.
Table 6 in Appendix C lists the various kinds of er-
rors (incorrect and missing links) made by Dsmall on
the ECB+ and GVC dev sets.

We find error categories like same-sentence pro-
nouns, weak temporal reasoning, ambiguity due to
coreferring entities, misleading lexical similarity,
and missed set-member coreferent links. Table 6
in the appendix presents examples of each.

Incorrect links due to same-sentence pronouns
like “it” and “this” can be avoided by refining
the heuristics-based mention-pair generation pro-
cess to exclude same-sentence pronouns. Similarly,
ambiguous temporal contexts like "Saturday" and
"New Year’s Day" that refer to the day of occur-
rence of the same event in articles published on
different dates can be resolved by leveraging more
temporal context/metadata where available. Also,
errors in lexically-different but semantically similar
event mention lemmas can be reduced by leverag-
ing more-enriched contextual representations.

By using the Oracle for pruning, we can focus on
where Dsmall falls short in terms of false positives.
We first sort the final event clusters based on purity
(number of non-coreferent links within the clus-
ter compared to ground truth). Next, we identify

pairs that the discriminator incorrectly predicted
to be coreferent within these clusters, specifically
focusing on highly impure clusters. We look for
these pairs in highly impure clusters and analyze
the mention sentences. Our findings are as follows:

• Problems caused when two big clusters are
joined through very similar (almost adversar-
ial) examples, e.g., “British hiker” vs. “New
Zealand hiker.” This error can be fixed by per-
forming an additional level of clustering, such
as, K-means.

• Problems with set-member relations, such
as "shootings" being grouped with specific
"shooting" events. The sets often include
many non-coreferent member events. To ad-
dress this issue, we can identify whether an
event is plural or singular prior to coreference
resolution.

• Contrary to the notion that singleton mentions
cause the most errors, we found that single-
tons appear in the least impure clusters. This
means the cross-encoder discriminator is good
in separating out singletons.

8 Conclusion & Future work

We showed that a simple heuristic paired with a
crossencoder does comparable ECR to more com-
plicated methods while being computationally ef-
ficient. We set a upper bound for the performance
on ECB+ suggesting improvement with better syn-
onyms pairs detection we can achieve better results.
Through extensive error analysis, we presented the
shortcomings of the crossencoder in this task and
suggested ways to improve it.

Future research directions include applying our
method to the more challenging task of cross-
subtopic event coreference (e.g., FCC (Bugert et al.,
2020)) where scalability and compute-efficiency
are crucial metrics, making the current heuristic-
based mention pair generation process “learnable”
using an auxiliary cross-encoder, and incorporating
word-sense disambiguation and lemma-pair anno-
tations into the pipeline to resolve lexical ambigu-
ity. An exciting direction for future work made
tractable by our work is to incorporate additional
cross-encoding features into the pipeline, especially
using the latest advancements in visual transform-
ers (Dosovitskiy et al., 2021; Bao et al., 2021; Liu
et al., 2021; Radford et al., 2021). Another impor-
tant direction is to test our method on languages
with a richer morphology than English.



Limitations

The most evident limitation of this research is that
is has only been demonstrated on English corefer-
nce. Using a lemma-based heuristic requires us-
ing a lemmatization algorithm in the preprocess-
ing phase and for more morphologically complex
languages, especially low-resourced ones, lemma-
tization technology is less well-developed and may
not be a usable part of our pipeline. Application
to more morphologically-rich languages is among
our planned research directions.

In addition, all our experiments are performed on
the gold standard mentions from ECB+ and GVC,
meaning that coreference resolution is effectively
independent of mention detection, and therefore
we have no evidence how our method would fare
in a pipeline where the two are coupled.

A further limitation is that training of the cross-
encoders still requires intensive usage of GPU hard-
ware (the GPU used for training Longformer is
particularly high-end).

Ethics Statement

We use publicly-available datasets, meaning any
bias or offensive content in those datasets risks
being reflected in our results. By its nature, the
Gun Violence Corpus contains violent content that
may be troubling for some.

We make extensive use of GPUs for training the
discriminator models as part of our pipeline. While
this has implications for resource consumption and
access implications for those without similar hard-
ware, the linear time complexity of our solution
presents a way forward that relies less overall on
GPU hardware than previous approaches, increas-
ing the ability to perform event coreference resolu-
tion in low-compute settings.
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A Ablation Study of Global Attention

Table 3 compares Dlong performance with and with-
out Longformer global attention on the ECB+ and

Features ECB+ GVC

w/o global attn. 85.0 76.5
w/ global attn. 82.9 77.0

Table 3: Table showing the CoNLL F1 scores from
the D Encoder with and without Longformer Global
Attention on GVC and ECB+ dev sets.

GVC dev sets. This shows a dataset-specific con-
trast vis-à-vis sequence length where performance
with global attention on GVC dev set is only
marginally better than without, while the reverse
is seen on the ECB+ dev set. More specifically,
this suggests that perhaps the “relevant” or "core"
context for ECR lies closer to the neighborhood of
event lemmas (wrapped by trigger tokens) than the
CLS tokens (that use global attention) in both cor-
pora, albeit more so in ECB+. As such, applying
global attention to the CLS tokens here encodes
more irrelevant context. Therefore, Dlong with
Longformer global attention performs less well on
ECB+ while being almost comparable to Dlong with-
out global attention on GVC.

B Full Results

Table 4 shows complete results for all metrics from
all models for within and cross-document corefer-
ence resolution on the GVC test set. Table 5 shows
complete results for all metrics from all models on
the ECB+ test set.

C Qualitative Error Examples

Table 6 presents an example of each type of error
we identified in the output of our discriminator
(Dsmall).
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MUC B3 CEAFe LEA CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Bugert et al. (2021) 78.1 66.3 71.7 73.6 49.9 59.5 38.2 60.9 47.0 56.5 38.2 45.6 59.4
Held et al. (2021) 91.8 91.2 91.5 82.2 83.8 83.0 75.5 77.9 76.7 79.0 82.3 80.6 83.7
LH 94.8 82.0 87.9 90.1 28.5 43.3 16.3 47.8 24.3 85.1 23.9 37.4 51.8
LHOra 95.2 82.3 88.3 91.2 29.1 44.1 18.6 54.7 27.8 86.4 24.9 38.6 53.4
LH + Dsmall 87.0 89.6 88.3 82.3 67.9 74.4 62.0 55.2 58.4 77.6 57.8 66.2 73.7
LHOra + Dsmall 89.1 90.2 89.6 85.0 68.0 75.6 62.7 59.6 61.1 80.6 59.5 68.5 75.4
LH + Dlong 84.0 91.1 87.4 79.0 76.4 77.7 69.6 52.5 59.9 74.1 63.9 68.6 75.0
LHOra + Dlong 84.9 91.4 88.0 80.4 77.4 78.9 70.5 54.3 61.3 75.7 65.5 70.2 76.1

Table 4: Results on within and cross-document event coreference resolution on GVC test set. Bolded F1 values
indicate current or previous state of the art according to that metric as well as our best model.

MUC B3 CEAFe LEA CoNLL

R P F1 R P F1 R P F1 R P F1 F1

Barhom et al. (2019) 78.1 84.0 80.9 76.8 86.1 81.2 79.6 73.3 76.3 64.6 72.3 68.3 79.5
Meged et al. (2020) 78.8 84.7 81.6 75.9 85.9 80.6 81.1 74.8 77.8 64.7 73.4 68.8 80.0
Cattan et al. (2021) 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 68.8 72.0 70.4 81.0
Zeng et al. (2020) 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 - - - 84.3
Yu et al. (2022b) 88.1 85.1 86.6 86.1 84.7 85.4 79.6 83.1 81.3 - - - 84.4
Allaway et al. (2021) 81.7 82.8 82.2 80.8 81.5 81.1 79.8 78.4 79.1 - - - 80.8
Caciularu et al. (2021) 87.1 89.2 88.1 84.9 87.9 86.4 83.3 81.2 82.2 76.7 77.2 76.9 85.6
Held et al. (2021) 87.0 88.1 87.5 85.6 87.7 86.6 80.3 85.8 82.9 74.9 73.2 74.0 85.7
LH 85.1 75.6 80.1 83.2 72.2 77.3 66.2 78.1 71.7 67.3 62.6 64.9 76.4
LHOra 99.1 79.6 88.3 97.9 67.7 80.0 65.9 93.7 77.4 85.1 63.8 72.9 81.9
LH + Dsmall 76.2 86.9 81.2 77.8 85.7 81.6 83.9 73.0 78.1 68.7 71.5 70.1 80.3
LHOra + Dsmall 89.8 87.6 88.7 90.7 80.2 85.1 82.5 85.1 83.8 83.3 72.2 77.3 85.9
LH + Dlong 80.0 87.3 83.5 79.6 85.4 82.4 83.1 75.5 79.1 70.5 73.3 71.9 81.7
LHOra + Dlong 93.7 87.9 90.7 94.1 79.6 86.3 81.6 88.7 85.0 86.8 73.2 79.4 87.4

Table 5: Results on within and cross-document event coreference resolution on ECB+ test set with gold mentions
and predicted topics. Bolded F1 values indicate current or previous state of the art according to that metric as well
as our best model.



Category Snippet

Adversarial/Conflicting British climber <m> dies </m> in New Zealand fall.....The first of the <m> deaths

</m> this weekend was that of a New Zealand climber who fell on Friday morning.

Adversarial/Conflicting British climber <m> dies </m> in New Zealand fall.....Australian Ski Mountaineer

<m> Dies</m> in Fall in New Zealand.

Adversarial/Conflicting ..Prosecutor Kym Worthy announces charges against individuals involved in the

gun violence <m> deaths </m> of children in Detroit ..... Grandparents charged

in 5-year - old ’s shooting <m> death </m> Buy Photo Wayne County Prosecutor

Kym Worthy announces charges against individuals involved in the gun violence

deaths of children...

Pronoun Lemmas This just does not happen in this area whatsoever . <m> It </m>’s just unreal , ”

said neighbor Sheila Rawlins....<m> This </m> just does not happen in this area

whatsoever . It ’s just unreal , ” said neighbor Sheila Rawlins .

Set-Member Relationship On Friday , Chicago surpassed 700 <m> homicides </m> so far this year . ....<m>

Homicide </m> Watch Chicago Javon Wilson , the teenage grandson of U.S. Rep.

Danny Davis , was shot to death over what police called an arugment over sneakers

in his Englewood home Friday evening .

Weak Temporal Reasoning Police : in an unrelated <m> incident </m> a man was shot at 3:18 a.m. Saturday

in North Toledo ....Toledo mother grieves 3-year - old ’s <m> shooting</m> death

| Judge sets bond at 580,000 USD for Toledo man accused of rape , kidnapping |

Toledo man sentenced to 11 years in New Year ’s Day shooting

Incomplete, Short Context Ellen DeGeneres to <m> Host </m> Oscars....It will be her second <m> stint </m>

in the job , after hosting the 2007 ceremony and earning an Emmy nomination for

it .

Similar context, Different event times near Farmington Road around 9 p.m. There they found a 32-year - old unidentified

man with a <m> gunshot </m> wound outside of a home ....The family was driving

about 8:26 p.m. Sunday in the 1100 block of South Commerce Street when <m>

gunshots were fired </m> from a dark sedan that began following their vehicle...

Same Lemma, Ambiguous Context Police : Man Shot To Death In Stockton Related To 3-Year - Old <m> Killed </m>

By Stray Bullet 2 p.m. UPDATE : Stockton Police have identified the man shot

and killed on ....Police : Man Shot To Death In Stockton Related To 3-Year - Old

Killed By Stray Bullet 2 p.m. UPDATE : Stockton Police have identified the man

shot and <m> killed </m> on Tuesday night.

Lexically different, Semantically same One man is dead after being <m> shot </m> by a gunman ....Employees at a

Vancouver wholesaler were coping Saturday with the death of their boss , who was

<m> gunned down </m> at their office Christmas party .

Misc. Baton Rouge Police have charged 17-year - old Ahmad Antoine of Baton Rouge

with Negligent Homicide in the city ’s latest shooting <m> death </m> .....Tagged

Baton Rouge , <m> homicide </m>.

Table 6: Qualitative Analysis on the hard mention pairs incorrectly linked (or missed) by our Discriminator (Dsmall) in
the ECB+ and GVC dev set: Underlined and bold-faced mentions surrounded by trigger tokens respectively indicate
incorrect and missing assignments. Underlined spans without trigger tokens represents the category-specific quality
being highlighted. The miscellaneous category (Misc.) refers to other errors including (reasonable) predictions that
are either incorrect annotations in the gold data or incomplete gold sentences.


