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Abstract

While pre-trained Chinese language models
have demonstrated impressive performance on
a wide range of NLP tasks, the Chinese Spell
Checking (CSC) task remains a challenge. Pre-
vious research has explored using information
such as glyphs and pronunciations to improve
the ability of CSC models to distinguish mis-
spelled characters, with good results at the
accuracy level on public datasets. However,
the generalization ability of these CSC mod-
els has not been well understood: it is un-
clear whether they incorporate glyph-phonetic
information and, if so, whether this informa-
tion is fully utilized. In this paper, we aim to
better understand the role of glyph-phonetic
information in the CSC task and suggest di-
rections for improvement. Additionally, we
propose a new, more challenging, and practi-
cal setting for testing the generalizability of
CSC models. Our code will be released at
https://github.com/piglaker/ConfusionCluster.

1 Introduction

Spell checking (SC) is the process of detecting and
correcting spelling errors in natural human texts.
For some languages, such as English, SC is rela-
tively straightforward, thanks to the use of tools
like the Levenshtein distance and a well-defined
vocabulary. However, for Chinese, Chinese spell
checking (CSC) is a more challenging task, due to
the nature of the Chinese language. Chinese has a
large vocabulary consisting of at least 3,500 com-
mon characters, which creates a vast search space
and an unbalanced distribution of errors (Ji et al.,
2021). Moreover, substitutions or combinations of
characters can significantly alter the meaning of a
Chinese sentence while still being grammatically
correct. The CSC task, therefore, requires requires
the output to retain as much of the original meaning
and wording as possible. Figure 1 shows different
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Figure 1: An example of different errors affecting CSC
results. red/green/blue represents the misspelled charac-
ter, the expected correction and the unexpected correc-
tion.

types of errors and corresponding target characters.
Previous work has attempted to incorporate induc-
tive bias to model the relationship between Chinese
character glyphs, pronunciation, and semantics (Xu
et al., 2021).

In recent years, pre-trained language models
(PLMs) have shown great success in a wide range
of NLP tasks. With the publication of BERT (De-
vlin et al., 2018), using PLMs for CSC tasks has
become a mainstream approach, with examples
including FASpell (Hong et al., 2019), Softmasked-
BERT (Zhang et al., 2020), SpellGCN (Cheng et al.,
2020), and PLOME (Liu et al., 2021). Some re-
searchers have focused on the special features of
Chinese characters in terms of glyphs and pronun-
ciations, aiming to improve the ability to distin-
guish misspelled characters by incorporating glyph-
phonetic information (Ji et al., 2021; Liu et al.,
2021; Xu et al., 2021). However, despite these
advances, the generalization of CSC models to real-
world applications remains limited. How can we
improve the generalization ability of CSC models?
Can current models recognize and utilize glyph-
phonetic information to make predictions? As we
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re-examine previous work, we have identified some
previously unexplored issues and potential future
directions for research.

Q1: Do existing Chinese pre-trained models en-
code the glyph-phonetic information of Chinese
characters? Chinese writing is morpho-semantic,
and its characters contain additional semantic in-
formation. Before studying existing CSC models,
we seek to investigate whether existing mainstream
Chinese pre-trained language models are capable
of capturing the glyph-phonetic information.

Q2: Do existing CSC models fully utilize the
glyph-phonetic information of misspelled charac-
ters to make predictions? Intuitively, introducing
glyph-phonetic information in the CSC task can
help identify misspelled characters and improve
the performance of the model. However, there has
been little research on whether existing CSC mod-
els effectively use glyph-phonetic information in
this way.

Empirically, our main observations are summa-
rized as follows:

• We show that Chinese PLMs like BERT en-
code glyph-phonetic information without ex-
plicit introduction during pre-training, which
can provide insight into the design of future
Chinese pre-trained models. We also propose
a simple probe task for measuring how much
glyph-phonetic information is contained in a
Chinese pre-trained model.

• We analyze the ability of CSC models to ex-
ploit misspelled characters and explain why
current CSC methods perform well on test
sets but poorly in practice. We propose a new
probe experiment and a new metric Correc-
tion with Misspelled Character Coverage Ra-
tio (CCCR).

• We propose a new setting for the CSC task,
called isolation correction, to better test the
generalizability and correction performance
of CSC models. This setting alleviates the
shortcuts present in the original dataset, mak-
ing the CSC task more challenging and realis-
tic.

We hope that this detailed empirical study will
provide follow-up researchers with more guidance
on how to better incorporate glyph-phonetic infor-
mation in CSC tasks and pave the way for new
state-of-the-art results in this area.

2 Related Work

2.1 Glyph Information

Learning glyph information from Chinese character
forms has gained popularity with the rise of deep
neural networks. After word embeddings (Mikolov
et al., 2013b) were proposed, early studies (Sun
et al., 2014; Shi et al., 2015; Yin et al., 2016) used
radical embeddings to capture semantics, model-
ing graphic information by splitting characters into
radicals. Another approach to modeling glyph in-
formation is to treat characters as images, using
convolutional neural networks (CNNs) as glyph
feature extractors (Liu et al., 2010; Shao et al.,
2017; Dai and Cai, 2017; Meng et al., 2019). With
pre-trained language models, glyph and phonetic
information are introduced end-to-end. Chinese-
BERT(Sun et al., 2021) is a pre-trained Chinese
NLP model that flattens the image vector of in-
put characters to obtain the glyph embedding and
achieves significant performance gains across a
wide range of Chinese NLP tasks.

2.2 Phonetic Infomation

Previous research has explored using phonetic in-
formation to improve natural language processing
(NLP) tasks. Liu et al. propose using both textual
and phonetic information in neural machine trans-
lation (NMT) by combining them in the input em-
bedding layer, making NMT models more robust
to homophone errors. There is also work on incor-
porating phonetic embeddings through pre-training.
Zhang et al. propose a novel end-to-end frame-
work for CSC with phonetic pre-training, which
improves the model’s ability to understand sen-
tences with misspellings and model the similarity
between characters and pinyin tokens. Sun et al.
apply a CNN and max-pooling layer on the pinyin
sequence to derive the pinyin embedding.

2.3 Chinese Spell Checking

2.3.1 Task Description

Under the language model framework, Chinese
Spell Checking is often modeled as a conditional
token prediction problem. Formally, let X =
c1, c2, . . . , cT be an input sequence with potentially
misspelled characters ci. The goal of this task is
to discover and correct these errors by estimating
the conditional probability P (yi|X) for each mis-
spelled character ci.
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2.3.2 CSC Datasets

We conduct experiments on the benchmark
SIGHAN dataset (Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015), which was built from foreign-
ers’ writings and contains 3,162 texts and 461
types of errors. However, previous studies have
reported poor annotation quality in SIGHAN13
and SIGHAN14 (Wu et al., 2013; Yu et al., 2014),
with many errors, such as the mixed usage of aux-
iliary characters, remaining unannotated (Cheng
et al., 2020). To address these issues and enable
fair comparisons of different models, we apply our
probe experiment to the entire SIGHAN dataset
and use only clean SIGHAN15 for metrics in our
review. The statistics of the dataset are detailed in
the appendix.

2.3.3 Methods for CSC

To investigate the role of glyph-phonetic informa-
tion in CSC, we conduct a probe experiment using
different Chinese PLMs as the initial parameters of
the baseline. The models we use are detailed in the
appendix. For our first probe experiment, we use
the out-of-the-box BERT model as a baseline. We
input the corrupted sentence into BERT and get the
prediction for each token. If the predicted token
for the corresponding output position is different
from its input token, we consider BERT to have de-
tected and corrected the error (Zhang et al., 2022).
We also consider two previous pre-trained methods
that introduced glyph and phonetic information for
CSC. PLOME (Liu et al., 2021) is a pre-trained
masked language model that jointly learns how to
understand language and correct spelling errors. It
masks chosen tokens with similar characters ac-
cording to a confusion set and introduces phonetic
prediction to learn misspelled knowledge at the
phonetic level using GRU networks. RealiSe (Xu
et al., 2021) leverages the multimodal information
of Chinese characters by using a universal encoder
for vision and a sequence modeler for pronuncia-
tions and semantics.

2.4 Metrics

For convenience, all Chinese Spell Checking met-
rics in this paper are based on the sentence level
score(Cheng et al., 2020). We mix the original
SIGHAN training set with the enhanced training set
of 270k data generated by OCR- and ASR-based
approaches (Wang et al., 2018) which has been
widely used in CSC task.

3 Experiment-I: Probing for Character
Glyph-Phonetic Information

In this section, we conduct a simple MLP-based
probe to explore the presence of glyph and pho-
netic information in Chinese PLMs and to quantify
the extent to which tokens capture glyph-phonetic
information. We consider glyph and phonetic in-
formation separately in this experiment.

3.1 Glyph Probe

For glyphs, we train a binary classifier probe to
predict if one character is contained within another
character. We use the frozen embeddings of these
characters from Chinese PLMs as input. That is, as
shown in the upper part of Figure 2, if the probe is
successful, it will predict that “称” contains a “尔”
at the glyph level however not “产” (it is difficult to
define whether two characters are visually similar,
so we use this method as a shortcut).

Figure 2: Examples of the input and label in Experiment-
I MLP Probe. We highlight the two characters in
red/blue color.

For the glyph probe experiment, we consider
the static, non-contextualized embeddings of the
following Chinese PLMs: BERT (Cui et al.,
2019), RoBERTa (Cui et al., 2019), Chinese-
BERT (Sun et al., 2021), MacBERT (Cui et al.,
2020), CPT (Shao et al., 2021), GPT-2 (Rad-
ford et al., 2019), BART (Shao et al., 2021),
and T5 (Raffel et al., 2020). We also use
Word2vec (Mikolov et al., 2013a) as a baseline
and a completely randomized Initial embedding
as a control. See Appendix C.1 for details on the
models used in this experiment.

The vocabulary of different Chinese PLMs is
similar. For convenience, we only consider the
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characters that appear in the vocabulary of BERT,
and we also remove the characters that are rare
and too complex in structure. The details of our
datasets for the probe are shown in Appendix C.2.

We divide the character w into character compo-
nent {u1, u2, . . . , ui} using a character splitting
tool1. That is, “称” will be divided into “禾”
and “尔”. The set of all characters (e.g. “称”)
is W = {w1, w2, . . . , wd}, where d is number of
characters. The set of all components of charac-
ters (e.g. “禾”, “尔”) is U = {u1, u2, . . . , uc},
where c is the number of components of each char-
acter. If ui exists in wi, in other words, is a com-
ponent of wi in glyph level, then ui, wi is a posi-
tive example, and vice versa is a negative example.
Then, we constructed a positive dataset Dpos =
{{u1, w1}, {u2, w1}, . . . , {ui, wd}}, where the u
corresponds to w separately. Also, we con-
structed a balanced negative dataset Dneg =
{{un1 , w1}, {un2 , w1}, . . . , {uni , wd}}, where d is
equal to Dpos and un is randomly selected in the
set U . We mix Dpos and Dneg and split the dataset
into training and test according to the ratio of 80:20
to ensure that a character only appears on one side.

We train the probe on these PLMs’ static non-
trainable embeddings. For every ui, wi, we take the
embedding of ui and wi, and concatenation them
as the input xi. The classifier trains an MLP to
predict logits ŷi, which is defined as :

ŷi = Sigmoid(MLP(xi))

To control the variables as much as possible and
mitigate the effects of other factors on the probe
experiment, we also experimented with the number
of layers of MLP . The results of this are detailed
in Appendix C.3.

3.2 Phonetic Probe
For phonetics, we train another binary classifier
probe to predict if two characters have the sim-
ilar pronunciation, also using the frozen embed-
dings of these characters from Chinese PLMs as
input. The meaning of ’similar’ here is that the
pinyin is exactly the same, but the tones can be
different. That is, as shown in the lower part of
Figure 2, if the probe is successful, it will pre-
dict that “称”(cheng) has the similar pronunciation
with “程”(cheng) however not “产”(chan). The
pronunciation information for the Chinese charac-
ters comes from the pypinyin2 toolkit.

1https://github.com/howl-anderson/hanzi_chaizi
2https://github.com/mozillazg/python-pinyin

We consider static non-contextualized embed-
ding of Chinese PLMs, which are the same as the
glyph probe. We also mainly analyze the characters
in the vocabulary of BERT, and mainly consider
common characters.

The dataset construction is also similar to the
glyph probe. To create positive examples, for each
character wi in character list W , we find a charac-
ter ui which has the similar pronunciation as wi,
then ui, wi is a positive example. For each positive,
we also find a character si which has a different
pronunciation from wi to construct negative exam-
ple si, wi. For example, the positive example is the
two characters with similar pronunciation, such as
“称” (cheng) and “程”(cheng). And the negative
example is the two characters with different pro-
nunciation, such as “称”(cheng) and “产”(chan).
The divide ratio and other settings are the same as
the glyph probe.

We train the probe on these PLMs’ static non-
trainable embeddings as the glyph probe and also
concatenate the embeddings of the pairs as input.

3.3 Results and Analysis

The following conclusions can be drawn from Fig-
ure 3.

The Chinese PLMs encoded the glyph informa-
tion of characters From the results, we can see
that for glyphs, all models outperform the control
model. The results of the control are close to 50%
that there is no glyph information encoded in the
input embedding, and the model guesses the result
randomly. Comparing Word2vec and other Chinese
PLMs side-by-side, we find that the large-scale
pre-trained model has a significant advantage over
Word2vec, suggesting that large-scale pre-training
can lead to better representation of characters. In
addition, we find that the results of these Chinese
PLMs are concentrated in a small interval. Chine-
seBERT boasts of introducing glyph-phonetic in-
formation, which do not have advantages in glyph.

PLMs can hardly distinguish the phonetic fea-
tures of Chinese characters In our experiments,
the control group performed similarly to the pho-
netic probe, with an accuracy of approximately
50%. Unlike the glyph probe, the accuracy of
Word2vec and other Chinese PLMs are also low
in this probe. However, the introduction of pho-
netic embedding allowed ChineseBERT to perform
significantly better than the other models. Our anal-

4



Figure 3: Results of Probe for Chinese PLMs. We found that the language models modeled by different paradigms
are roughly close in perceiving graphical information but weak in speech. It is worth noting that ChineseBERT
performs more significantly on this probe, probably because it explicitly introduces graphical and pronunciation
information from the embedding stage.

ysis suggests that current Chinese PLMs may have
limited phonetic information.

Method Acc.

Control 0.485
Word2vec 0.634

BERT 0.752
RoBERTa 0.759

ChineseBERT 0.755

BERT-trained 0.756
RoBERTa-trained 0.757

ChineseBERT-trained 0.759

Table 1: Results of Probe for Models trained on the
CSC task.We find that training on spell checking dataset
does not enhance the graphical perception capability of
models.

Model training on the CSC task does not enrich
glyph and phonetic information We perform
the same two probes using models fine-tuned on the
SIGHAN dataset. We aim to investigate whether
the training for the CSC task could add glyph and
phonetic information to the embeddings, and the
results are shown in Table 1. We found that the
difference between the fine-tuned and untrained
models is almost negligible, indicating that the rel-
evant information is primarily encoded during the
pre-training stage.

4 Experiment-II: Probing for Homonym
Correction

In this experiment, we aim to explore the extent
to which existing models can make use of the
information from misspelled characters. To do
this, we propose a new probe called Correction
with Misspelled Character Coverage Ratio(CCCR),
which investigates whether the model can adjust
its prediction probability distribution based on the
glyph-phonetic information of misspelled charac-
ters when making predictions.

4.1 Correction with Misspelled Character
Coverage Ratio

Measure models utilizing the misspelled charac-
ters In this paper, we propose a method to evalu-
ate the ability of a model to make predictions using
additional information from misspelled characters,
as well as to assess whether the model contains
glyph-phonetic information.

Assume that C is a combination set of all pos-
sible finite-length sentence Ci in the languages
L, C = {C0, ..., Ci, ...}, Ci = {ci,1, ..., ci,n, ...},
while ci,j ∈ L. Let sentence Cn,a

i be Cn,a
i =

{ci,1, ..., ci,n−1, a, ci,n+1, ...}, then assume that the
representation learning model, let Hw(C) be the
hiddens of model w, Xi is an example in C, For
model w, the probability of token in position i
should be:
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Example of MLM Output Top-5 Example of Homonym Output Top-5

Figure 4: Take BERT as an example. The first half
shows examples of MLM and Homonym respectively.
The bottom half shows the change in the probability
distribution predicted by the model in this example.

P (yi = j|Xi, w) = softmax (WHw(Xi) + b) [j]

Dataset D is a subset of C, Then we can approx-
imate the probability of the model. The CCCR is
composed of MLM and Homonym. The former
indicates which samples need the information on
misspelled characters to be corrected while the lat-
ter shows which sample models adjust the output
distribution. We take the intersection to get the
frequency of whether the model is adjusted for the
samples whose distribution should be adjusted.

MLM MLM is a subset of dataset D.
For all input sentence Ci ∈ D, Ci =
{c1, c2, [MASK], . . . , cT } and the position of
[MASK] is spelling error, let special token
mask = [MASK] , Ci ∈ MLM if:

P
(
yi = noise

∣∣∣Cn,mask
i , w

)
> P

(
yi = Yi

∣∣∣Cn,mask
i , w

)

Homonym Same to MLM, For input sentence
Ci ∈ D, Ci = {c1, c2, cmisspelled, . . . , cT } and the
position of cmisspelled is spelling error. For all sen-
tences Ci in the dataset D, Ci ∈ Homonym if:

P (yi = Yi|Cn,cmisspelled

i , w)) > P (yi = noise|Cn,cmisspelled

i , w)

Correction with Misspelled Character Coverage
Ratio (CCCR) The measured ratio is used to

describe the lower bound of the probability that
the model uses the information of the misspelled
characters for the sentences Ci in the dataset C.

CCCR = |{Ci|Ci∈MLM∧Ci∈Homonym}|
|{Ci|Ci∈MLM}|

Baseline Independently, we give an estimation
method for the base value. Given model w, noise,
dataset D, ground truth correction y. The baseline
of CCCR should be estimated as:

guessi =
P (yi = noise|Cn,mask

i , w)

1− P (yi = noise|Cn,mask
i , w)

CCCRbaseline =

∑
i∈S {1 ∗ guessi}

| {Ci | Ci ∈ MLM} |

The baseline can be understood as a model with
no glyph-phonetic information at all, and the proba-
bility of being able to guess the correct answer. But
no such language model exists. For this purpose,
instead of inputting the misspelled characters into
the model, we artificially design strategies for the
model to randomly guess answers by weight from
the remaining candidates, which is equivalent to
the probability of being able to guess correctly.

This probability is comparable to CCCR. CCCR
restricts the condition for y to overtake noise. In
the case of baseline, considering rearranging the
candidates, the probability of y overtaking noise
can also be re-normalized by probability.

4.2 Isolation Correction Setting Experiment

In the previous section, we test CCCR on the model
finetuned on the SIGHAN dataset then found the
CCCR of the models approached 92%. The results
are shown in Table 3. As shown in Table 4, we an-
alyze the overlap of correction pairs in the training
and test sets in the SIGHAN dataset.

To test the model generalization ability, we de-
sign Isolation Correction Task, which removes all
overlapped pairs in the training set and duplicate
pairs in the test set. With isolation, the training
set is reduced by about 16%. We believe that
such a setup can better test the generalizability of
the model and is more challenging and practical.
Within the CCCR probe, We explore the ability of
the model whether rely on its information, not just
the ability to remember the content on the isolated
SIGHAN dataset. The result is shown in Table 2
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Method MLM Homonym CCCR Precision Recall F1

Baseline - - 15.61 - - -
BERT-Initial 45.58 64.87 34.57 - - -

RoBERTa-Initial 46.53 60.19 28.17 - - -
ChineseBERT-Initial 44.97 62.22 31.17 - - -

BERT 48.57 67.73 41.67 43.72 26.93 33.32
RoBERTa 48.70 64.80 36.12 39.82 27.14 32.27

ChineseBERT 46.33 67.39 40.32 42.56 27.26 33.23

PLOME 55.63 88.38 80.83 42.63 37.15 39.70
ReaLiSe 51.29 84.23 78.14 52.26 19.23 28.11

Table 2: Model performance in the isolation correction setting of SIGHAN15. ’-Initial’ means without any training.

Method MLM Homonym CCCR Precision Recall F1

Baseline - - 15.61 - - -
BERT 52.64 95.78 92.1 70.15 75.46 72.71

RoBERTa 47.07 95.92 91.77 70.49 74.91 72.63
ChineseBERT 48.57 97.62 96.83 73.24 76.75 74.59

Table 3: Model performance in the original version
of SIGHAN15, which is finetuned. We found that the
CCCR of the model fine-tuned on the CSC dataset is
very high. We found that this is caused by overlapped
pairs in the training data.

#Pairs Count #sent

Training Set 23140 284196
Test Set 824 2162

Training Set ∩ Test Set 799 -
Training Set ∪ Test Set 23165 -

Isolation Training Set 20758 230525
Isolation Test Set 824 2162

Table 4: The overlap of the correction pairs in the train
and test sets and the statistics of the isolation SIGHAN
set.

Between CCCR and F1 score, the mismatch phe-
nomenon we refer to as stereotype is observed. The
correction pair remembered while training harms
the generalization of models.

4.3 Results and Analysis

We conducted experiments on three generic Chi-
nese PLMs, BERT, RoBERTa, and ChineseBERT,
and two CSC Models, PLOME, and Realise. We
compare the metrics difference between the Initial
model and the model after finetuning the isolation
training set. The result is shown in Table 2.
CCCR and F1 values mismatch Our experimen-

100 80 60 40 20 00 20 40 60 80

15.61

41.67 33.32

39.70

28.11

36.12 32.27

33.2340.32

80.83

78.14

100

ChineseBERT

PLOME

ReaLise

RoBERTa

CCCR F1

BERT

Baseline

Figure 5: Results of CCCR Probe. We observe CCCR
and F1 values mismatch. and for the pre-trained CSC
model, we observe a phenomenon we call stereotype,
which maintains a high CCCR under the isolation set-
ting while performing worse on the F1 score, implying
that stereotyping during pre-training weakens the gener-
alization of the model.

tal results show that the CCCR and F1 values mis-
match for CSC models. In the isolation training
setting, we observed that the F1 values of PLOME
and ReaLise are both significantly lower than their
performance in Table 2, indicating that their abil-
ity to make correct predictions is primarily based
on the memory of correction pairs in the training
set. However, their CCCR values remained high,
suggesting that they are able to discriminate glyph-
phonetic information but are not able to correct it
effectively.
Stereotype harm the generalization ability of
the model in Isolation Correction Experiments
These results suggest that the correction perfor-
mance of the models is primarily dependent on
their memory ability and that a strong reliance
on memory can hinder generalization. The poor
performance in the isolation setting indicates that
none of the current methods generalize well, which
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presents a significant challenge for future CSC re-
search. We recommend that future research in this
field follow the isolation experiment setting to ad-
dress this challenge.

5 Conclusion

In this paper, we have explored the role of glyph-
phonetic information from misspelled characters in
Chinese Spell Checking (CSC). Based on our ex-
perimental results, we have reached the following
conclusions:

• Current Chinese PLMs encoded some glyph
information, but little phonetic information.

• Existing CSC models could not fully utilize
the glyph-phonetic information of misspelled
characters to make predictions.

• There is a large amount of overlap between
the training and test sets of SIGHAN dataset,
which is not conducive to testing the gener-
alizability of the CSC model. We propose a
more challenging and practical setting to test
the generalizability of the CSC task.

Our detailed observations can provide valuable
insights for future research in this field. It is clear
that a more explicit treatment of glyph-phonetic
information is necessary, and researchers should
consider how to fully utilize this information to
improve the generalizability of their CSC models.
We welcome follow-up researchers to verify the
generalizability of their models using our proposed
new setting.

6 Limitation

6.1 Limited number of CSC models tested
During our research, we encountered difficulties in
reproducing previous models due to unmaintained
open source projects or the inability to reproduce
the results claimed in the papers. As a result, we
are unable to test all of the available models.

6.2 Limited datasets for evaluating model
performance

There are currently few datasets available for the
CSC task, and the mainstream SIGHAN dataset is
relatively small. The limited size of the data used
to calculate the metrics may not accurately reflect
the performance of the models. Furthermore, we
found that the quality of the test set is poor, the
field is narrow, and there is a large gap between the
test set and real-world scenarios.
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A The Statistic of SIGHAN Dataset

Training Set #Sent Avg. Length #Errors

SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,962

Total 277,104 42.6 390,121

Test Set #Sent Avg. Length #Errors

SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703

Total 2,162 40.5 1,474

Table 5: Statistics of the SIGHAN datasets.

Para 1 Para 2 Para 3

Precision Recall F1 Precision Recall F1 Precision Recall F1

SIGHAN14
BERT 65.7 68.7 67.2 65.3 70.1 67.6 60.2 63.7 61.9
RoBERTa 64.9 69.3 67.1 64.0 67.6 65.7 58.8 64.9 62.7
ChineseBERT 63.5 68.2 65.7 62.1 66.6 64.3 65.5 70.3 67.8

SIGHAN15
BERT 74.1 78.4 76.2 71.8 76.9 74.3 70.1 72.6 71.3
RoBERTa 73.9 78.0 75.9 71.9 76.0 74.9 68.0 73.8 70.7
ChineseBERT 73.3 78.5 75.8 72.4 77.4 74.8 73.2 76.7 74.9

Table 6: All results for fine-tuning pre-trained models
in raw data.

B The Experimental Results of Different
Parameters

In Experiment I, we use the average of three sets
of training parameters as the final result, which is
due to the large fluctuation of performance on the
test set during the experiment.

We use the pre-trained weight realized by (Cui
et al., 2020). For all of our models, we use the
AdamW optimizer (Loshchilov and Hutter, 2019)
to optimize our model for 20 epochs, the learning
rate is set to be 5e-5, the batch size is 48 and the
warm-up ratio is set to be 0.3.

C Probe details

Our implementation uses PyTorch(Paszke et al.,
2019) and HuggingFace(Wolf et al., 2020). The
probes for each MLP are trained separately starting
with random initialization weights. We train the
probe via a binary classification task, using the
Adam optimizer and Cross Entropy Loss.

C.1 PLMs considered
We selected several mainstream Chinese PLMs as
our research objects, along with their model card
on Huggingface:

BERT-Chinese (Cui et al., 2019) consists of
two pre-training tasks: Masked Language Model
(MLM) and Next Sentence Prediction (NSP), and
introducing a strategy called whole word mask-
ing (wwm) for optimizing the original masking in
the MLM task. We consider the base model with
110 Million parameters. Model Card:’hfl/chinese-
bert-wwm-ext’ under Joint Laboratory of HIT and
iFLYTEK Research.

RoBERTa-Chinese (Cui et al., 2019) removes
the next sentence prediction task and uses dynamic
masking in the MLM task. We also consider
the base model. Model Card:’hfl/chinese-roberta-
wwm-ext’ under Joint Laboratory of HIT and iFLY-
TEK Research.

ChineseBERT (Sun et al., 2021) proposes to
integrate the glyph-phonetic information of Chi-
nese characters into the Chinese pre-training model
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to enhance the ability to model the Chinese cor-
pus. We consider the base model. Model
Card:’junnyu/ChineseBERT-base’ under Joint Lab-
oratory of HIT and iFLYTEK Research.

MacBERT (Cui et al., 2020) suggests that
[MASK] token should not be used for masking,
but similar words should be used for masking be-
cause [MASK] has rarely appeared in the fine-
tuning phase. We also consider the base model.
Model Card:’hfl/chinese-macbert-base’ under Joint
Laboratory of HIT and iFLYTEK Research.

CPT (Shao et al., 2021) proposes a pre-trained
model that takes into account both understanding
and generation. Adopting a single-input multiple-
output structure, allows CPT to be used flexibly in
separation or combination for different downstream
tasks to fully utilize the model potential. We con-
sider the base model. Model Card:’fnlp/cpt-base’
under Fudan NLP.

BART-Chinese (Lewis et al., 2019; Shao et al.,
2021) proposes a pre-training model that combines
bidirectional and autoregressive approaches. BART
first uses arbitrary noise to corrupt the original text
and then learns the model to reconstruct the original
text. In this way, BART not only handles the text
generation task well but also performs well on the
comprehension task. We consider the base model.
Model Card:’fnlp/bart-base-chinese’ under Fudan
NLP.

T5-Chinese (Raffel et al., 2020; Zhao et al.,
2019) leverages a unified text-to-text format that
treats various NLP tasks as Text-to-Text tasks, i.e.,
tasks with Text as input and Text as output, which
attains state-of-the-art results on a wide variety of
NLP tasks. We consider the base model. Model
Card:’uer/t5-base-chinese-cluecorpussmall’ under
UER.

C.2 The Statistics of Probe Dataset
We remove some rare characters for two reasons.
Firstly, these characters are rarely encountered as
misspellings in CSC task. Secondly, these charac-
ters appeared infrequently in the training corpus of
the PLMs, which we believe would make it exces-
sively challenging for the PLMs to learn effectively.
The statistics are shown in Table 7 and Table 8.

C.3 Probing Results from Models with
Different Numbers of MLP Layers

From the experimental results, it can be seen that
the number of layers of MLP has little effect on the
results, and most of the results of the pre-training

#Pos. #Neg. #Total

Training Set 7968 7968 15936
Test Set 1992 1992 3984

Table 7: The statistics of the dataset for the glyph probe.

#Pos. #Neg. #Total

Training Set 8345 8345 16690
Test Set 2087 2087 4174

Table 8: The statistics of the dataset for the phonetic
probe.

models are finally concentrated in the interval of
0.75-0.76. The Chinese pre-training models of the
BERT family are slightly less effective when the
number of layers is relatively small and similar to
other Chinese pre-training models after more than
three layers.

Figure 6: Results for each model in the case of 1-5
layers of MLP.
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