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Introduction

With billions of individual pages on the web providing information on almost every conceivable topic,
we should have the ability to collect facts that answer almost every conceivable question. However, only
a small fraction of this information is contained in structured sources such as Wikidata; we are therefore
limited by our ability to transform free-form text to structured knowledge. There is, however, another
problem that has become the focus of a lot of recent research and media coverage: false information
coming from unreliable sources.

To ensure accuracy, any content must be verified. However, the volume of information precludes human
moderators from doing so. Hence, it is paramount to research automated means to verify accuracy and
consistency of information published online and the downstream systems (such as Question Answering,
Search and Digital Personal Assistants) which rely on it.

The sixth edition of the FEVER workshop collocated with EACL 2023 aims to continue promoting on-
going research in above area, following on from the first five collocated with EMNLP 2018, EMNLP
2019, ACL 2020, EMNLP 2021, and ACL 2022 and three shared tasks in 2018, 2019, and 2021. This
year’s workshop consists of 3 oral and 5 poster presentations of accepted papers (54% overall acceptance
rate), 12 poster presentations from EACL Findings papers, presentations from 4 invited speakers, as well
as a panel discussion with 6 panellists. The workshop is held in hybrid mode with in-person and virtual
poster sessions, live-streamed panel discussion, oral presentations, and invited talks.

The organisers would like to thank the authors of all submitted papers, the reviewers, the panelists, and
the invited speakers for their efforts, and we are looking forward to next year’s edition.

Best wishes,
The FEVER organisers
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Rethinking the Event Coding Pipeline with Prompt Entailment

Clément Lefebvre*
Swiss Data Science Center
clement.lefebvre@datascience.ch

Abstract

For monitoring crises, political events are ex-
tracted from the news. The large amount of
unstructured full-text event descriptions makes
a case-by-case analysis unmanageable, partic-
ularly for low-resource humanitarian aid orga-
nizations. This creates a demand to classify
events into event types, a task referred to as
event coding. Typically, domain experts craft
an event type ontology, annotators label a large
dataset and technical experts develop a super-
vised coding system. In this work, we propose
PR-ENT', a new event coding approach that
is more flexible and resource-efficient, while
maintaining competitive accuracy: first, we ex-
tend an event description such as “Military in-
jured two civilians” by a template, e.g. “People
were [Z]” and prompt a pre-trained (cloze) lan-
guage model to fill the slot Z. Second, we
select suitable answer candidates Z* = {“in-
jured”, “hurt”...} by treating the event descrip-
tion as premise and the filled templates as hy-
pothesis in a textual entailment task. In a fi-
nal step, the selected answer candidate can be
mapped to its corresponding event type. This
allows domain experts to draft the codebook di-
rectly as labeled prompts and interpretable an-
swer candidates. This human-in-the-loop pro-
cess is guided by our codebook design tool?.
We show that our approach is robust through
several checks: perturbing the event description
and prompt template, restricting the vocabulary
and removing contextual information.

1 Introduction

Decision-makers in politics and humanitarian aid

report a growing demand for comprehensive and

structured overviews of socio-political events (Lep-

uschitz and Stoehr, 2021). For this purpose, news

papers are automatically screened for event men-

tions, a task referred to as event detection and
“authors contributed equally
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A Conventional Event Coding Pipeline

® Domain experts event type: injury
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M train classifier event — — njury

B Our approach: Prompt Entailment PR-ENT

Domain experts design codebook in the
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Figure 1: (A) The conventional event coding pipeline
involves many hand-overs between involved stakehold-
ers and is strictly tailored to the event ontology. (B) Our
approach combines prompting and textual entailment to
perform flexible, unsupervised event coding.

extraction. The sheer amount of extracted, full-
text event descriptions day-to-day is impossible to
be parsed by humans, especially when limited by
scarce financial and computational resources.

Event coding seeks to automatically classify
event descriptions into pre-defined event types.
Event coding is conventionally approached via a
multi-step pipeline as shown in Fig. 1A. It incurs
large costs in terms of human labor and time. We
sketch out this pipeline expressed in human intelli-
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gence tasks (HITs)® (ul Hassan et al., 2013).

As a first step, an event ontology is defined in
terms of a codebook. Codebook development re-
quires multiple domain experts (Goldstein, 1992)
spending up to 200 HITs. The initial develop-
ment phase of the widely-used Conflict and Me-
diation Event Observations (CAMEOQO) (Schrodt,
2012) codebook reports a 3-year initial develop-
ment phase. Next, context-relevant event descrip-
tions need to be collected to serve as training data.
This often requires paid access to online newspaper
distribution services and data collection infrastruc-
ture, estimated at 200 HITs. Next, human anno-
tators need to be recruited and trained to annotate
data according to the codebook accounting for an-
other 200 HITs. Finally, a machine-based coding
system needs to be developed, trained and vali-
dated, costing another 200 HITs. In earlier days,
systems were dictionary- and pattern- based (King
and Lowe, 2003; Norris et al., 2017), while more
recently machine learning-based approaches have
gained momentum (Piskorski and Jacquet, 2020;
Olsson et al., 2020; Hiirriyetoglu, 2021).

In total, the conventional event coding pipeline
amounts to roughly 800 HITs. This development
cost is often not bearable by non-profit / non-
governmental organizations in the humanitarian
aid sector. Moreover, the process requires multi-
ple hand-overs between workers of different back-
ground which leads to errors, misunderstanding
and delays. It is also important to highlight that the
developed coding system is specifically tailored to
a fixed event ontology. Any post-hoc changes of
event types or even a different dataset incurs huge
costs. In practice, event types frequently change
and even vary widely between different divisions
of the same organization.

To address these shortcomings, we present a new
paradigm for highly adaptive event coding. Based
on our method illustrated in Fig. 1B, domain ex-
perts are able to work directly with an interactive
coding tool to design a codebook. They express
event types by means of prompt templates and
single-token answer candidates. For automated
coding, a pre-trained language model is prompted
to fill in those answer candidates taking a full-text

3In our formulation, one HIT corresponds to roughly one
hour of low-skill work by a single person such as reading and
labeling single-sentence event descriptions. Our estimations
are based on practical experience in working with domain
experts and human annotators in the field of political event
coding and serve the purpose of providing a very approximate
quantification of required resources and labour.

event description as an input. Since prompting
can be noisy (Gao et al., 2021), we propose filter-
ing answer candidates based on textual entailment.
Specifically, our contributions are as follows: (1)
We propose a methodology combining prompting
(§3.1) and textual entailment (§3.2) for event cod-
ing, termed PR-ENT. (2) We thoroughly evaluate
this paradigm based on three aspects: accuracy
(§4.1), flexibility (§4.2) and efficiency (§4.3). (3)
We present two online dashboards: (a) A demo of
the PR-ENT coding tool. (b) An interactive code-
book design tool that guides the codebook design
by presenting accuracy validation in a human-in-
the-loop manner (§6).

2 Event Data and Types

We consider a subset of the Armed Conflict Loca-
tion and Event Data (ACLED) (Raleigh et al., 2010)
dataset. It is widely-used and has large coverage
of political violence and protest events around the
world. Each event is human annotated with a short
description, its event type and additional details
such as the number of fatalities and actor and tar-
gets. The event types are based on ACLED’s own
event ontology which distinguishes 6 higher-level
and 25 lower-level event types. Some event types
are easily separable (e.g. protests vs battles), while
others are harder to distinguish semantically (e.g.
protests Vs riots) (see Fig. 9 in the appendix).

We sample 4000 ACLED events (3000 for train-
ing, 1000 for testing) in the African region while
maintaining the event type distribution of the full
dataset (see Fig. 9). We remove empty event de-
scriptions and annotator notes (e.g. “[size: no
report]”). In Fig. 8 in the appendix, we present
statistics of the test set, showing different aspects
of linguistic complexity. In §4.2, we consider
the Global Terrorism Dataset (GTD) (LaFree and
Dugan, 2007) to study the effect of domain shift.

3 Entailment-based Prompt Selection

Our approach, PR-ENT, represents a real-world
use case of prompting and textual entailment to
code event descriptions ¢ € & into event types
y € Y as shown in Fig. 1B.

3.1 Prompting

Methodological Approach. In traditional super-
vised learning, a model is trained to learn a map-
ping between the input e and the output class .
Prompting (Liu et al., 2021) is a learning paradigm
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making use of (cloze) language models that have
been trained to predict masked tokens within text.*
Prompt-based learning transfers this capability to
perform classification in the following way:

We extend each event description e € £ by a
template t € T to form the input (e,t) € € x T.
Each template contains a masked slot Z, e.g. “This
event involves [Z]”, “People were [£ 175 The lan-
guage model takes (e, t) as input and returns an
output distribution of probabilities over the answer
vocabulary Z. Bach token z.; € Z can serve as
a potential slot filler to Z = z.;. However, we
only consider the top k most probable answer can-
didates zgt € th. Z can be a constrained subset
Z; that only features a template-related answer vo-
cabulary to increase interpretability as pointed out
in §5. We discuss how to map answer candidates
to event types in §4.1.

Implementation Details. We discuss the design
of templates and constrained answer vocabularies
resulting in a codebook (Tab. 7) in §6. In particular,
we prompt DistilBERT-base-uncased (Sanh et al.,
2020), a distilled version of the BERT model which
is more computationally efficient at the cost of a
small performance decrease. For each prompt, we
consider the K = 30 most probable tokens as the
set of answer candidates th. Ideally, we select a
larger set, but performance gains are minimal while
computational costs increase in subsequent steps.

3.2 Textual Entailment

Limitations of Prompting. Prompting yields
event-related tokens for event coding, but comes
with challenges. There is no guarantee that a
prompted answer candidate zifit € ZeK’t is suited
to represent an event. Answer candidates may be
semantically unrelated as shown in Fig. 2. To ad-
dress this shortcoming, we propose filtering th
via textual entailment. Textual entailment, or nat-
ural language inference (NLI) (Fyodorov et al.,
2000; Bowman et al., 2015) can be framed as the
following task: Given a “premise”, verify whether
a “hypothesis” is true (entailment), false (contra-
diction), or undetermined (neutral). It has been
evaluated as a popular method for performing text
classification (Wang et al., 2021).

*Cloze” pertains to filling in missing tokens not necessar-
ily uni-directional left-to-right, but anywhere in a string.

SThe first prompt template is intended to provide a one-
word summary of the event. For the second template, we
expect a verb describing the actions undertaken by the actor
or a verb that describes what happened to the target.

Event Description e: Several demonstrators were injured.

A) Template t: This event involves [Z].

100

B Prompting Prob.
Entailment Prob.

Output Prob. [%]
wul
o

B) Template t: People were [Z].

Output Prob. [%]
w
o
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Figure 2: Given the event description “Several demon-
strators were injured.” and two templates (A) and
(B), prompting alone can yield tokens that fit syntacti-
cally but not semantically (blue bar). In contrast, filter-
ing prompted answer candidates via textual entailment
leaves us with tokens more closely related to the event
(orange bar). To this end, we treat the event description
as premise and the filled template as hypothesis.

Selecting Entailed Answer Candidates. We
consider the event description e as premise and
the template ¢’ filled with a prompted answer can-
didate as hypothesis. For example, given the
premise “Two bombs detonated...”, we automat-
ically construct hypotheses “This event involves
[zgt] € zZE = {explosives, civilians...}”, see
Tab. 1. We pass the concatenation of the premise
and hypothesis to RoBERTa-large-mnli (Liu et al.,
2019). If the model finds premise and hypothesis
to be entailed, then the prompted answer candidate
Zf,t is considered an entailed answer candidate z; ,
(e.g. z¢, = explosives). We combine the categories
“neutral” and “contradiction” into one since we are

interested in a hypothesis being entailed or not.

This means, PR-ENT has two hyperparameters:
the top K answer candidate tokens yielded by the
prompting step and the acceptance threshold in the
entailment step that governs whether an answer can-
didate is kept. We empirically analyse the effect of
both hyperparameters on the final F1 classification
score in Fig. 5. In Fig. SA, we verify that consid-
ering the top 30 answer candidate tokens leads to
good performance on average. Further, we find a
suitable threshold of 0.5 on the entailment model’s
output probability in Fig. 5B.
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Event Description + Template (e, t)

Answer Candidates =" ,

Entailed Answer Candidates = ,

Several demonstrators
were injured.
+ People were [Z].

arrested, killed, hospitalized,
injured, evacuated,
wounded, shot,

homeless, hurt, detained

injured, wounded, hurt

Several demonstrators
were injured.
+ This event involves [ Z].

fireworks, demonstrations,
protests, violence, suicide,
bicycles, shooting, strikes,
motorcycles, cycling

demonstrations, protests,
violence

The sponsorship deal
between the shoes brand
and the soccer team

was confirmed.

+ This event involves [ Z].

sponsorship, nike, sponsors,
fundraising, cycling,
advertising, charity, donations,
concerts, competitions

sponsorship, sponsors,
advertising, competitions

Table 1: We prompt a language model based on an event description e and template ¢ with slot Z. We keep only
those prompted answer candidates zfyt € th entailed in a subsequent textual entailment task z; , € Z7 ;.

4 Evaluation: Event Classification

We compare PR-ENT against the conventional
event coding pipeline in an evaluation along three
dimensions: accuracy, flexibility and efficiency.

4.1 Accuracy

So far we have not discussed how to map entailed
answer candidates 27, € Z7, onto event types
y € V. We choose to do hard prompting, as op-
posed to soft prompting. This means, tokens in
Z7 , are mapped onto event types y via a simple lin-
ear transform y = f(z7 ;). When f is the identity
function, no additional mapping is needed (§4.2).
Hard prompting allows defining event types, i.e.
an event ontology, in terms of interpretable answer
candidates. As an example, we present an inter-
pretable event ontology in Tab. 7 in the appendix.
We use it to classify “lethal” and “non-lethal” event
as explained in §4.2. Generally, we observe a
trade-off between accuracy and interpretability. We
want different sets of entailed answer candidates
to uniquely define different event types at a high
accuracy. At the same time, we require the set to
be limited to a few, interpretable tokens only, that
are highly representative for the event type. In the
following, we learn a shallow mapping between
Z;, and the 6 high-level event types ) provided

e

by the ACLED event ontology as ground truth.

Baselines and Ceilings. As baselines, we con-
sider bag-of-words (BoW) and GloVe (Pennington
et al., 2014) embeddings of event descriptions. Em-
beddings are mapped onto event types via logistic
regression (LR). Further, we contrast our PR-ENT
with a prompting-only (PR) approach also using

Model Accuracy F1 Score
BoW + LR 80.5 77.1
GloVe + LR 78.5 74.6
Random Tokens + BoW + LR | 77.1 72.2
PR + BoW + LR 82.9 80.8
PR-ENT + BoW + LR 85.1 83.7
DistilBERT 87.1 86.0

Table 2: Classification of 6 event types in the ACLED
dataset. As expected, DistilBERT performs best as it is
fine-tuned specifically on this classification task. Our
approach PR-ENT is more ad-hoc and does not fall far
behind. The additional entailment step reduces noise
compared to the prompting-only approach PR. On top
of the two standard baselines using BoW and GloVe,
we introduce an additional baseline where we select 10
random tokens from Z; for each (e, t). Compared to
all baselines, PR-ENT performs better.

logistic regression as a classification layer. As a
ceiling model, we consider DistilBERT fine-tuned
in a sequence classification task.

Our Approach PR-ENT. To evaluate our ap-
proach, we only consider the template “This event
involves [Z]” and construct a BoW feature matrix
by extending the event descriptions e with the en-
tailed answer candidates 27 ;. The resulting feature
matrix serves as input to logistic regression. We
report classification results in Tab. 2 and find that
PR-ENT is only outperformed by the supervised,
fine-tuned DistilBERT ceiling, but performs better
than all baselines.
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Figure 3: Comparison of the different classification approaches on a varying number of training instances. Our
approach PR-ENT shows better performance in terms of accuracy and F1 Score than the baseline models at all
points. At the same time, it does not lack far behind the fine-tuned DistilBERT ceiling model, which is however less
flexible and resource-intensive. PR refers to prompting-only, BoW to bag-of-words and LR to logistic regression.
The baseline “random” consists of sampling 10 random tokens from th for each (e, t).

4.2 Flexibility

We explore the flexibility of PR-ENT along 3 di-
mensions: changing the number of training in-
stances, omitting the shallow mapping for classifi-
cation and switching to another dataset.

Number of Training Instances. As can be seen
in Fig. 3, our approach shines at classifying event
types if only few training instances are given.
PR-ENT shows better performance than all base-
line approaches introduced in §4.1. At the same
time, it is not far behind the fine-tuned DistilBERT
ceiling model.

Removing the Shallow Mapping. We may re-
move the requirement of adding a shallow mapping
y = f(zZ,). Therefore, we predict if an event is
“lethal” (y = 1) or not (y = 0) based on its descrip-
tion. We use PR-ENT to generate entailed answer
candidates Z7 , based on the template “People were
[Z]7. If Z = “killed” € Z7, theny = 1. We
compare PR-ENT against fine-tuned DistilBERT
trained on 100 samples and present results in Tab. 3.
PR-ENT is competitive against DistilBERT, even
outperforming it in this setting. Moreover, while
the prompting-only approach (PR) has very high
recall, it lacks precision. The additional entailment
step in PR-ENT balanced this out, yielding a high
F1 score.

Domain Shift. We scrutinize the robustness of
PR-ENT by switching to another dataset. We re-
peat the binary “lethal versus non-lethal” classifica-
tion task on the Global Terrorism Database (GTD)

Model F1 Score Precision Recall
PR-ENT 91.6 85.3 98.8
Prompting Only | 50.6 33.9 100
DistilBERT 84.1 76.5 93.4

Table 3: Binary classification of “non-lethal versus
lethal” events based on ACLED’s fatality counts. In
PR-ENT and prompting-only PR, we code “lethal” if
“killed” is present in the answer candidates of “People
were [Z].”. We observe the added value of the entail-
ment step in the increase in precision. PR-ENT outper-
forms DistilBERT trained on 100 data instances and
tested on 1000 event descriptions.

(LaFree and Dugan, 2007). The results in Tab. 4,
again suggest high performance of PR-ENT.

Model F1 Score Precision Recall
PR-ENT 96.3 94.0 98.8
Prompting Only | 67.3 50.7 100
DistilBERT 93.4 89.9 97.2

Table 4: Binary classification of “non-lethal versus
lethal” based on the Global Terrorism Database (GTD).
PR-ENT and prompting-only PR predict “lethal” if
“killed” is prompted from “People were [Z].”. PR-ENT
outperforms DistilBERT trained on 100 data instances
and tested on 1000 event descriptions.

4.3 Efficiency

In §1, we estimated the cost of 800 human intelli-
gence tasks (HIT) for the conventional event coding
pipeline. We perform the same estimation exercise
for our approach: domain experts design suitable



Perturbation Type | Paraphrase Remove Stop Words Remove Entities Duplication
Model Type PR PR-ENT PR PR-ENT PR PR-ENT PR PR-ENT
1 Perturbation 0.33 0.14 0.22 0.15 0.15 0.08 0.18 0.09

2 Perturbations 0.34 0.18 - - - - 0.28 0.16

Table 5: Average Jensen-Shannon distance across 1000 event descriptions. We conduct 4 perturbation tests:
paraphrasing the template, removing stop words from the event description, replacing named entities by a placeholder,
and duplicating words in the template. PR-ENT is more robust than PR: in all cases, the distance between the output
distributions based on the non-perturbed and perturbed input is smaller.

Military injured two civilians. This event involves [Z].
Military injured two civilians. This event entails [Z].
Military injured two civilians. This incident entails [Z].
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Figure 4: We compare prompting-only PR and our approach PR-ENT when perturbing the input (e, ¢). PR-ENT is
more robust to perturbations as indicated by a lower Jensen-Shannon distance between the output distributions over
answer candidates based on non-perturbed and perturbed input. PR is highly sensitive to template phrasing. X-label
represents the top 100 most frequent tokens from 1000 prompts.

templates and answer candidate sets in a trial and
error fashion as elaborated in §6. We estimate total
development costs at about 300 HITs, which makes
it particularly feasible for small teams with few re-
sources such as non-governmental organizations in
humanitarian aid. Overall, our approach requires
fewer people and consequently fewer hand-overs.
Moreover, it is not tied to a specific event ontology
and more flexible for changing event types.

5 Ablation Study

5.1 Perturbation Tests

Our approach is not tailored to a specific event on-
tology, but to a language model. Any performance
gains on these models, such as the recently pub-
lished ConfliBERT (Hu et al., 2022), will impact
our pipeline. A crucial consideration is the pres-
ence of biases within language models. In some
settings, biases may even be desirable inductive
priors, but should at least be known.

We measure the sensitivity of the prompted
model’s output distribution to changes in the input.

To this end: we select a fixed answer vocabulary
Z; of 100 tokens by taking the most frequent to-
kens yielded by the prompted model across 1000
event descriptions. We observe the output distribu-
tion over tokens in Z; before and after perturbing
the input (e, ¢). Finally, we measure the difference
between the two output distributions in terms of
Jensen-Shannon (JS) distance. We show the results
of the following four perturbation settings in Tab. 5:

(1) Paraphrasing Two prompt designers could
come up with paraphrased templates. In Fig. 4,
we show that the additional entailment step makes
PR-ENT more robust to perturbations in the tem-
plate as opposed to prompting only.

(2) Stop Word Removal We remove stop words
from the event description to test PR-ENT on non-
grammatical text.

(3) Context Removal We remove all named en-
tities in event descriptions and replace them with
placeholder tokens such as “organizations” and “lo-
cations”. This verifies that PR-ENT is less prone
to latching onto context instead of content.
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Figure 5: Impact of different parameters of our pipeline
on ACLED classification. (A) F1 score versus the maxi-
mum number K of allowed answer candidates; KX = 0
means that only the event description is used in the clas-
sification. (B) F1 score versus entailment threshold; the
threshold governs if a hypothesis is entailed with the
premise or not, a threshold of 0 means that all prompted
answer candidates are considered. A threshold of 1
means only the event description is considered.

(4) Duplication We duplicate some words in the
template. Specifically, we test the 3 prompts: “This
event involves [Z]”, “This event event involves
[Z]”, “This event event event involves [Z]”.

5.2 Comparing Coded Event Time Series

Using PR-ENT, we construct a codebook (Tab. 7)
to code ACLED event descriptions without the
need of a shallow mapping. We use this codebook
to code events that took place in Mali (Fig. 6) and
Ethiopia (Fig. 6) between 2009 and 2021. This al-
lows comparing time series of event types between
our approach and ACLED’s coding. We find that
both codings yield very similar time series in which
the positioning of spikes align. Yet, the spikes in
the PR-ENT time series are higher / steeper indi-
cating that more events are detected. This may
be attributed to two reasons: firstly, PR-ENT is
potentially more granular and has higher recall.
Secondly, PR-ENT is not limited to coding only
one event type per event description as ACLED
is. For example, the following event description in

ACLED (anonymized) is coded as Armed Clash but
contains several possible event types (Armed Clash,
Killing, Kidnapping, Property Destruction, Loot-
ing): “[...] The militants clashed with [ORG], and
killed one [ORG] and a civilian driver, abducted
one person, burned a vehicle and seized livestock.”

5.3 Qualitative Error Analysis

We perform a qualitative error analysis of our pro-
posed method. Within the ACLED data, there are
many event descriptions containing mentions of
past events (e.g. “Protests over the killing of the
journalist [NAME] shot dead on Monday at his
home by armed bandits.”). Our method, and in
fact, any supervised classifier, may have difficulties
recognizing event co-references. Another frequent
error is due to ACLED event type definitions. For
instance, ACLED features the event type “Violence
Against Civilians”. However, to classify most of
the concerned events, the annotator needs to know
if the target is a civilian or not. Unfortunately, the
dataset does not always contain this information,
except if explicitly written in the event descrip-
tion. Another frequently observed error is caused
by blurry definition of event types. ACLED, dif-
ferentiates between “Riots” and “Protests” which
often have nearly identical event descriptions.

6 Human-Computer Codebook Design

To make use of PR-ENT, domain experts need to
design a codebook (i.e. a mapping), between event
types and entailed answer candidates. Creating this
mapping is non-trivial as there exists a trade-off
between interpretability and accuracy. In essence,
a codebook is interpretable when the answer candi-
dates are representative of the corresponding event
type. A bad codebook contains a large number of
non-readable entailed answer candidates. A code-
book is accurate when a few answer candidates
are sufficient to allow for a clear differentiation of
the event types. To that end, we propose an inter-
active codebook design tool® that helps designing
templates and answer candidates by presenting ac-
curacy metrics. The assessment of interpretability
is left to the human domain experts.

Codebook Design. Our codebook is a mapping
between event types and entailed answer candi-
dates. For example, an event can be classified as
“kidnapping” if any of the following templates is

®https://huggingface.co/spaces/clef/PRENT-Codebook
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Figure 6: Time series of the number of kidnapping events per month in Mali between 2009-2021. The dashed line
corresponds to all kidnapping events coded by ACLED annotators. The blue line corresponds to all kidnapping
events coded by PR-ENT. We find that the positions of the time series spikes between PR-ENT and ACLED’s
coding align well. However, the spikes in the PR-ENT time series are higher indicating that PR-ENT detects more
events. This may be due to more granular event coding or the advantage of not being limited to only one event type

per event description.

entailed: “This event involves [kidnapping].” OR
“This event involves [abduction].”. A codebook
example is shown in Tab. 7 in the appendix.

We assume two things: first, the availability of
a dataset which contains event descriptions that
need to be labeled. Second, the domain experts
should have decided upon event types of their lik-
ing (e.g. kidnapping, killings,...). Now, the first
step is to come up with an initial set of templates
and entailed answer candidates. For each event
type, the domain expert is asked to draft a canoni-
cal event description. For example: the event type
“kidnapping” could be exemplified by “Two men
were kidnapped by rebels.”. Then using PR-ENT,
the domain expert is presented a list of answer can-
didates (e.g. “This event involves [kidnapping].”,
“This event involves [rebels].”...).

As a second step, domain experts select some
of the entailed answer candidates provided by the
model. If no entailed answer candidate is infor-
mative to classify the event, it is possible to group
multiple entailed answer candidates with an AND
condition. For example, “Riot” event types can
be coded with the two following templates: “This
event involves [protest].” AND “This event involves
[violence].”. The tool also offers the possibility of
excluding certain answer candidates.

On-the-Go Validation. Validating the inter-
pretability of the codebook and the answer can-
didates is a subjective task that we leave to the
domain experts. The coding tools offers however
guidance for the validation of accuracy, despite not
having access to ground truth event type labels. Us-
ing the current state of the codebook and PR-ENT,

randomly selected events are automatically coded
into event types. Domain experts can then accept
or reject the event type suggestions provided by the
model. This creates a labeled dataset “on the go”,
which allows computing a per-class accuracy score.
Repeated rounds of validation allow for a human-
in-the-loop fine-tuning of the codebook by adding
or removing more entailed answer candidates.

Codebook Use. The tool offers interoperability
by enabling the download of the codebook and the
labeled dataset in standard JSON format. The for-
mer can then be used to code a full dataset of event
descriptions into event types. The codebook can
still be modified if more event types are required.

7 Discussion

Is this few-shot, unsupervised tagging? While
we have evaluated accuracy, efficiency and flexibil-
ity, it is up for discussion and definition whether
our approach should be considered few-shot, un-
supervised or tagging-based. In some cases, the
language model copies tokens verbatim from the
input, which could be seen as a form of “event tag-
ging”. In other cases, the answer candidates are ab-
stract tokens outperforming purely tagging-based
approaches. In cases where the answer candidates
map directly to an event type without an additional
shallow classifier §4.2, our approach may be con-
sidered unsupervised and zero-shot. On the con-
trary, the template is designed in an iterative trial
and error fashion. Thus, it is tuned to observed data
instances which arguably violates the zero-shot set-
ting and should be framed few-shot instead.



Entailment-Only Approach. The presented ap-
proach PR-ENT relies on textual entailment to se-
lect entailed answer candidates from prompts as
motivated in §3.2. However, textual entailment
could have been considered for classification by
itself (Wang et al., 2021; Barker et al., 2021). In
this setting: a predefined set of hypotheses is cre-
ated for each event type and is tested against each
event description. However, this reduces flexibility
as we need to define a broad set of hypotheses in
advance. Our prompting-based approach relies on
large language models which do not require labeled
training data for training. As a consequence, they
are more frequently updated and trained on larger
amounts of data.

Extensions and Applications. Our approach can
be used to filter and search events in a dataset of
full-text event descriptions. An example of this use
case is described in §4.2 where we classify lethal
and non-lethal events in an unsupervised way via
the “killed” token. Promising extension are the
coding of source and target actors in addition to
event types as presented in App. B.1 as well as the
extraction of victim counts (Zhong et al., 2023).

8 Related Work

Similar to our prompting-based approach, exist-
ing work evaluates off-the-shelf QA (Halterman
et al., 2021) and NLI (Barker et al., 2021) models
for event coding. The prompting approach shares
similarities with Shin et al. (2021), who build a
semantic parser to map natural text to canonical
utterances. Their training set is constructed by
prompting a language model in a human-in-the-
loop fashion. Sainz et al. (2021) uses NLI to ex-
tract relationship between two given entities based
on a predefined hypothesis template. Schick et al.
(2020) present an approach to identify words that
can serve as high-accuracy labels for text classi-
fication. However, they are not focusing on inter-
pretability and a particular application domain such
as political event coding. There also exist methods
for automating prompt generation and selective in-
corporation of examples in the prompt (Shin et al.,
2020; Gao et al., 2021). Existing work in prompt-
based classification focuses on sentiment, topic or
intent (Yin et al., 2019; Liu et al., 2021; Schick and
Schiitze, 2021).

Within the field of event coding, we distinguish
work on event detection, event type ontologies, and
automated event coding tools. Our work falls into

the latter two. The World Event/Interaction Survey
(WEIS) project (McClelland, 1984) was pioneering
in event data collection and event ontology design.
The WEIS successor CAMEO (Schrodt, 2012) is
one of the most popular event ontologies until to-
day and used by ICEWS (Boschee et al., 2015)
and NAVCO (Lewis et al., 2016) among others.
VRA-Reader (King and Lowe, 2003) is among the
first to automatize event coding based on match-
ing string patterns. Its successors BBN ACCENT
(Boschee et al., 2015), Tabari and Petrarch2 (Norris
et al., 2017) rely on lambda calculus-based seman-
tic parsing. Recent event coding systems rely on
supervised machine learning (Hiirriyetoglu, 2021;
Stoehr et al., 2021, 2022, 2023), word embedding-
(Kutuzov et al., 2017; Piskorski and Jacquet, 2020)
and transformer-based models (Olsson et al., 2020;
Re et al., 2021; Hu et al., 2022; Skorupa Parolin
et al., 2022).

9 Conclusion

We proposed a method to select answer candidates
from prompts using textual entailment. This com-
bined usage of state-of-the-art tools is motivated
by a real-world use case that benefits humanitarian
aid efforts with scarce resources.

O https://github.com/Clement-Lef/pr-ent
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Limitations

We explore potential failure modes and the impact
of bias in pre-trained (cloze) language models in §5.
Erroneous event coding can be further mitigated
through incorporation of confidence score. In §7,
we discuss definitional caveats and model limita-
tions. We make our code and interactive dashboard
available for replication and scrutiny by the scien-
tific community. We provide hyperparameter set-
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tings, training times and details on the computing
infrastructure in the appendix (App. A). Since we
are only considering off-the-shelf models, mostly
without further fine-tuning, our experiments can be
reproduced with limited computing resources. Our
experiments are limited to English language, but
can be extended by considering models pre-trained
on other language data.

Impact Statement

As explained in §1, our approach is aimed at help-
ing low-resource organizations to analyze large
amounts of text data efficiently. We do not foresee
risk of misuse beyond the risks already introduced
by conventional event coding pipelines. However,
we would like to emphasize that the intended use
of our approach is to gain additional, empirical in-
sights for research and monitoring purposes, rather
than for completely automatized decision-making.
Application cases such as filtering event datasets
are described in §7 and App. B.1.
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A Reproducibility Criteria

A.1 Experimental Results

1. A clear description of the mathematical set-
ting, algorithm, and/or model

¢ See Section §3

2. Submission of a zip file containing source
code, with specification of all dependencies,
including external libraries, or a link to such
resources (while still anonymized)

¢ Provided in the submission

3. Description of computing infrastructure used

¢ PR-ENT inference: Dell Latitude 7490
laptop - Intel(R) Core(TM) i7-8650U
CPU @ 1.90GHz/ 16 GB RAM

* DistilBERT finetuning: Macbook Pro
M1 Max - M1 Max / 32 GB RAM

¢ Dashboard: 8 CPU Cores / 16 GB RAM

4. The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or esti-
mated energy cost

* Training:
— No training done for PR-ENT
— For comparison purposes, a Distil-
BERT model was fine-tuned on 3000
samples. It took several minutes on a
laptop.
* Inference:

— PR-ENT: 1-10secs per text depend-
ing on text length on a laptop

5. Number of parameters in each model:

¢ DistilBERT-base-uncased
(https://huggingface.co/distilbert-
base-uncased): 65M

* RoBERTa-large-mnli
(https://huggingface.co/roberta-large-
mnli): 125M

* RoBERTA-large-squad2
(https://huggingface.co/deepset/roberta-
large-squad2): 125M

* PR-ENT: Top K, Entailment Threshold

6. Corresponding validation performance for
each reported test result

* Not applicable

7. Explanation of evaluation metrics used, with
links to code

e F1 Score, Scikit-learn
e Precision, Scikit-learn
e Recall, Scikit-learn

* Accuracy, Scikit-learn

 Jensen Shannon Distance, Scipy

A.2 Hyperparameter Search
Not applicable

A.3 Datasets

1. Relevant details such as languages, and num-
ber of examples and label distributions

e ACLED: See section §2
e GTD: See section §2

2. Details of train/validation/test splits

* ACLED: 3000 train sample / 1000 test
sample

* GTD: 100 train sample / 1000 test sam-
ple

3. Explanation of any data that were excluded,
and all pre-processing steps

e See section §2

4. A zip file containing data or link to a down-
loadable version of the data

* ACLED: Data is not open source. We
provide a json file containing the event
ID used in train and test set.

e GTD: Data is available on GTD Website
: We provide a json file containing the
event ID used in train and test set

e Provided in the submission

5. For new data collected, a complete description
of the data collection process, such as instruc-
tions to annotators and methods for quality
control.

* Not applicable
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B Additional Material
B.1 Actor and Target Coding.

Until now, we studied how to code event types,
which can be seen as actions or predicates of an
event. We propose an extension to extract the actor
and target of an event using question answering
models similar to Halterman et al. (2021). In He
et al. (2015), questions are constructed around a
known action performed in an event. Given the
example “Military injured two civilians.”, PR-ENT
yields “injured” as an action. Using this action,
we can construct the questions “Who was injured?”
and “Who injured people?” which are then fed to a
QA model RoBERTa-base-squad2 (Rajpurkar et al.,
2016). We present examples of extracted “who-did-
what-to-whom” patterns in Tab. 6. Actor-target
coding is even harder to evaluate, as there can be
multiple actions / targets / actors in an event descrip-
tion and the abstract mapping between manually
annotated entity types (e.g. civilians) and verbatim
mentions (e.g. demonstrators) is not known.

Event description e: Several demonstrators were injured.

A) Template t: This event involves [Z].

BN Prompting Prob.
Entailment Prob.

Output Prob. [%]

B) Template t: This event entails [Z].

X
g
o
3
a 50
o
3
o
g
3
© 0
5> @ ) e o
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IS (\c}é @ &
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Figure 7: Given the event description “Several demon-
strators were injured.”, and the two similar templates
(A) and (B), we get drastically different answer can-
didates as shown by the top 10 outputs of the prompt
model (blue bar). However, in both cases we obtain the
same 3 answer candidates if they are filtered through an
additional entailment step (orange bar).
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Event Description + Extracted Actor-Target Action
Arrests: [WHO (31%): [LOC] police] captured [WHOM (90%): [NAME]],

a senior [ORG] in [LOC]

On 3 January 2020, [WHO (17%): [LOC] Armed Forces] regained [LOC], [LOC],
[LOC], [LOC] and [LOC] from [ORG]. In the operations 6 [ORG] fighters were rescued
arrested and [WHOM (67 %): 461 kidnapped civilians] were rescued.

On 12 March 2020, [WHO (40%): police and military intelligence officers] raided

the home of retired [WHOM (15%, 6%): Lt. Gen [NAME]]. The candidate was arrested arrested;
and charged with treason in relation to remarks he made during a [WHO (29%): TV] interviewed

arrested

interview; his staff of 18, as well as the MP for [ORG] as well as his son have all been arrested.

Table 6: Actor-target coding based on our pipeline augmented with an additional extractive question-answering
(QA) model. The first example represents a clear “who-did-what-to-whom” pattern. In the second example, actor
and target are separated into two sentences. Finally, the third example shows an event with two ARGO-V-ARG1
patterns (bolded and underlined). The confidence of the QA model is displayed for each answer.

Event Type Template Entailed Answer Candidate
Arrest People were [Z]. arrested AND NOT kidnapped
o This event involves [ Z]. killing
Killing )
People were [Z]. killed
Looting This event involves [ Z]. looting OR theft OR robbery
. This event involves [ Z]. rape
Sexual Violence
People were [Z]. abused OR raped
) . This event involves [Z]. kidnapping
Kidnapping .
People were [Z]. kidnapped OR abducted
This event involves [ Z]. protest OR demonstration
Protest i
People were [Z]. protesting

Table 7: Example of an event ontology designed by means of our approach of entailment-based prompt selection
PR-ENT. The final ontology is defined in terms of templates and expected entailed answer candidates. We use
the event type “Killing” versus all others to classify “lethal” versus “non-lethal” events in Tab. 3. It’s also used to
compute results of Fig. 6 and Fig. 10.

14



A) Predicate-Argument count

e o ©
N W

Frequency

o
o

0 2 4 6 8 10 12 14
Number of [ARGO, V, ARG1] sentences in each event

C) Text length

0.006

0.004

Frequency

0.002

0.000 T
800

400 600
Event text length

200

B) Verb count

> 0.15
o
C
2 0.10
g
& 0.05
0.00 t T
0 5 10 15 20
Number of verbs in each event
D) Unigram distribution
> 0.10
o
C
[}
3
93‘0.05
L
0.00
Q> & > QN2 0
VT DR GO E G P
TP FL LTSS ° F
TR BN

Figure 8: Statistics over a sample of 1000 ACLED event descriptions; (A) encountering many predicate-argument
structures per event description can be an indication of difficult event coding; (B) number of verbs (actions) per
event description; (C) length distribution of event descriptions; (D) unigram distribution over dataset.
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Figure 9: Event type distribution as visualized using UMAP over GloVe embeddings of the event descriptions.

While some event types are easily distinguishable from

each other (e.g. Protests and Battles), others are harder to

tell apart (e.g. Protests and Riots). We also show the proportion of each event type in the legend.
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Protest events in Ethiopia

Number of Protests
Per month
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Figure 10: Time series of the number of protest events per month in Ethiopia between 2009-2021. The dashed line
corresponds to all protest events coded by ACLED annotators. The blue line corresponds to all protest events coded
by PR-ENT. Despite PR-ENT codings being machine-automated, they are very similar to ACLED’s codings. Both
clearly detect the high intensity violence periods in 2016.
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Figure 11: Confusion matrices of DistilBERT and PR-ENT + LR on the test set.
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Abstract

An approach to improve question-answering
performance is to retrieve accompanying infor-
mation that contains factual evidence matching
the question. These retrieved documents are
then fed into a reader that generates an answer.
A commonly applied retriever is dense passage
retrieval. In this retriever, the output of a trans-
former neural network is used to query a knowl-
edge database for matching documents. In-
spired by the observation that different layers of
a transformer network provide rich representa-
tions with different levels of abstraction, we hy-
pothesize that useful queries can be generated
not only at the output layer, but at every layer of
a transformer network, and that the hidden rep-
resentations of different layers may combine
to improve the fetched documents for reader
performance. Our novel approach integrates re-
trieval into each layer of a transformer network,
exploiting the hierarchical representations of
the input question. We show that our technique
outperforms prior work on downstream tasks
such as question answering, demonstrating the
effectiveness of our approach.

1 Introduction

In open book question answering, the answer to a
given question needs to be generated from a large
pool of passages. Typically, this problem is tack-
led in two stages. Given a question, a retriever
collects a set of top-k passages from the passages
memory. Then, a reader generates the answer from
the retrieved documents. In this setting, dense pas-
sage retrieval (DPR) is a commonly used retriever
(Karpukhin et al., 2020). Therein, each passage
in a document collection is represented as a vec-
tor in a high-dimensional space. These vectors are
then used to compute similarity scores between pas-
sages. The most similar passages are then retrieved
and used as input to a machine learning model.
However, we observe that current open-book QA
systems do not adequately exploit the correlations
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When did Harvard become an Ivy League school?

FetcHR:  Harvard: 300, Ivy League: 109
DPR: Harvard: 341, Ivy League: 66

Who overthrew the Mongols and established the Ming Dynasty?

FetcHR:  Mongols: 108, Ming: 112
DPR: Mongols: 108, Ming: 87

When did the Soviet Union first gain control of parts of Poland
and the Baltic Republics?

FetcHR:  Soviet Union: 139, Poland: 93 , Baltic Republics: 7
DPR: Soviet Union: 133, Poland: 214, Baltic Republics: 2

Figure 1: We present the occurrences of word features
inside the document collection as retrieved by either
DPR or FetcHR. The feature from the question with the
lowest occurrence is the critical feature for QA tasks.
Our retriever FetcHR outperforms DPR on critical word
features in the question (underlined). Our work shows
that this improved document collection increases the
reader performance by up to 1.9 EM score on Natural
Question and 2.1 EM score on WebQuestion.

between passages in the retrieved document col-
lection. Typically, questions contain several word
features that need to be represented in the retrieved
document collection, i.e. questions in Figure 1. In
order to answer such questions, the reader needs
to reason about multiple word features of the ques-
tion simultaneously. However, we found that many
questions have a critical feature that is underrepre-
sented in the retrieved documents (i.e. Ivy League,
Ming, Baltic Republic). In order to improve the
QA performance, we propose to increase the occur-
rence on these critical features.

Typically, the retrieved document collection
matches the highest abstraction level of an input
question. We hypothesize that a document collec-
tion addressing different, hierarchical abstraction
levels of an input question may improve on the
critical features. With these documents, the reader
improves the performance on question-answering
benchmarks.

We present a novel retriever architecture and
training procedure to test this hypothesis (Figure

Proceedings of the Sixth Fact Extraction and VERIification Workshop (FEVER), pages 17-28
May 5, 2023 ©2023 Association for Computational Linguistics



2). Our architecture extends BERT (Devlin et al.,
2019) with a neural retrieval network producing
queries not only at its output layer but also at inter-
mediate layers. This is inspired by the observation
that different layers provide different level of ab-
straction (Rogers et al., 2020) that can be all used
for downstream tasks (Evci et al., 2022). Under
this setup, the retrievable documents embody a
non-parametric knowledge of the transformer (Guu
et al., 2020). With a separate reader function, an
answer is inferred from the documents retrieved by
the hierarchical retrievers (see section 3 for details
of the model).
Our main contributions are:

¢ We introduce FetcHR, a document fetcher
based on hierarchical retrieval. We equip
transformer layers with a neural retrieval net-
work allowing hidden representations to con-
tribute to the retrieval query.

We show that retrieval performance of all lay-
ers combined is higher than any of the in-
dividual layers, in most of our experiments.
This allows improving performance of previ-
ous models, which considered retrieval from
single layers only.

When using a reader to generate the answer to
the input question, we show that documents
retrieved by FetcHR obtain the highest per-
formance in all experiments, and advance the
state-of-the-art on the Natural Question and
WebQuestion datasets.

All results are obtained by training only the
retrieval networks. This avoids any modifica-
tion of the underlying language model, mak-
ing it feasible to customize a large pretrained
language model with moderate training re-
sources.

2 Related Work

Retrieval Question-answering tasks are usually
tackled introducing retrieval components in order
to efficiently select a subset of relevant documents
(Voorhees et al., 1999). In the past, Q&A tasks
would be generally attempted using sparse vector
space models such as BM25 and TF-IDF (Chen
et al., 2017; Yang et al., 2019; Nie et al., 2019;
Wolfson et al., 2020; Min et al., 2019). In the
past few years, these were replaced by transformer-
based models mapping a model input to a dense
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vector representation. There are mainly two ap-
proaches of neural network-based retrievers based
on single or multiple embedding vectors (Singh
et al., 2021). Dual encoders belong to the single
embedding approaches. Such retrievers use one
encoder for the documents and another one for the
query (Yihetal., 2011; Lee et al., 2019). Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020) uses
two BERT-style models to learn a similarity metric
between document and query. In case of multi-
vector retrievers instead, multiple embeddings are
generated for each document, such as in (Khattab
and Zaharia, 2020; Zhang et al., 2022; Luan et al.,
2021). However this approach is computationally
limiting in large-scale retrieval since it requires to
retrieve in many search spaces (up to the document
token length) leading to increased memory needs
and search time. Instead we propose to perform
retrieval in each layer of a BERT-based transformer
network limiting the retrieval runs to 12. This ap-
proach borrows ideas from early work in informa-
tion retrieval on multi-layer matching (Nie et al.,
2018a,b), however retrieval is performed based on
an aggregated score over all layers. Instead, our ap-
proach performs retrieval in each layer, while using
a more modern transformer architecture, scales to
large-scale retrieval and is evaluated on end-to-end

QA.

Training of Dual Encoders Past work has shown
(Qu et al., 2021; Guu et al., 2020; Lewis et al.,
2020; Singh et al., 2021) that the performance of
dual encoders can be improved by (i) carefully se-
lecting negative documents for the contrastive loss
and (ii) by an end-to-end training with a reader
function. Cross-batch negatives, denoised hard
negatives and data augmentation are options men-
tioned in (Qu et al., 2021) for negative documents.
End-to-end training approaches tune the retrieval
function to match the distribution of data for the
reader (Lewis et al., 2020; Guu et al., 2020; Singh
et al., 2021). These approaches are orthogonal to
our work and might be considered as an extension
for future work.

3 FetcHR Model

3.1 Retrieval Score

The purpose of a retrieval system is to choose a
selection of documents from a collection of docu-
ments (referred to as the "Document Memory") that
contains pertinent information to answer a given
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Figure 2: FetcHR is a stack of BERT layers with an additional Retrieval Network (RNet) at each layer. (a) Training:
The inner product between the encoded input question at each layer Eq ¢(xo) and the encoded document Ep(d)
is maximised for positive documents d and minimized for negative documents d~, using a contrastive loss. (b)
Inference: Using nearest neighbour search, FetcHR retrieves £ documents per layer from the document memory, for
atotal L x k documents. The reader outputs the answer y given the hierarchy of retrieved documents combined

with the model input x

tokenized input question xg. Our novel retrieval
system FetcHR gathers documents for different hi-
erarchical representations of the model input. For
this, we employ a multi-layer encoder architecture.
Each layer / has its own encoder function Eg g,
which is used to query the document memory. This
allows us to define a retrieval score as the inner
product between the vector pairs Eg ¢ and Ep for
all layers. Given a question x¢ and document d,
the retrieval score for layer £ can be computed via
the inner product between the vector pairs Eg ¢
and Ep

score; = Eq ¢(x0; 010, ¢y) - Ep(d;w) (1)

The parameters 0., are shared by the first ¢ layers,
while ¢, corresponds to the parameters specific to
layer ¢, and w is the parameter vector of the doc-
ument encoder. Consequently, the retrieval score
in layer ¢ depends on a layer-specific question en-
coder Eq , and a single, shared document encoder
Ep for all layers.

3.2 Contrastive Training

During training, we present data points to the
model. Each one is a tuple of an input question
Xy, a positive document d* containing the correct
answer to the question and n negative (randomly
chosen) documents d; , ...,d,;. The training goal
is to improve the retrieval score of all layers at the
same time. Following (Karpukhin et al., 2020),
we adopt the contrastive loss function which, for a
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single data point {xo,d*,d7,...,d; }, is equal to

£(¢a 07 w) ==

L ‘ n
1 scoreg (xg,d ™)
LY ot f
L =1 escoreg (xo,d ) + Z?:l escoreg(xo,d;")

This loss is minimized by adjusting the parameters
¢ while holding 0 and w constant to the pre-trained
values from (Karpukhin et al., 2020). The loss is
calculated and averaged over a batch of data points
at each iteration (see Section 4.2 for details).

3.3 Multi-layer encoder

FetcHR is build on top of BERT transformer lay-
ers (Devlin et al., 2019). We use a stack of these
BERT layers and define for each layer £ a retrieval
network RNet to generate single query vectors
qv = Ege(x). Formally, the encoder function
Eg ¢ is obtained according to

for{=1,...,L
2

where the parameters ¢, corresponds to the re-
trieval network and 6, to BERT layer ¢. Note that
the encoder function Eg ¢ depends on the input
question x( and the parameters 6., of all upstream
BERT layers through x,.

The output of the retrieval network RNet is the
embedding at the CLS position of the output of a
stack of two transformer layers. Each layer is a
BERT transformer layer, with the skip connection
placed outside of the layer normalization:

LayerNorm(Wy(o1 (W1 (AttnLayer(+))))
+ArmLayer(+)

x¢ = BertLayer(x¢—1,0y)
EqQ. = RNet(x¢; ¢;)

3)



where W and o are the weights and activation func-
tion, respectively, of a two-layer MLP as in stan-
dard self-attention. Placing the skip connection out-
side of layer normalization is advantageous when
BertLayer is initialized with pre-trained weights
such that x, already captures a meaningful abstrac-
tion of the input question. In all of our experiments,
we use a combination of the BertLayer and the
RNet, which we refer to as the FetcHR layer. We
use L. = 12 layers in total. All of the embed-
dings are 768-dimensional, as in the original BERT
model. For the document encoder Fp(d;w), we
use a BERT model in base configuration. The pre-
trained parameters w come from (Karpukhin et al.,
2020).

3.4 Inference

After training, retrieval on test data is implemented
by matching the FetcHR encodings of each layer
with document encodings in the document memory.
For each layer /, a set D, containing k£ documents
is retrieved by nearest neighbour search. During
this search, we do not allow single documents to be
retrieved more than once at multiple layers. More
formally, given a question xg during testing time,
the optimal parameters ¢* obtained by training and
the query vector qy = Eg ¢(X0; 1.0, @) ), the set
of retrieved documents at layer ¢ is equal to

Dy = NNSearch(qg, D1.4—1, k) 4)
where NNSearch returns the k nearest neighbours
of gy that are not included in the document sets
Di.p—; retrieved in previous layers. We use the
Faiss-library for the implementation of NNSearch
(Johnson et al., 2019). We investigated the perfor-
mance on both exhaustive search on a flat index
and the compressed IVF index (see section 4.2 for
details).

With L layers, a total of L x k& documents are
retrieved. These retrieved documents are fed to the
reader, together with the question xg, to obtain the
answer. For the reader, we implement the state-
of-the-art Fusion-in-Decoder (FiD) of (Izacard and
Grave, 2021). Compared to other reader such as
DPR-reader (Karpukhin et al., 2020) and REALM-
reader (Guu et al., 2020) the FiD reader takes the
retrieved document collection as an input simul-
taneously which allows to exploit the correlation
between documents.

In a subset of experiments (e.g. Figure 3), we iso-
late retrieval in individual layers. In this case, each
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experiment retrieves from a single layer, without
excluding any document.

4 Results

In the following, we evaluate how FetcHR in-
fluences the performance of modern readers and
present isolated retrieval results of FetcHR.

4.1 Datasets

We test FetcHR on two commonly used open-
domain question answering datasets:

¢ WebQuestions (Berant et al., 2013): This
dataset includes questions collected using the
Google Suggest API, with answers being enti-
ties from Freebase annotated by Mechanical
Turk. Since only pairs of questions and an-
swers are provided and no positive document,
we follow (Karpukhin et al., 2020) by using
the highest-ranked document from BM25 con-

taining the answer span as positive document
dt.

Natural Question (Kwiatkowski et al., 2019):
This dataset contains questions asked by users
of Google-Search, with answers given as
spans of text within Wikipedia articles. For
each question, the positive document is the
Wikipedia article containing the span with the
answer.

The pre-processed English Wikipedia dump from
December 2018 is used as the document mem-
ory as provided by (Karpukhin et al., 2020).
This Wikipedia dump has been divided into non-
overlapping chunks of 100 words following (Chen
et al., 2017) and (Wang et al., 2019). Each chunk
corresponds to a document. In total, there are
21,015, 324 documents.

4.2 Implementation Details

Hardware and libraries We use 32 Nvidia RTX
3090 GPUs with a total memory of 768 GB for
training and testing of FetcHR. The distributed
training is implemented in PyTorch with NCCL
backend (Paszke et al., 2019). Our model imple-
mentation is is based on the Huggingface Trans-
formers library (Wolf et al., 2020). The training
time of the FetcHR retriever is 30 — 50 hours for all
our experiments. For training the FiD-large reader,
we use a single Nvidia RTX A6000 GPU with 48
GB of RAM and gradient accumulation over 32
steps. This training takes about 100 hours.



Dataset details We follow the train/test splits
from (Karpukhin et al., 2020) and we discard dat-
apoints when the gold documents don’t match the
applied Wikipedia dump. This filtering process
leaves us with a train set of 122,892 data points,
which come from Natural Question, TriviaQA, We-
bQuestions, and CuratedTREC.

Training details We initialize the model parame-
ters using the multiset checkpoint that was trained
and provided by DPR. For the contrastive loss func-
tion, we use in-batch negatives. Our total training
time is 30 epochs. The learning rate is 2- 1075, and
we use Adam optimizer (Kingma and Ba, 2014),
linear scheduling with warm-up, and a dropout rate
of 0.1. Our batch size is 256. We evaluate two
checkpoints after training: the one with the lowest
validation loss and the last checkpoint. The best
performing checkpoint is reported in this paper. For
distributing the training over multiple GPUs, we
compute the scores on each GPU first and gather
these scores to compute the loss. Then, we reduce
the loss back to each GPU and compute local gra-
dients. The final gradient update is averaged over
all local gradients.

Retrieval and search In the nearest neighbor
search function "NNSearch", documents that have
already been retrieved are excluded by iteratively
increasing k — Kk’ until k¥ new documents are
retrieved. The underlying search algorithm uses
the Faiss library. However, due to computational
limitations, in most experiments, we use an IVF
search index with 131072 clusters and 128 infer-
ence probes. We end-to-end ran experiments using
both the IVF index and a flat index for exhaustive
search. The IVF index was built on four Nvidia
RTX 3090 GPUs that sums up to 96 GB VRAM.
During inference, we ran IVF and flat index on
CPU with access to 2 TB of physical memory. The
total search time required for FetcHR is about 0.5
s on IVF index and 150 s on the flat index for a
single inference.

4.3 Baselines

We compare FetcHR with DPR (Karpukhin et al.,
2020) by testing it on the state-of-the-art Fusion-in-
Decoder reader (FiD, (Izacard and Grave, 2021)).
DPR is the best performing retriever in the original
FiD publication and serves as a strong baseline.
The authors of DPR published multiple check-
points of their work, some of which are trained
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on a single dataset (Natural Question) while oth-
ers are trained on multiple datasets (Natural Ques-
tion, TriviaQA, WebQuestions, CuratedTrec). We
compare with the checkpoint trained on multiple
dataset, which also serves as initialization of our
model. For a fair comparison, we re-evaluate the
DPR checkpoint on the same search index (IVF
and flat), with identical retrieval budget L x k,
identical tokenization and entity normalization. Re-
trieved documents are fed to the FiD reader with
pre-trained weights, as provided by the authors.
We use the Fusion-in-Decoder in either base or
large configuration. Fusion-in-decoder was trained
on the Natural Question, TriviaQA and SQuAD
v1.1 on 100 retrieved documents. We finetuned
FiD-large to read from 240 documents from the
Natural Question train set for 1 epoch. For the
WebQuestion dataset, we performed an additional
finetuning of the previously obtained Natural Ques-
tion checkpoint to compensate for the small size
of the WebQuestion dataset. We stopped this fine-
tuning after 15 epochs. We denote the finetuned
checkpoints as FiD-large trained in our tables.

4.4 Performance Metrics

Since the critical occurrence is a qualitatively met-
ric which cannot be measured automatically, we
follow the standard convention of retrieval accu-
racy and exact match from related work to measure
the performance of our model as follows:

Retrieval Accuracy The retrieval accuracy is the
probability that the correct answer span is included
in one of the documents that are retrieved. Nor-
malizations are performed, such as lower casing
as well as removing punctuation and articles. This
accuracy is commonly used to evaluate retrieval
systems but is not capturing the occurrence of crit-
ical features in the retrieved document collection
(see Figure 1).

Exact Match The performance of a reader is
measured by the exact match (EM) score. This
score is calculated by the percentage of exact
matches between the reader’s output and the cor-
rect answer. This score provides an end-to-end
QA score capturing also the occurrence of critical
features in the document collection.

4.5 Main Results

Figure 3 illustrates the retrieval accuracy of sin-
gle FetcHR layer. We consider retrieval budgets
of L x k = 10 and L x k = 120 and compare



Retriever NQ WebQ
top-120  top-240 top-120 top-240
DPR-IVFIdx 81.7 83.8 81.6 83.4
FetcHR-IVFIdx 83.9 85.6 82.5 84.4
DPR-flat 86.5 88.2 85.2 87.3
FetcHR-flat 86.5 88.2 84.8 86.8

Table 1: Top-120 and -240 accuracy’s for different retriever on a flat and a compressed search space (IVFIdx).

Retriever FiD-base FiD-large FiD-large trained
top-120  top-240 | top-120 top-240 top-120 top-240 | top-240 top-240
NQ NQ NQ NQ WebQ  WebQ | NQ WebQ
DPR-IVFIdx 41.0 41.5 45.7 46.4 24.9 26.2 46.6 36.9
FetcHR-IVFIdx 43.7 43.7 48.1 49.3 26.1 27.2 48.7 39.9
DPR-flat 46.0 46.0 50.5 51.3 27.0 28.1 51.6 40.7
FetcHR-flat 46.7 46.6 50.8 52.0 271 28.2 53.3 48.0

Table 2: Exact-match scores with different readers on Natural Question and WebQuestion test sets.

the results to DPR which always retrieves at the
final output layer 12. In contrast to the rest of this
work, where FetcHR retrieves from all/multiple
layers simultaneously (L > 1), in this experiment
we retrieve from individual layers separately and
independently (L = 1). Figure 3 reveals that the
retrieval accuracy improves as the layer becomes
deeper. The final layer achieves the best perfor-
mance, while none of the FetchHR-layers outper-
forms DPR on its own, despite the last FetchHR-
layer reaches nearly the same accuracy as DPR.

In the second experiment, we show that retriev-
ing from all layers simultaneously achieves higher
performance than the best individual layer, for an
equal total number of retrieved documents. With
L = 12 layers and k = {10, 20}, we consider total
budgets of L x £ = 120 and L x k = 240, re-
spectively. We combine all retrieved documents
as described in Section 3.4. The results are shown
in Table 1. FetcHR’s accuracy using all layers is
higher than DPR when the IVF index is used. How-
ever, it is equal or slightly worse when the flat index
is used. This might be a consequence of FetcHR
being able to explore a compressed search space
efficiently. While retrieval accuracy of FetcHR is
not better than DPR for the flat index, in the next
experiment we find that FetcHR performance is
always higher when integrated into a QA system
containing a reader to generate the answer.

We apply the Fusion-in-Decoder, a state-of-the-
art reader, in the third experiment. This reader takes
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the retrieved documents combined with the input
question as input and generates the answer. The
exact match score is shown in Table 2 for question-
answering tasks from the Natural Question and
Web Question datasets. The documents provided
by FetcHR always enable the reader to score higher
than with the documents provided by DPR for all
datasets and documents budgets. This is especially
significant for the IVF index and the finetuned FiD
reader, but it holds consistently also for the other
scenarios, despite the lower retrieval performance
shown in Table 1. These results confirm that the
FetcHR document collection is superior compared
to the DPR documents for QA tasks. We conclude
that this improvement is due to a higher occurrence
of critical features of the input question in the re-
trieved document collection. Figure 1 showcase
three example questions with their corresponding
occurrence of features in the retrieved document
collection. We observe FetcHR to particular im-
prove on the critical feature.

Table 3 provides a broader comparison of the
performance of FetcHR to prior work on QA tasks.
We consider prior work where retriever and reader
are trained separately from the same or a strong
overlapping dataset as with FetcHR. We find that
FetcHR outperforms prior work when the FiD
reader is finetuned on the FetcHR output distri-
bution by 1.9 EM score on Natural Question and
2.1 EM score on Web Question.



Closed-book QA Models NQ WebQ
T5-base (Roberts et al., 2020) 257  28.2
T5-large (Roberts et al., 2020) 273 295
T5-XXL (Roberts et al., 2020) 32.8 35.6
GPT-3 (Brown et al., 2020) 299 415

Open-book QA Models NQ WebQ
BM25+BERT (Lee et al., 2019) 26.5 21.3
QRQA (Lee et al., 2019) 333 30.1
DPR (Karpukhin et al., 2020) 41.5 424
ReConsider-base (Iyer et al., 2020) 43.1 444
ReConsider-large (Iyer et al., 2020) 445 459
RETRO 7.5B w. DPR (Borgeaud et al., 2021) 45.5 -
FiD-base (Izacard and Grave, 2021) 48.2 -
FiD-large (Izacard and Grave, 2021) 51.4 -
FetcHR-flat / FiD-large trained 53.3 48.0

Table 3: EM scores of related work compared to our results on the Natural Question and WebQuestion test sets.

4.6 Ablations

Importance of FetcHR layers We investigate
the importance of individual FetchHR layers when
retrieving simultaneously from all layers. If some
layers retrieve better documents than others, then
we may consider the opportunity of unbalancing
the contribution of different layers, i.e. letting those
layers retrieve more documents than the others. We
analyse individual layer performance by measur-
ing the averaged amount of documents containing
the answer span each layer retrieves additional to
previous layers — we call this support in the follow-
ing. Note that this support is different to Figure 3,
where retrieval is performed in single layers while
here retrieval is done in all layers. The results are
illustrated in Figure 4. In this case, ¥ = 10 and
the total budget is L. x k = 120. The majority of
correct documents is retrieved in the first layer but
we observe that each layer has a significant contri-
bution to the final retrieval performance showing
the benefit of retrieving in multiple layers. We also
observe that the middle layers have the lowest sup-
port. This low support could be a consequence of
having a strong overlap of retrieved documents to
previous layers sides while the first and last layer
retrieve very different documents due to the largest
difference in the hidden state representation of the
input question.

Distribution of retrieval budget over multiple
layers Given the results of Figure 4, we investi-
gate alternative ways of dividing the total budget of
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documents L x k among the FetcHR layers, differ-
ent from distributing the budget uniformly. Table
4 provides an overview of the retrieval accuracy
in different configurations ranging from retrieval
in the last layer only, the first and last layer, up to
all layers. Note that the total amount of retrieved
documents is 120 for all experiments. From these
results, we conclude that the best configuration is
when retrieval is distributed over all layers equally
(ie. L =12, k = 10).

5 Conclusion

5.1 Summary

We presented retrieval-augmented transformers, a
multi-encoder retrieval system exploiting different
hierarchical abstractions of a model input. Our
experiments show a competitive retrieval perfor-
mance and a superior reader performance for two
benchmark tasks on the FiD reader.

Since FetcHR is a retrieval system, it does not
generate answers by itself and it requires a reader
that can process the retrieved documents. We found
that the FiD reader, in large configuration, is able
to process retrieved documents efficiently — with-
out additional training. Additional training of the
FiD reader on the output distribution of FetcHR
improved the performance even further and outper-
forms related work.

5.2 Discussion and Future Work

Our work shows that in the scenario of an end-
to-end question answering task, a high retrieval



FetcHR layers k per layer accuracy
12 120 81.3
1,12 60 82.6
1,6,12 40 83.1
1,2,3,10,11,12 20 83.4
2,4,6,8,10,12 20 83.5
1,2,3,4,5,6,7,8,9,10,11,12 10 83.9

Table 4: Retrieval accuracy on Natural Question with varying distributions of L and k& for a retrieval budget. Note
that the total budget L x k = 120 is kept constant across different rows of the table.
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Figure 3: Top-10 (top) and top-120 (bottom) retrieval
accuracy when all documents are retrieved in a single
FetcHR layer compared to DPR. We evaluated this per-
formance on the test set of Natural Questions. The
accuracy is measured as percentage of top-k retrieved
documents containing the correct answer span.

accuracy does not always translate to a high EM
score of the reader output. We observe a better
EM score of the reader despite an equal/slightly
worse retrieval accuracy of the retriever. This ap-
pears to be contra-intuitive. However, a generative
reader such as FiD performs inference over all re-
trieved documents at the same time. Typically, the
answer to a question appears multiple times within
the retrieved document collection. We believe this
document distribution to be better, when the critical
features of questions occur more often (see Figure
1). This might lead to future work aiming to de-
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Figure 4: Support of each FetcHR layer to the final
retrieval performance.

velop automated metrics for retrieval systems when
end-to-end question answering is the goal.

Another interesting observation is that FetcHR
obtains the largest improvement in many scenar-
ios on a compressed IVF index. We believe this
is influenced by a wider exploration of the com-
pressed search space, in addition to the hierarchical
retrieval. This wider exploration might be a con-
sequence of different queries from the individual
FetcHR layers.

FetcHR demonstrated that a well performing re-
triever can be obtained with a query encoder build
from just a few transformer-layers. With just a
single transformer-layer and an attached retrieval
network, we obtained decent retrieval performance.
In the future, this may allow more hardware-
efficient inference, shifting computational needs
from the transformer network to the nearest neigh-
bour search method. In future work, end-to-end
training methods of FetcHR with FiD might lead
to a fusion language model with both parametric
and non-parametric knowledge over multiple lay-
ers. We believe this will have a significant impact
on knowledge-intense tasks.



6 Limitations

Despite being trainable and usable for most datasets
and document memories, there are some limitations
to consider. The first one is related to the retrieval
index. The discussed flat retrieval index scales
poorly to large document memories. Despite being
commonly used in research publications, the practi-
cal application of flat indices is limited due to long
inference times on large document memories. Due
to the poor scaling of the flat index, we also pre-
sented results on the much fast and more scalable
IVFIndex. Another limitation is related to the DPR
retriever as initial checkpoint for the retriever. We
found very good retrieval results when FetcHR is
trained on one of the pretraining datasets for DPR,
however we observed a performance drop when
FetcHR is used on a novel dataset. As this drop is
expected for most models when train and test data
distribution are not matching, a solution to this is
an additional training of DPR following the DPR
approach on the new dataset first. Afterwards, the
presented FetcHR training can be conducted.

Ethics Statement

FetcHR shares the same ethical considerations and
societal impact as prior work on language models
and retrieval systems. Even though FetcHR im-
proves performance on knowledge-intense tasks, it
inherits the bias given by the training data and the
collection of documents in the memory. This bias
might lead to unfair or misleading model outputs.
Since FetcHR does not have an explicit mecha-
nism to detect and prevent a manipulated document
memory, it could get prone to retrieve documents
containing fake knowledge.
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A Datasets

The datasets used in this work are open-source
and widely used in the community. We make
use of a preprocessed and published version by
(Karpukhin et al., 2020) which can be down-
loaded from here: https://github.com/
facebookresearch/DPR. In Table 5 the
statistics of these datasets can be found.

Natural Question (Kwiatkowski et al., 2019)
URL: https://ai.google.com/
research/NaturalQuestions/
download

License: https://github.com/
google-research-datasets/
natural-questions/blob/master/
LICENSE

WebQuestions (Berant et al., 2013)

URL: https://github.com/
google-research/language/
tree/master/language/orga#
getting-the-data

License:  https://nlp.stanford.edu/
software/sempre/

TriviaQA (Joshi et al., 2017)

URL: http://nlp.cs.washington.edu/
triviaga/

License: https://github.com/
mandarjoshi90/triviaga/blob/
master/LICENSE

CuratedTrec (Baudis and Sedivy, 2015)

URL: https://github.com/brmson/
dataset-factoid-curated

License: https://github.com/brmson/
dataset-factoid-curated/tree/
master/trec
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Dataset Filtered Train Development  Test
Natural Questions 58,880 8,758 3,610
WebQuestions 2,474 8,837 2,032
TriviaQA 60,413 361 11,313
CuratedTREC 1,125 133 694

Table 5: Datasets used in this work.
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Abstract

Existing fact-checking models for biomedical
claims are typically trained on synthetic or well-
worded data and hardly transfer to social media
content. This mismatch can be mitigated by
adapting the social media input to mimic the
focused nature of common training claims. To
do so, Wiihrl and Klinger (2022a) propose to
extract concise claims based on medical enti-
ties in the text. However, their study has two
limitations: First, it relies on gold-annotated
entities. Therefore, its feasibility for a real-
world application cannot be assessed since this
requires detecting relevant entities automati-
cally. Second, they represent claim entities
with the original tokens. This constitutes a ter-
minology mismatch which potentially limits
the fact-checking performance. To understand
both challenges, we propose a claim extraction
pipeline for medical tweets that incorporates
named entity recognition and terminology nor-
malization via entity linking. We show that au-
tomatic NER does lead to a performance drop
in comparison to using gold annotations but the
fact-checking performance still improves con-
siderably over inputting the unchanged tweets.
Normalizing entities to their canonical forms
does, however, not improve the performance.

1 Introduction

Fact-checking models trained on synthetic, well-
worded and atomic claims struggle to transfer to
colloquial content (Kim et al., 2021). There are
multiple ways to address this problem: We can
build custom datasets and models that verify med-
ical content shared online (Saakyan et al., 2021;
Mohr et al., 2022; Sarrouti et al., 2021) and tackle
related tasks (Sundriyal et al., 2022; Dougrez-
Lewis et al., 2022). Alternatively, we can adapt
the input before addressing other fact-checking
tasks. Bhatnagar et al. (2022) create claim sum-
maries and find that this improves the detection of
previously fact-checked claims. Similarly, Wiihrl
and Klinger (2022a) extract concise claims from
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Claim Evidence
o0 medicines causes drospirenone may signifi-
8  blood clots cantly increase chances of
B developing venous throm-
g P ha.u'maceutlcal Prepa-  poembolic events
5 rations causes throm-
=

bus

Table 1: Example claim represented with original and
normalized entities together with evidence.

user-generated text in an effort to mimic the fo-
cused, well-structured nature of the claims the
fact-checking models were originally trained on.
They find that this improves the accuracy of pre-
trained evidence-based fact-checking models in the
biomedical domain.

However, the study by Wiihrl and Klinger
(2022a) is limited in two ways: (1) Their claim
extraction method relies on gold-annotated, claim-
related entities. For a realistic evaluation, such
an oracle needs to be replaced by an entity recog-
nizer. Only then it is possible measure the impact of
potential error propagation which may ultimately
render the method unfeasible. (2) The claim enti-
ties are represented by the original token sequence.
This is problematic as medical mentions on Twit-
ter potentially contain imprecise, abbreviated, or
colloquial terminology. This is in contrast to the
terminology in the original model input as well
as the documents that we provide as evidence (cf.
Table 1). We hypothesize that for a successful
fact-check we need to close this gap by normal-
izing medical terminology in the input. Previous
work suggested leveraging entity linking for evi-
dence retrieval (Nooralahzadeh and @vrelid, 2018;
Taniguchi et al., 2018; Hanselowski et al., 2018)
leading us to believe that it could also be beneficial
for aligning claim and evidence.

We address both limitations and evaluate a real-
world, fully-automatic claim extraction pipeline for
medical tweets which incorporates an entity rec-

Proceedings of the Sixth Fact Extraction and VERification Workshop (FEVER), pages 29-37
May 5, 2023 ©2023 Association for Computational Linguistics



.
Normali-
zation

Claim

| _D__
>

NER

b

—>

Candidate
Generation

Main
Claim

—J=
Fact-
) O Checking

>

Rz

Detection

>
>

Figure 1: Overview of the claim extraction pipeline. Input documents go through entity recognition (NER),
normalization, claim candidate generation, main claim detection and fact-checking. Colored boxes represent the
entities which we use to extract claim candidates. Note that we evaluate the normalization module separately from

the evaluation of the rest of the pipeline (see §3).

ognizer. It only relies on the original text as input
that contains the claim. We further evaluate the
impact of an entity linker for normalizing entity
mentions to canonical forms based on the Unified
Medical Language System (UMLS, Bodenreider,
2004). Our pipeline improves the fact-checking per-
formance over tasking models to check unchanged
tweets. Normalizing entities to overcome the termi-
nology mismatch does not improve fact-checking,
potentially due to limitations of biomedical entity
linking for social media.

2 Methods

Figure 1 visualizes our pipeline. It takes text as
input and performs named entity recognition and
optionally term normalization via entity linking.
Each unique entity pair forms the building blocks
for a potential claim (claim candidate generation).
The main claim detection identifies the core claim
among the candidates that presumably represents
the most important aspect of the text. The result-
ing claim is the input to the fact-checker. In our
setting, we assume this to be a frozen pre-trained
fact-checking model. We describe the modules in
the following and the fact-checker in Section 3.2.

NER. We use the SpaCy environment! to train
a custom NER model that detects medical entities.
This framework relies on a transition-based parser
(Lample et al., 2016) to predict entities in the input.
In a preliminary study, we found that relying on
an off-the-shelf model for biomedical NER, i.e.,
ScispaCy (Neumann et al., 2019), does not trans-
fer to medical texts from social media. Refer to
Appendix B.1 for a comparison of the two models.
Claim candidate generation. Wiihrl and Klinger
(2022a) propose two extraction methods, i.e.,
condensegeq and condenseyiple. The first represents
the claim as the token sequence from the first en-
tity to the last entity, while the second relies on
gold-annotated causal relations which they use to

"https: //spacy.io/api/architectures#
TransitionBasedParser
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build the claims. We use the sequence method
condenseseq in our pipeline because both methods
show on par performances (difference in 1pp F;)
and, in contrast to condenseysipie, it does not require
relation classification.

Following the condenseg.q method, we therefore
extract the sequence from the character onset of
the first entity to the character offset of the second
entity for all pairs of entities found by the NER
module.

Entity linking. To normalize entities, we use the
EntityLinking component in ScispaCy (Neumann
et al., 2019). This model compares an entity men-
tion to concepts in an ontology and creates a ranked
list of candidates, based on an approximate near-
est neighbor search. For text normalization, we
retrieve the canonical name of the top concept. For
entities which could not be linked, we use the orig-
inal mention instead. As the knowledge base, we
use UMLS (Bodenreider, 2004).

Main claim detection. For tweets with more
than two predicted entities, claim generation pro-
duces multiple claim candidates. To identify the
claim to be passed to the fact-checking module,
we train a text classifier to detect the main claim
for a given input. We build on ROBERTArg?, a
RoBERTA-based text classification model trained
to label input texts as ARGUMENT or NON-
ARGUMENT. We fine-tune this model to classify
texts as CLAIM vs. NON-CLAIM and to fit the social
media health domain. At inference time, the claim
candidate with the highest probability for the claim
class constitutes the main claim. We refer to this as
ner—+core-claim.

3 Experiments

3.1 Data

CoVERT. We use the CoVERT dataset (Mohr
et al., 2022) to test our pipeline. It consists of

Zhttps://huggingface.co/chkla/
roberta-argument
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Input Claim

Gold entities

Fully automatic (Ours)

condenseseq full tweets ner+rand-ent-seq ner+-core-claim
model P R F1 Afull P R F1 P R F1 Afu]] P R F1 Afull
fever 83.3 1.9 3.7 +37 00 00 00 00 00 0.0 +0 100 04 08 +40.8
fever_sci 87.2 155 264 +184 91.7 42 80 923 47 90 +1.0 824 56 104 +24
scifact 909 7.6 140 +132 100 04 08 100 24 46 +38 100 24 47 +39
covidfact 55.6 284 37.6 +429.7 308 45 79 533 94 16.1 +8.2 58.1 143 23.0 +415.1
healthver 85.9 48.5 62.0 +16.8 828 31.1 452 756 232 355 -—-9.7 774 287 419 —-33
average 80.6 204 28.7 +16.3 61.1 80 124 o642 79 130 406 836 10.1 162 +3.8

Table 2: Performance (precision, recall and F;) of MultiVerS-based models (fever, fever_sci, scifact, covidfact,
healthver) on COVERT data. Model inputs are the full tweets, the entity-based sequence claims (condensegq (Wiihrl
and Klinger, 2022a)), and claims from the fully automatic pipeline, ner+rand-ent-seq and ner+core-claim. Ay :
difference in F; between the full tweet and performance for the respective input claim. We report the average across

all models in the last row.

medical tweets labeled with fact-checking verdicts
(SUPPORTS, REFUTES, NOT ENOUGH INFORMA -
TION) and associated evidence texts. We follow
the same filtering and preprocessing as Wiihrl and
Klinger (2022a) which leaves us with 264 tweets.
For 13 tweets, the NER model predicts only one
or no entities. In these cases, we cannot generate
claim candidates thus we can only consider 251
claims.

BEAR. We require an independent dataset to train
the NER component. We find the BEAR dataset
(Wiihrl and Klinger, 2022b) to be closest in do-
main and text type to the target data from CoVERT.
BEAR provides 2100 tweets with a total of 6324
annotated medical entities from 14 entity classes.
We use 80% of the data for training and 20% for
testing the model.

Causal Claims. To build a classifier that identi-
fies the core claims, we use the CAUSAL CLAIMS
data from SemEval-2023 Task 8, Subtask 1.3 It
consists of medical Reddit posts and provides span-
level annotations for Claim, Experience, Experi-
ence based claim and Question. Our goal is to dif-
ferentiate claims from non-claims. Consequently,
we extract all spans labeled as Claim and Experi-
ence based claim as positive instances for the claim
class and use the remaining text spans as negative
examples. This leads to 1704 claim and 6870 non-
claim spans. We use a train/test split of 90/10%.

3.2 Evaluation

The fact-checking module serves as a by-proxy
evaluation for the claim representations. Provided

3https ://causalclaims.github.io/
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with a claim—evidence pair, the system predicts a
fact-checking verdict that indicates if the evidence
SUPPORTS or REFUTES the claim. We assume that
the fact-checker is a frozen model for which we
adapt the claim input. To gauge the checkability
of a particular input, we compare the performance
for predicting the correct verdict when the model
is presented with claims of this type. This follows
the evaluation in Wiihrl and Klinger (2022a).

The fact-checking models we employ stem
from the MultiVerS architecture (Wadden et al.,
2022).* This framework is designed for scientific
fact-verification and provides five models (fever,
fever_sci, scifact, covidfact, healthver), differing
in training data. We report precision, recall and
F; for predicting the correct fact-checking verdict
(SUPPORTS, REFUTES, NOT ENOUGH INFORMA -
TION) for a given claim-evidence pair.

3.3 Exp. 1: Impact of NER

In Exp. 1, we aim to understand the impact of
automatic NER and main claim detection in the
pipeline, instead of relying on gold-labeled entities.

Table 2 reports the results for our fully automatic
claim extraction pipeline. Each column reports the
performance for a specific type of input claim. Full
tweets is the performance as reported by Wiihrl and
Klinger (2022a) for the unchanged input tweets.
The results denoted with condense;eq describe their
results with gold annotations, to which we compare.
Our main results are in the last column (ner+core-
claim). To understand the impact of the main claim
detection, we compare against a purely random

4https: //github.com/dwadden/multivers
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selection of the main claim from all candidates in
the tweet (ner+rand-ent-seq).

The rows correspond to the various fact-
checking models. A columns report the difference
in F; between the performance of checking the full
tweet and the respective claim representation.

ner—+core-claim shows an average performance
of F; =16.2. The performance varies across the
models. The healthVer model performs the best
(41.9F;). The average is considerably higher than
using the full tweets (A=3.8 pp F1). This improve-
ment is consistent across all models, except for
healthVer, presumably because it already shows
a high performance for the original texts. To bet-
ter understand the model behavior, we provide an
analysis of its prediction in Appendix B.3. We
see a particularly strong impact for the covidfact
model, with A=15.1 pp. Despite this positive re-
sult, we see a performance drop when integrating
entity recognition instead of building claim extrac-
tion on gold entity annotations. This decrease is not
surprising since we expect some error propagation
from an imperfect entity recognizer. Nevertheless,
the results show that entity-based claim extraction
also increases the fact-checking performance even
under some error propagation throughout the real-
world pipeline.

We further see that main claim detection is a
required module — the performance for a randomly
selected claim (ner+-rand-ent-seq) is substantially
lower. This indicates that using the same evidence
and fact-checking model, not all potential claims
in a tweet would receive the same verdict.

3.4 Exp. 2: Impact of Entity Normalization

In Exp. 2, we investigate if it is beneficial to assim-
ilate the linguistic realizations of medical mentions
to the expected input of the fact-checking models.
More specifically, we suggest normalizing entity
strings in the input. In contrast to Exp. 1, in which
we evaluate the overall pipeline, we focus on the as-
pect of the entities here and therefore do not make
use of the core claim detection method or the entity
recognizer. Instead we build on top of gold an-
notations and, consequently, employ condensegiple
described in Section 2.

We use entity linking for term normalization and
use ScispaCy’s entity linking functionality with
en_core_sci_sm as the underlying model (Neu-
mann et al., 2019). For each (gold) entity, we
use the canonical name of the concept with the
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condenseyiple Claims

surface string normalized ent.

model P R F1 P R F1
fever 818 34 65 750 1.1 2.2
fever_sci 89.8 20.1 328 939 11.7 209
scifact 864 72 133 944 64 12.1
covidfact 65.0 30.3 41.3 61.8 20.8 31.2
healthver 79.7 41.7 547 857 31.8 464
average 80.5 205 29.7 822 144 226

Table 3: Performance (precision, recall and Fy) of
MultiVerS-based fact-checking models (fever, fever_sci,
scifact, covidfact, healthver) on COVERT claims built
with non-normalized (surface string) vs. normalized
entities. We report the average across all models in the
last row.

highest linking score. Subsequently, we follow the
condenseyiple method to represent claims.

Table 3 reports the results for claims built with
non-normalized (surface string) vs. normalized en-
tities (normalized ent.). The results indicated as
condenseyiple surface string are analogue to the re-
sults in Wiihrl and Klinger (2022a). We see that
normalization does not have the desired effect: The
verdict prediction performance drops across all of
the fact-checking models (from 29.7 to 22.6 in
avg. F1). We assume that this is, to a considerable
extend, due to entity linking being a challenging
task which leads to a limited performance of the
employed linking module. We present an error
analysis in Appendix B.4.

4 Conclusion & Future Work

We propose a fully automatic claim extraction
pipeline that is capable of handling real-world med-
ical content. We show that entity-based claim ex-
traction has a positive effect on the performance of
multiple fact-checking models — even after replac-
ing the entity oracle with automatic NER. While
we observe a negative impact of error propagation
from NER and a performance drop as a result, fact-
checking the extracted claims is more successful
than checking unchanged tweets. Future research
may therefore focus on improving the pipeline com-
ponents as this clearly has the potential to further
strengthen the verdict prediction performance. In
particular, we expect an improved entity recognizer
to have a considerable impact.

Our work focuses on the biomedical domain and
builds upon the assumption by Wiihrl and Klinger
(2022a) that claims in this domain are strongly cen-



tered around entities. Claims from other domains
may share this property which could make entity-
based claim extraction applicable for such claims
as well. We leave the evaluation for future work.

We find that normalizing entity mentions does
not improve the fact-checking performance. How-
ever, our analysis shows that the off-the-shelf link-
ing module might be too unreliable. To fully gauge
the potential of normalizing entities, future work
needs to ensure correct mappings (creating gold
links or building a reliable linker) before evaluat-
ing the downstream fact-checking performance.
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Limitations

Our work focused on evaluating the impact of
putting together a set of components to achieve
a real-world system for fact-checking. For answer-
ing the research question at hand, the components
offered themselves as appropriate choices. This
being said, to some degree, the particular selection
may limit the expressiveness of the experiments.

By instantiating the pipeline components with
the set of models and underlying data that we chose,
our findings are limited to this setting. However,
the analysis that we provide in Appendix B dissects
the pipeline results and allows us to draw more
general conclusions about the impact of replacing
individual components.

We propose that the main claim detection re-
ceives more attention in future research. This may
mitigate the issue that this module is potentially
the most in-transparent component. Compared to
the NER, this task can be modeled in various ways.
We rely on the output probabilities to identify the
claim candidate the model is most confident about.
While this is a straight-forward approach and we
show that it works as intended, prediction probabil-
ities — especially for deep models — may not always
be a distinctive indicator of model confidence. To
overcome this limitation, alternative ways of de-
tecting the main claim should be evaluated.
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Ethical Considerations

A real-world fact-checking pipeline presents itself
as a valuable tool. However, we advise against
using the pipeline purely automatically that at this
point in time. Unless they are used hand-in-hand
with a human expert performing or supervising the
fact-check, such systems are not reliable enough
yet.

Potential issues are the result of the inherent
opaqueness of sophisticated automatic analysis
pipelines. In the system that we propose, it is
important that the impact of each module needs
to explain itself to the user. While there is recent
work on explainability particularly in the area of
fact checking, this work did not yet focus on entity-
based approaches. It is important that a user can
clearly understand which claim in a statement is
checked and which risks potential error propaga-
tion might lead to. Therefore, before deploying
such systems for fully automatic filtering or la-
beling of problematic messages in a social media
content, there needs to be more research on explain-
ability and transparency of such systems.
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A Implementation details

In the following, we provide implementation de-
tails for the individual model components described
in Section 2.

A.1 Named Entity Recognition

In a preliminary experiment, we use a pre-
trained model for biomedical NER, i.e., the
en_core_sci_sm model by ScispaCy (Neumann
et al., 2019), that was trained on scientific, biomed-
ical and clinical text to identify sequences of
biomedical entities. We find that the off-the-shelf
model transfers poorly to our target data which
stems from social media. We provide the evalua-
tion results for this experiment in Appendix B.2.1.
Therefore, we train a custom NER model in spaCy
on the BEAR dataset. We create an empty model
using spacy.blank() and pass the language ID “en”
for English. We provide the train/test splits and
configuration file we use to train the model which
includes all settings and hyperparameters here:
https://tinyurl.com/bear-ner

A.2 Main Claim Detection

We fine-tune RoBERTArg> to classify texts as
CLAIM vs. NON-CLAIM using the Causal Claim
data. We create a train-validation split of 85/15 %.
We train for 5 epochs with a batch size of 16, 409

Shttps://huggingface.co/chkla/
roberta-argument
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training steps per epoch, 136 warmup steps and a
weight decay of 0.01. We use the same learning
rate that was used in fine-tuning the underlying
RoBERTArg model, i.e., a learning rate of 2.3102e-
06. We evaluate the model every 500 steps using
the validation set. After training, we use the model
with the best performance on the validation set to
make a prediction for each claim candidate.

A.3 Entity linking

We use the EntityLinking component in ScispaCy
(Neumann et al., 2019) and en_core_sci_sm as the
underlying model®. For each entity, the model
maps the mention to the associated concept within
UMLS (Bodenreider, 2004). We include the op-
tion to resolve abbreviations and leave the other
configuration parameters at their default values.

B Analysis

We provide an evaluation and analyses of individ-
ual pipeline components to better understand the
capabilities of the modules.

B.1 Evaluation Setup

NER. Entity recognition consists of two subtasks:
(a) identifying the span of an entity and (b) predict-
ing the entity class. Consequently, we evaluate the
NER component of our pipeline in two modes. In
the strict mode, the entity span and the entity class
have to be identical to the gold data. In the relaxed
mode, the entity span has to be identical to the gold
data, entity class labels is ignored.

Note that the off-the-shelf ScispaCy (Neumann
et al., 2019) model that we compare against only la-
bels the entity span and not the entity class. There-
fore, we can only evaluate its performance in the
relaxed mode.

Further note that we need to map certain en-
tity classes between the CoVERT and the BEAR
dataset. To align CoVERT with BEAR, we
map Medical Condition to med_C, Treatment to
treat_therapy, and OTHER to other, respectively.
The CoVERT dataset further contains the class
Symptom/Side-effect, which corresponds to the
class med_C of the BEAR dataset. Therefore,
we map the class Symptrom/Side-effect to the class
med_C. Entities which have been labeled in BEAR,
but not in CoVERT, are ignored for the evaluation.

We report the macro-average of precision, recall
and F; for both modes.

6https ://allenai.github.io/scispacy/
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Main claim detection. We evaluate the predic-
tion of the model on the held-out test set from the
CAUSAL CLAIM data. We report precision, recall
and F; for both classes (CLAIM vs. NON-CLAIM)
the as well as the macro-average.

B.2 Results
B.2.1 NER

We evaluate the performance of the NER compo-
nent within our pipeline. Table 4 reports the results
for the strict and relaxed evaluation mode. First, we
evaluate the performance on the unseen test split of
the BEAR data — the dataset we use for training the
model. To gauge how well it transfers to our target
data, we evaluate the performance for the entity
predictions in CoVERT. We compare the perfor-
mance of our custom model to the performance of
the pre-trained ScispaCy model.

For the BEAR data, our model reaches an av-
erage F; of 0.41 for the strict evaluation mode.
Note that in this mode only exact span and entity
type matches count as true positives. If we relax
this condition and disregard the entity type, the
model achieves an F;-score of 0.51. When moving
to a slightly different type of input text, i.e., the
CoVERT data, the average F;-scores for the strict
and relaxed evaluation modes reach 0.34 and 0.38,
respectively.

Compared to our custom model, the performance
of the off-the-shelf model from ScispaCy is much
lower. For the relaxed mode, we observe a A in
F; of 0.21 and 0.12 for the BEAR and CoVERT
data, respectively. This showcases the necessity of
a customized model for NER in this setting.

Overall, this evaluation of the entity recognition
shows moderate performance. Importantly, the re-
sults also indicate that improving this component
is likely to improve the overall fact-checking per-
formance.

B.2.2 Main claim detection

We evaluate the performance of the claim detection
model on the held-out test set. We report the results
in Table 5. We can see that the model successfully
differentiates claims from non-claims (F;-scores of
0.94 and 0.99, respectively).

B.3 Analysis of healthver prediction

We want to understand why the healthver model
behaves unexpectedly compared to the other mod-
els (refer to Table 2). We saw that providing the


https://allenai.github.io/scispacy/

target data

BEAR CoVERT
model eval. mode P R F; P R F;
ScispaC strict _ N . - . i
PAY relaxed 2 61 3 .16 72 26
Ours strict 46 37 41 26 51 34
relaxed S56 46 51 29 57 .38

Table 4: Evaluation of our NER module for the test
split of the BEAR dataset and the COVERT data. We
report the macro average precision (P), recall (R) and
F; across all entity classes. We report results for a strict
and a relaxed evaluation mode. We compare against the
performance of an off-the-shelf ScispaCy (Neumann
et al., 2019) model (en_core_sci_sm). This model only
labels the entity span, not the entity class. Therefore,
we only evaluate in the relaxed mode.

class P R F,

Non-claim 098 0.99 0.99
Claim 095 093 094
macro av. 097 096 0.96

Table 5: Performance (precision (P), recall (R), F1) of
the claim detection model for CAUSAL CLAIMS test set.

automatically extracted claim leads to a slight per-
formance decrease compared to inputting the full
tweet, while the claims extracted using gold enti-
ties were more successfully checked. We hypoth-
esize that for this model, the automatic extraction
either removed relevant pieces of the input that it
relied on previously for a successful prediction or
it may have introduced irrelevant noise. Therefore,
we compare the predictions of this model for our
ner+-core-claim inputs to the claims built on gold-
labeled entities condenseseq. Note that we compare
the predictions which are not necessarily in line
with the gold label.

Label distribution. Table 6 reports the distribu-
tion of predicted labels for both input types. The
NEI class increases substantially (115 to 158 pre-
dicted instances) while SUPPORT and REFUTE be-
come less frequent. This indicates that the claims
become less checkable as NEI means a lack of in-
formation to support or refute the claim.

Label flips. To better understand which instances
cause the model to predict a different verdict, we
present the number of label transitions between the
predictions for the gold-labeled entity claims and
the predictions for our pipeline claims (ner+-core-
claim) in Table 7. From those results we can ob-
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# Predicted labels
input claim SUPPORT REFUTE NEI
gold entities 110 39 115
ner+core-claim 69 24 158

Table 6: Labels predicted by the healthver model for
claims extracted using condenseyq based on gold enti-
ties and our pipeline (ner+core-claim). Note that there
are 13 claims more in the gold-entity setting compared
to ner+core-claim inputs. These are cases for which
the NER module predicted < 1 entity.

serve that for a substantial amount of instances
(161) the predicted label actually does not shift.
For 90 instances, we observe a label shift.

Most notably, claims that were supported and re-
futed when inputting the gold-entity claims, get
classified as NEI when we input our extracted
claims (46 and 18, respectively). In an introspec-
tion of this transition type, we observe that in cases,
the automatic pipeline failed to detect the main
claim, potentially rendering the evidence useless.
Refer to Claims 3 and 4 in Table 7 for examples.

Flipped verdicts (SUPPORTS to REFUTES or vice
versa) are less frequent. We observe a total of 11
instances. Refer to Claims 1 and 2 in Table 7.

We observe 15 cases in which the label flips to
the correct gold label when we input our claim as
opposed to the gold-entity-based claim. In the man-
ual introspection, we observe many cases in which
the claim from the pipeline slightly extends the
context compared to the gold entity claim. Refer to
Claims 5 and 6 in Table 7 for two examples.

For cases with consistent labels, we find that
many instances either are identical to the claim
extracted using gold entities (see Table 7, Exam-
ple 7a) or only small amounts of context is added
(see Table 7, Ex. 8).

This being said, we also observe cases in which
the gold-entity and our predicted claim do not over-
lap and yet, the verdict stays consistent (Ex. 7b).
This emphasizes the need to further improve the
main claim detection step and leads us to hypoth-
esize that this module may be another reason for
the limited performance of this model. It appears
that the healthver model is particularly sensitive
to this component being somewhat unreliable and
error propagation in general.

B.4 Entity Linking

Number of established mappings. There are no
gold annotated mappings for the medical entities



example

id  transition #inst. gold-ent-claim ner+-core-claim gold

1 S-R 7  Oral contraceptives cause more blood clots  blood clots and nobody is doing anything S
about that!!! Like 1 per 1,000 compared to
basically 1 per MILLION with the Covid
vaccine

2 R-S 4 COVID-19 vaccines can cause side effects ~ Vaccine reactions are rare. Info about side S
effects

3 S-NEI 46 COVID-19 1) directly causes viral pneu- pneumonia 3) can result in intubation S

monia

4 R-NEI 18  5G causes covid vaccines cause infertility & autism R

5 NEI-S 12 live virus that causes covid-19 vaccines don’t use the live virus that causes S
covid-19

6 NEI-R 3 masks cause plague masks cause plague... fauci knows... R
masks promote bacteria... and not the good
kind... sinus

7a S-S 53 covid vaccine doesn’t cause fertility issues  covid vaccine doesn’t cause fertility issues S

76 S-S all brands of the vaccine can cause prob- death rate of COVID is said to be 10%. It S

lems is probable that some vaccines

8 R-R 14 Wearing a mask does cause disease Wearing a mask does cause disease, harm R
the immune system

9 NEI-NEI 94  Auto-Immune disease causes the white Auto-Immune disease causes the white S

blood cells that normally protect your body
from invaders to turn around and attack

blood cells that normally protect your body

your cells, tissues and organs

Table 7: Label transitions as predicted by the healthver model for claims extracted using condense,.q based on gold
entities (gold-ent-claim) and our pipeline (ner+-core-claim). We provide example instances for each type of label
transitions along with the gold label for the fact-checking verdict.

in the CoVERT dataset that would allow for a full
evaluation. We therefore approximate one aspect
of the quality of the entity linking module by ana-
lyzing the number of entities that are being linked
to any concept in the first place. Out of 719 entity
mentions the linking module established mappings
for 495 instances (68.8 %). We provide insights
from an error analysis in the following section.

Error analysis. We aim to understand the type
of error patterns introduced by the entity linking
module. We analyze predicted links for a randomly
drawn sample of 25 entities. We manually cate-
gorize the predicted concepts with regard to four
properties. Table 8 reports the results as well as
examples. correctly linked instances are mapped
to the appropriate concept within UMLS. Incor-
rect but related link include instances which are
mapped incorrectly, but the concept is related. in-
correct and unrelated link include cases in which
the linking is incorrect and also unrelated.

The analysis shows that the majority of mentions
are linked to the correct (15 out of 25 instances)
or at least a related (6 out of 25 instances) UMLS
concept. Four instances within our sample were
mapped to an unrelated UMLS concept.

While the majority of cases within our sample
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error type # mention pred. concept
correctly linked 15 glandular fever  Infectious

Mononucleosis
incorr., related 6 fibro flare Fibromyalgia
incorr. & unre- 4 COVID Covi  Anxiety
lated Scale [...]

Table 8: Number of error types within a sample of 25
entities along with examples.

are normalized correctly, this module potentially
introduces many errors. Note that as pointed out
before about 30 % of entities are not linked and
consequently not replaced at all. In addition, an in-
correctly mapped and replaced mention, even if the
concept might be closely related, may change the
meaning of a claim drastically. Take the following
example claim: ‘COVID cause of breathlessness’.
While breathlessness is correctly mapped to dysp-
nea, COVID is linked to and subsequently replaced
by an unrelated concept: ‘Covi Anxiety Scale Clin-
ical Classification cause of dyspnea’. This leads
us to believe that the unreliability of the linking
module is the main reason why the verdict pre-
diction performance for the normalized claims is
comparably low.
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Abstract

Modern fact verification systems have dis-
tanced themselves from the black box paradigm
by providing the evidence used to infer their
veracity judgments. Hence, evidence-backed
fact verification systems’ performance heavily
depends on the capabilities of their retrieval
component to identify these facts. A popular
evaluation benchmark for these systems is the
FEVER task, which consists of determining
the veracity of short claims using sentences
extracted from Wikipedia. In this paper, we
present a novel approach to the the retrieval
steps of the FEVER task leveraging the graph
structure of Wikipedia. The retrieval models
surpass state of the art results at both sentence
and document level. Additionally, we show that
by feeding our retrieved evidence to the best-
performing textual entailment model, we set a
new state of the art in the FEVER competition.

1 Introduction

The two-year Coronavirus pandemic and the recent
war in Ukraine have evidenced how easily disinfor-
mation spreads among the general public and the
social consequences this can have. In the informa-
tion era’s day-to-day, we live in a super-connected
media ecosystem that provides us with an endless
stream of facts and hoaxes alike but no immediate
tools to separate them (Olan et al., 2022; Barua
et al., 2020). Moreover, the rapid development of
larger and more capable language models has made
disinformation detection significantly harder since
traditional fact-verification systems, usually framed
as textual entailment classification problems, are
now vulnerable to synthetic disinformation attacks
(Du et al., 2022; Stiff and Johansson, 2022). There-
fore, modern high-performing fact-verification sys-
tems include a previous information retrieval step
to condition the posterior veracity judgment on the
extracted evidence (Lewis et al., 2020b; de Jong
et al., 2022; Glass et al., 2022).
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The FEVER task (Thorne et al., 2018a) con-
sists in retrieving relevant evidence from Wikipedia
given a claim and labeling it as either Supports, Re-
futes, or Not enough info. Traditionally, systems
participating in the FEVER challenge have divided
the task into three steps (Thorne et al., 2018b), each
corresponding to a part of their pipeline: the docu-
ment retrieval step, the sentence retrieval step, and
the textual entailment step. In contrast with the last
two steps, for most top-performing systems, the
document retrieval module is directly inherited or
slightly modified from previous work (Hanselowski
et al., 2018; Nie et al., 2018). Therefore, for this
step, the majority of systems follow one of these
two strategies:

The MediaWiki API + span-matching system
(Hanselowski et al., 2018). Filtering relevant doc-
uments by querying the MediaWiki API for each
entity mentioned and discarding results if the en-
tity is not present in the page’s title.

Keyword matching + semantic similarity sys-
tem (Nie et al., 2018). Keyword matching search
for initial filtering and Neural Semantic Matching
Model (NSMN) for scoring candidate documents
using a concatenation of their title and first sen-
tence along with the claim.

These approaches, although proven effective,
pose three important limitations:

L1. The usage of MediaWiki API as a first docu-
ment retrieval step limits the usability of the
models outside Wikipedia’s scope.

L2. The precision of representing an entire docu-
ment using only its title and first sentence may
prove insufficient to correctly assess semanti-

cal relevance.

L3. Discarding a document based on exact key-

word matching can be excessively conser-
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vative considering query-reference flexibility
(e.g. Michael Jackson-The King of Pop).

Having identified the above research gaps, we pose
the following research hypotheses:

H1. An encoder used for asymmetric semantic
search eliminates the MediaWiki API depen-
dency and can more effectively represent se-
mantic relations between queries and docu-
ments.

H2. Considering parts of documents as a con-
nected network of path-related pieces of in-
formation improves the retrieval quality (spe-
cially on queries requiring evidence from

more than one document).

Hence, to test the above hypotheses, in this pa-
per we present a novel approach to the document
retrieval step for the FEVER task!; independent of
external resources and capable of retrieving multi-
hop evidence while handling partial and even mis-
spelled references in claims. Although our work is
mainly focused on the document retrieval step, we
also provide a complementary model for sentence
retrieval. Our approach establishes a new state of
the art in both information retrieval steps and the
textual entailment step.

2 Background

The vast majority of systems participating in the
FEVER task challenge divide their pipelines into
three steps and import their document retrieval step
from previous work (Zhou et al., 2019; Stamm-
bach, 2021; Krishna et al., 2022). It is worth
mentioning that although some systems (Liu et al.,
2020; Zhong et al., 2020; Soleimani et al., 2020)
have embedded the baseline document retrieval
strategies directly into their architectures, more
recent models (Stammbach, 2021; Jiang et al.,
2021b) have shown better results by concatenat-
ing the retrieved documents from the two base-
line models (i.e., Hanselowski et al. (2018); Nie
et al. (2018)) with other classical information re-
trieval techniques such as TF-IDF (Ramos, 2003)
or BM25 (Robertson and Zaragoza, 2009).

The second step of most FEVER pipelines con-
sists of performing sentence retrieval from the pre-
viously obtained documents. Unlike the previous

'Results, intermediary files and code will be released on
https://github.com/DanielGuzmanOlivares/fever-retrieval.
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step, this task has been explored from various per-
spectives. In the early days of the FEVER task, sys-
tems used ESIM-based architectures (Hanselowski
et al., 2018; Nie et al., 2018). However, motivated
by maximizing recall, the research focus changed
to target the multi-hop evidence problem leading to
the first iterative sentence retrieval models (Stamm-
bach and Neumann, 2019; Subramanian and Lee,
2020). These models use transformers (Vaswani
et al., 2017) to fine-tune large pre-trained language
models (LM) used as backbone, such as BERT (De-
vlin et al., 2019), ALBERT, (Lan et al., 2020) or
RoBERTa (Liu et al., 2019). Specifically, to tar-
get the multi-hop evidence problem, these models
conceive the sentence retrieval step as an iterative
process in which they assess the importance of new
sentences by considering both the claim and the
relevant sentences already retrieved.

Parallel to the iterative retrieval models, another
variety of models leverage not only direct connec-
tions but the complete graph structure of Wikipedia
to rank sentences (Zhong et al., 2020; Liu et al.,
2020; Zhou et al., 2019) using graph neural net-
works (GNNs) (Scarselli et al., 2009). State-of-the-
art models (Jiang et al., 2021b; Stammbach, 2021;
Krishna et al., 2022) generally fall under one of
these categories but have pivoted to more refined
token-level representations or bigger LMs such as
BigBird (Zaheer et al., 2020), TS (Raffel et al.,
2020) or DeBERTa (He et al., 2021). A recent
approach, Claim-Dissector (Fajcik et al., 2022) pro-
poses to divide the retrieved documents into blocks
instead of individual sentences and encode each
block individually.

The final step of the FEVER task involves rec-
ognizing textual entailment (TE). This subtask has
traditionally been treated as a multi-class classifi-
cation problem and tackled by fine-tuning from
scratch some LM making use of transformers,
alignment and concatenation of the retrieved ev-
idence (Zhou et al., 2019; Liu et al., 2020; Subra-
manian and Lee, 2020). Top-performing systems
in FEVER’s public leaderboard (Fajcik et al., 2022;
Stammbach, 2021) use DeBERTa-based models al-
ready trained over the Multi-Genre Natural Lan-
guage Inference (MNLI) task (Williams et al.,
2018) as backbone.

3 Formal task

The FEVER task consists in performing evidence-
backed claim verification. Formally, the knowledge



base, D, is a collection of more than 5 million
documents each corresponding to a Wikipedia page,
D := {d;}i, where each document dj is itself a
variable-size collection of sentences, d; := {sz -
Given the collection of documents D and a query
(a statement) ¢ , a valid system S must return a
veracity assessment v for ¢ along with a subset g,
of at most five sentences supporting or refuting q:

S(¢;D) — (v,€) st
€] <5
v € {Supports, Refutes, Not Enough Info}

Datasets. The FEVER task, as of today, has three
associated datasets: the training dataset, the shared
task dev dataset, and the shared task test dataset
(open competition) (Thorne et al., 2018b). The
training dataset is the largest of the three contain-
ing 145,449 claims and is unbalanced towards the
“Supports” class, which represents more than half
of the examples. The dev and test datasets are
widely used as the evaluation benchmarks for a
FEVER pipeline. They are equal in size (19,998)
and balanced between the three classes.

Metrics. Following previous work, for evaluating
performance we use accuracy (ACC) in the tex-
tual entailment step, the FEVER score (FS)? for
the whole pipeline, and Recall@K (R @K) for the
retrieval steps. Additionally, we also consider the
Mean Reciprocal Rank (MRR) and the proportion
of claims where the system returns at least one
relevant item (AND) in the retrieval tasks.

4 Model

Following the traditional pipeline organization, we
propose a three-step architecture (see Figure 1)
where: 1) The document retrieval step uses par-
tial references in the claim and document-level
encoding to select an initial collection of docu-
ments that is later expanded (if necessary) for ad-
dressing the multi-hop evidence problem; ii) The
sentence retrieval step combines the sentence re-
trieval part of LF jir + D x 1, model (Stammbach,
2021) which is the current best-performing system
with a DeBERTa-based cross-encoder (Reimers
and Gurevych, 2019); iii) The textual entailment

2FS is the central metric for the FEVER task. A prediction
is only deemed correct if the label is correct and the evidence
is sufficient.
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step uses the MNLI-trained DeBERTa model used
in LF> er + Dx, with our retrieved evidence.

4.1 Data processing

The whole data ecosystem associated with our pro-
posed system is graph-based® and consists of:

A reference lookup table. Where all the refer-
ences to documents are stored, the indexing for-
mat is (document title -> list of references) (e.g.,
Obama -> [Barack Obama, President Obama ...]).

A graph database. Implemented as a Neo4]
database, mimics the graph structure needed to
get neighbours and references from the given col-
lection of documents.

An embedding database. Pre-computed doc-
ument embeddings indexed by title to ease the
workload of GPU computations.

A sentence database. Containing all the sen-
tences for each document in the provided collec-
tion.

We implement the data interface transforming the
given Wikipedia dump. This process can be sum-
marized in the following steps for every record in
the dump: i) Extract all relevant information from
plain-text Wikipedia entry, this includes separated
sentences, and the links to external articles; ii) The
second step is querying the reference lookup table
(initially empty) to check if the linked references
already exist in the table. Should any of the ref-
erences not be present in the table, we query the
WikiMedia API to update the records; iii) Once
the references are updated in the lookup table, the
connections are added to the graph database as new
edges; iv) The embedding database is updated with
the embedding obtained from the encoder model;
v) The sentence database is updated as well with
the associated article sentences. This process is
represented in Figure 2. In Figure 1, the data inter-
face that the pipeline uses consists of all the afore-
mentioned parts and is represented as Graph-ref
database.

4.2 Document Retrieval

To the best of the authors’ knowledge, the top-
performing architectures use a baseline model
(Hanselowski et al., 2018) approach combined with

3The system expects a graph of interconnected documents
where connections represent references between documents.
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TF-IDF or BM25 to return an average of 20 docu-
ments. On the other hand, the document retrieval
part of our architecture consists of various modules
sequentially interconnected to output a selection of
document paths associated with the input query. In
order, these components are the following:

Name Entity Recognition [box [1] in Figure 1].
We have trained a token-level classification mod-
ule using BERT (base) as backbone, for balance
between complexity and performance (£1=0.95).
Specifically, we have framed this task as a three-
class classification problem (see Appendix A) us-
ing BIO labels (Ramshaw and Marcus, 1995) fol-
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lowing the traditional approach in NER architec-
tures (Li et al., 2020; Jiang et al., 2021a; Xia et al.,
2022).

Although many existing pre-trained models exist
to perform this particular task, after trying some
publicly available models in random samples for
NER, we found that some entities were missed.
Therefore, we have opted for training our own
model since a considerable number of entities in
Wikipedia differ from the classical form of an
entity (e.g., a country, a person, a place, a work
of art). Such Wikipedia entities usually resemble
something like history of something, presidency of
someone, or even concepts that are not considered
as entities per se like water or banana.

Closest Match [box [2] in Figure 1]. This module
is motivated by observed annotation errors in the
FEVER dataset (e.g., Mellila - Melilla). Since
the document retrieval pipeline uses the reference
lookup table for finding documents indexed by
references, if one of these is not grammatically
correct, it would not yield any matches. To avoid
this particular case, a conditional path bifurcation
has been added in between the NER module and
the Noun Phrases selection (see Figure 1). In case
a reference yields no results, the closest-match
search triggers. The closest-match search takes as
input the retrieved sequence from the NER step



and finds the closest (normalized edit distance)
reference to it, effectively ensuring there is al-
ways at least one associated reference for every

sequence4 .

Once references have been associated to se-
quences of tokens, there are various plausible can-
didates for relevant pages. At this point, the ap-
proximate position of the entities within the claim
is known thanks to the token-level classification
of the NER module. However, detecting the enti-
ties” extension can be especially problematic for
the cases in which an entity includes a modifier,
which makes it hard for the NER system to fully
recognize it as part of the relying entity. For ex-
ample, in ‘Charles II of England was born on
Thursday 29 May 1630, the II directly impacts
the evidence that should be retrieved.

Noun-phrases selection [box [3] in Figure 1].
This module addresses this problem by using three
different language planes in order to capture enti-
ties:

The semantic plane. Uses the NER pipelines
from Flair (Akbik et al., 2019) and SpaCy (Hon-
nibal et al., 2020) since they are trained for a
wider variety of entities and can retrieve informa-
tion that the proposed NER system might miss.
The syntactical plane. Uses the AllenAl Open
Information Extraction (OEI) system (Stanovsky
et al., 2018) to extract the syntactical subject and
direct object of a claim. Relevant to the cases
that are not associated with an object or an event
(e.g. Water is part of the History of Earth.)

The ontology plane. Rule-based parsing built on
top of SpaCy’s dependency parsing. Essentially
retrieves modifiers not included in the entities
provided by the NER module.

Finally, the information retrieved by the three
planes and the already predicted references (from
the NER module) are combined and later joined
with the lemmatized version of the NER refer-
ences (see Figure 3). This process allows us to ac-
curately extract multiple candidate entities given
a claim, mitigating the WikiMedia dependence
from previously proposed solutions (see L1 in
Section 1).

Encoding. At this point, the complete set of refer-
ences is available, and, by using the lookup table,

*This makes the system more flexible than those discarding
non-exact matches (see L3 in Section 1).
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Figure 3: The Noun Phrase module internally. We use
green for custom architectures and salmon for imported
ones. Anchors represent the references obtained by the
pipeline till this point since it obtains the probable points
of the claim where entities are.

the associated documents are retrieved. Since, on
average, there are too many documents to move on
to the next step of the FEVER pipeline, the system
uses semantic relatedness to assess the importance
of documents conditioned to the claim. In prac-
tice, this means encoding the claim (Hofstitter
et al., 2021) to obtain the query vector ¢ . Then
the vectors associated with the selected documents
are retrieved from the embeddings database® and
stacked in a matrix M. Finally, we multiply
M-q7T obtaining the vector of semantic close-
ness for every query-document pair. We select
the top K = 20 documents corresponding to the
largest entries of the vector.

sentence 1

sentence 2 71—

sentence 3

Expand

yes

sentence 1

Don't
expand

tence K-2

sentence K-1 borg -

sentence K

Figure 4: The Expansion model. Note the expansion
window sliding (in purple).

Expansion and Rerank [box [4] in Figure 1].
This module consists of a two-step architecture
that leverages the graph structure of the built
database to improve recall. While the previous
modules provide twenty documents directly re-
lated to the references in the claim, this module
goes one step further and explores the neighbours
of the provided documents (expansion) to estimate
the importance of the second-order documents

>Note that the full documents are pre-encoded in contrast
with just the title and first sentence (see L2 in Section 1).



(neighbours) given the claim and the first-order
documents.

In the expansion stage, instead of considering ev-
ery neighbour of every document provided by the
previous component in the pipeline, a model has
been developed to decide which documents are
worth expanding to optimize performance and
ease the workload in the sentence retrieval step
(since we only expand relevant parts of the ini-
tial document). For training this model we divide
a document in consecutive overlapping (context)
windows and treat the problem as a 3-way classi-
fication in which each window’s class correspond
to the amount of relevant information contained
on it (none, some, or all) (see Appendix B).

Preliminary experiments showed that context win-
dows of three consecutive sentences offer the best
performance. For each of these, the sentences are
concatenated (separated by the [SEP] special to-
ken) along with the document’s title for helping
coreference disambiguation (Malon, 2018). Then
for every concatenation, the DeBERTa V3 model
is used to obtain the context embedding from both
concatenation and claim. Afterward, both embed-
dings are concatenated and fed to a custom atten-
tion head (see Figure 4). Finally, the document is
expanded if any of the context-concatenations is
evaluated as SOME INFORMATION PRESENT. Fol-
lowing the expansion, we group the resulting col-
lection of documents in paths according to expan-
sion results (i.e. for a given document d;, if d; is
expanded obtaining neighbours n1, na, ..., Ny, We
group paths (dy,n1), (d1,n2), ..., (d1, ny,), other-
wise if d1 is not expanded, only (d; ) is considered
as a single path).

sentence 1

sentence2 |[——» (seP)]

sentence 3

sentence K-2

sentence K-1

sentence K

p— sentence M-1

sentence M

sentence M+1|

(ra=2)

Figure 5: The Rerank model. For a case with a path of
length 2, the first-order document’s context window (in
green) is used as a complement to every context window
(sliding) for the second-order document (in purple)

Following the above module we have to assess the

semantic relatedness to the query of a rather large
set of interlinked documents. The Rerank model is
an efficient way to accomplish this task. Internally,
the model modifies the classical cross-encoder ar-
chitecture to use a linked source. We can distin-
guish two cases regarding the input path’s length:

Path of length 2. First, we start by using the
context windows again, fully sliding for the sec-
ond order document and just using the context
window that originated the expansion in the first
order document. We concatenate the sentences
from the first order window with every sentence
of the second order window and create a large
concatenation of sentences (see Figure 5).

Path of length 1. In this case, we only have one
document, so we separate every sentence from
the document instead of creating concatenations.

We then feed the concatenations, along with the
claim to a BART-based® (Lewis et al., 2020a)
cross-encoder that outputs a score. We take the
maximum score from all concatenations and out-
put it as the relevance score. Finally, we sort
the document paths by given score and take the
maximum number of paths possible, ensuring that
the total number of documents does not exceed
K = 20.

4.3 Sentence Retrieval

The sentence retrieval step of our pipeline uses a
combination of the current state-of-the-art model,
LF5jer + Dxy, (Stammbach, 2021), and a sim-
ple DeBERTav3-based cross-encoder combining
all possible sentences from first and second order
context windows for every path. For the input of
both models, we use the document path collec-
tion outputted from our document retrieval pipeline.
Originally, the LF} jer + Dx 1 model uses UKP’s
(Hanselowski et al., 2018) document retrieval step
combined with TF-IDF and a (query, sentence) pair
evaluation based on a token-level BigBird (Zaheer
et al., 2020) model for the sentence retrieval step.
Particularly, the LF> jr + Dx 1 sentence retrieval
architecture works in two stages. On the first one,
the query and all the sentences from first-order doc-
uments are evaluated and given a score. Every pair
given a score greater than 0 is expanded. Finally,
every expanded sentence is evaluated conditioned
not only on the query but also on the first-order

®Preliminary tests showed that BART offered the best re-
sults among several LMs.



sentence from which it comes from (again using
the BigBird model).

Although using the documents retrieved from
our solution in LFh j; + Dx performs reason-
ably well on its own, we found that combining
the sentence rankings from this model with the
rankings from our own cross-encoder boosts global
performance (see Table 4). Directly combining the
rankings from both models is possible since both
are based on retrieving connected (first-second or-
der) sentences. Formally, given the definition of a
ranking:

pi— (s, 5t
= H
(s},)

We can define the order of p;, a path in ranking R,
as

R :={pi}i
),

if d; expanded from d;.
if d; has no expansion.

i ifp, CR

Pp\Pi) = .
R( i) {0 otherwise

In ihis context, the combination of the rank-
ings R r and Rog corresponding to the LF) jer +
Dx system and our cross encoder respectively, is
defined as:

&= argmax ZapﬁCE (p) +¢z,,.) st
ACRLFURCE A

>l <5
A

5 Experimental Evaluation and Results

We present our results for the development dataset
at every stage and the FEVER challenge competi-
tion (test set) results:

Document retrieval. As previously commented,
some of the most recent approaches add the doc-
uments retrieved from classic techniques such as
TF-IDF and BM25 to the results retrieved from
their main document retrieval architectures. In
doing so, the retrieved documents lose the rank-
ing order, and it would be inaccurate to directly
compare recall@K since the results from these
combined systems are not rankings but rather col-
lections of documents. Therefore, we compare
our results with the unaltered baseline systems in
Table 1 and establish a new state of the art for
this stage, surpassing UKP’s results by 3.07%. A
comparison of our approach’s performance vary-
ing the number of documents can be found in
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System R@10
UKP (Hanselowski et al., 2018) 93.55
UNC (Nie et al., 2018) 92.82
Ours 96.62

Table 1: Comparison of document retrieval system’s
recall with existing architectures

Table 2. We observe a high and steady MRR met-
ric, which means that in most cases, there is a
relevant document within the top 5 documents.
Hence, most of the recall errors are likely claims
that are not correctly interpreted (i.e., no relevant
document in all ranking) or multi-hop evidence
cases in which not all the evidence was retrieved.
Finally, we perform an ablation study regarding
all the modules in the document retrieval step of
our solution (see Table 3), from which it can be
inferred that the Noun Phrases (box [3] in Fig-
ure 1) and the Expansion & Rerank (box [4] in
Figure 1) modules are the parts that have a higher
impact on performance. Additionally, it is worth
noting that the Closest Match module (box [2] in
Figure 1) does not have a significant impact on
general performance, meaning that although some
examples exist, there are not many instances with
grammatical errors within the FEVER dev dataset.

N° Docs Recall AND MRR
5 95.54 97.26 0.935
10 96.62 97.96 0.935
15 97.08 98.20 0.935
20 97.20 98.29 0.935

Table 2: Document retrieval metrics of our proposed
solution considering different number of documents.

Sentence retrieval. In Table 4, we report the re-
sults with and without combining the LF jr +
Dx 1 system to our cross-encoder for this stage,
along with a performance comparison with the ex-
isting architectures. Our proposed solution outper-
forms the current state of the art by 1.05 %. Note
that L F’ jir+ D x 1, system also surpasses the state
of the art when given the documents selected from
our document retrieval step. Indicating that our
document retrieval strategy potentially improves
the effectiveness of a sentence retrieval module.

Textual entailment. In the test set (competition),



Combination R@20
[1] 94.50
[1]+[2] 94.74
[17+[3] 95.03
[17+[2] + [3] 95.27
[1]+ [4] 95.30
[1]1+[2] + [4] 95.80
[17+[3] + [4] 97.01
[17+[2] + [3] + [4] 97.20

Table 3: Ablation study for the proposed system. Note
that every component is referred to as an index [x] which
is depicted in Figure 1.

System R@5 Acc FS
(Hanselowski et al., 86.02 68.49 64.74
2018)
(Nie et al., 2018) 86.79 69.72 66.49
(Subramanian and Lee, 90.50 75.77 73.44
g 2020)
§ (Stammbach and Neu- 89.80 72.10 -
= mann, 2019)
‘é (Zhou et al., 2019) 86.72 74.84 70.69
£ (Liu et al., 2020)f 94.37 78.29 76.11
3 (Zhong et al., 2020) 90.50 79.16 -

% (Jiang et al., 2021b)  90.54 81.26 77.75
R (Krishna et al., 2022) - 80.74 79.07
(Stammbach, 2021)  93.62 - -

(Chen et al., 2022) 79.61 79.44 77.38
(Fajcik et al., 2022)  93.30 80.80 78.00
Ours [1-4] 93.93 80.03 78.36
Ours [1-5] (Full) 94.67 80.95 79.12
(Zhou et al., 2019) - 71.60 67.10
(Liu et al., 2020) - 74.07 70.38
(Zhong et al., 2020) - 74.64 7148
§ (Jiang et al., 2021b) - 79.35 75.87
g (Krishna et al., 2022) - 7947 76.82
T (Stammbach, 2021) - 79.16 76.68
E (Chen et al., 2022) - 7524  T71.17
(Fajcik et al., 2022) - 79.27 7645
(Izacard et al., 2022)F - 80.06 21.29
Ours[1-5] (Full) - 79.69 7691

Table 4: Performance for the second and third stages in
the development and test datasets.  The system uses
gold evidence when reporting these results. I The sys-
tem was not specifically designed for FEVER, trained
with the whole Wikipedia for performing fact verifica-
tion, hence the disparity in Acc and FS.

regarding the Fever Score, our proposal achieves a
new state of the art by using our retrieved evidence
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with the approach followed in LF» jio;+Dxp. Ad-
ditionally, we report the second-highest accuracy
score, 79.69%, only surpassed by the Atlas system
(Izacard et al., 2022). In the development dataset,
we report a competitive 80.95% accuracy while
our Fever Score (FS), 79.12%, outperforms the
current state of the art.

6 Conclusions

In this paper, we have proposed a retrieval architec-
ture that combined with a textual entailment model
outperforms the state of the art in all stages of the
FEVER task. Our architecture starts by leveraging
document-level semantic representation to narrow
an initial collection of documents to 20 candidates.
Filtered results are later expanded using the graph
structure inherent to the built database. Once ex-
pansion is completed, our model scores the context
windows inside documents, ranks the link paths,
and takes the top elements from the ranking, ensur-
ing that no more than 20 documents are retrieved.
Then, the documents are passed on to the sentence
retrieval model that combines the prediction of the
LF, e+ Dx, system with a simple cross-encoder
to obtain a sentence-paths ranking. Finally, follow-
ing the approach in LF> j.; + Dx 1, a pre-trained
DeBERTa-based MNLI model is used and later
post-processed based on the output logits.

Regarding our initial research hypotheses; con-
sidering the results obtained in the ablation study
(see Table 3) and the sentence retrieval steps (see
Table 1, Table 4) we can conclude that: i) We can
use semantic encoding as an alternative to keyword
matching to build a retrieval system independent of
external resources (H1); ii) Expanding and rerank-
ing connected paths of information using small con-
text windows inside documents improve retrieval
quality (H2).

Limitations

The main limitation of our model concerns the ex-
pansion operation in the retrieval steps. In particu-
lar the system assumes a constant maximum length
of two hops. This decision leads to some recall er-
rors, however, in the FEVER development dataset,
more than 99% of the evidence can be retrieved
with at most two sentences. Another limitation
of our model is relying on a cascade-based archi-
tecture i.e., the performance of one step is always
bounded by the performance on the previous step.
Additionally, although not directly dependent on



external resources, we expect a graph structure be-
tween documents for the model to work and this
could prove complicated to manage depending on
environments different than Wikipedia.

Ethics Statement

The presented work could help to more accurately
extract information to verify statements. However,
the system relies on contrasting facts using a "truth"
database. The existence of such a resource is not
a trivial assumption to make, especially if we con-
sider open sources of information such as social
networks in which virtually anyone can add con-
tent. Consequently, and in addition to the fact that
no system is perfect, we discourage the usage of
our work as any kind of ground truth for any fact
verification task if the reference database cannot be
checked by experts both in terms of accuracy and
possible biases.
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A Synthetic NER Dataset

The synthetic dataset for the NER problem has
been built as follows: i) Given a claim, separate it
by words and extract the associated pages from the
gold evidence; ii) Use edit distance at token level
to perform keyword matching with the previously
separated words; iii) Discard the matchings having
an edit distance smaller than a threshold (we used
.4); iv) Use a BERT-based tokenizer to separate the
sentence. For each matched sequence, label the
first belonging token as B (begin) and every other
as I (intermediary); v) Any token that is not either
I or B is labeled as O (Null).

B Synthetic Rerank Dataset

The rank dataset has been built as follows: 1) Divide
the claims into two groups regarding the number
of evidence pieces (one or two) needed for the ve-
racity judgment to be valid; ii) Balance the groups
by under-sampling the group with only one piece
of evidence needed; iii) Join the groups and ran-
domly create sequences of context windows from
first and second-order documents; iv) Give these
sequences a score according to the information they
present regarding information completeness: 0 for
unrelated content, 0.5 for related but incomplete
(second-order case in which only one of the context
windows is correct), and 1 for complete evidence.
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Abstract

Recently it has been shown that without any ac-
cess to the contextual passage, multiple choice
reading comprehension (MCRC) systems are
able to answer questions significantly better
than random on average. These systems use
their accumulated "world knowledge" to di-
rectly answer questions, rather than using infor-
mation from the passage. This paper examines
the possibility of exploiting this observation as
a tool for test designers to ensure that the form
of "world knowledge" is acceptable for a partic-
ular set of questions. We propose information-
theory based metrics that enable the level of
"world knowledge" exploited by systems to
be assessed. Two metrics are described: the
expected number of options, which measures
whether a passage-free system can identify the
answer to a question using world knowledge;
and the contextual mutual information, which
measures the importance of context for a given
question. We demonstrate that questions with
low expected number of options, and hence
answerable by the shortcut system, are often
similarly answerable by humans without con-
text. This highlights that the general knowledge
‘shortcuts’ could be equally used by exam can-
didates, and that our proposed metrics may be
helpful for future test designers to monitor the
quality of questions.

1 Introduction

Reading comprehension (RC) exams are used ex-
tensively in a wide range of language competency
examinations (Alderson, 2000), and have become
a ubiquitous assessment method to probe how well
candidates can read a passage and understand the
text’s core meaning. A fundamental assumption of
RC exams is that to answer any of the questions
correctly, one has to read the passage, comprehend

*Equal Contribution
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Harry is _years older| (Mina's sister's name is| (The word “jolting' in line

than Yang Yue? 5 is closest in meaning to
A 11 | A: Sue @ A: Predicted
B: 12 B: Emma N B:  Shocking N
c 131 C: Jenny N C:  Unknown
D: 14 M D: David | D: llluminating

eff. # options: 3.99 eff. # options: 3.04 eff. # options: 1.01

Figure 1: Output probabilities of our model (trained
with contexts omitted) on real RACE++ (Liang et al.,
2019) examples. ‘Effective number of options’ is a
metric that captures the model’s confidence.

its meaning, and identify the relevant information
of a given question. However, recent work has
shown that multiple-choice machine reading com-
prehension (MCMRC) systems without access to
the passage can achieve reasonable performance
(Pang et al., 2022), showing that the models may
be doing less comprehension than anticipated.

In this paper we analyse this phenomena and for
several standard MCMRC datasets (Liang et al.,
2019; Huang et al., 2019; Yu et al., 2020) verify
that passage-free baselines are able to achieve per-
formance significantly better than random. We
show that a subset of questions can be answered
accurately and confidently without access to the
contextual passage, where further analysis shows
this is partly due to the presence of low-quality
distractors, i.e. options that can be eliminated us-
ing only the question. As an example, given the
question “Mina’s sister’s name is:", one can elimi-
nate any options that use a traditionally male name
(see Figure 1). This highlights a potential ‘shortcut’
candidates could use to answer questions while by-
passing the context. Our work raises awareness to
this potential flaw, and proposes a simple solution
to catch questions that can be answered without
comprehension. The proposed metrics might be
a useful tool for future multiple-choice RC test
designers to ensure that all questions truly assess
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Context: My friends like different clothes. Sue likes
red clothes. She is often in a red skirt and red shoes.
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Mina likes white clothes. She is in a white shirt. Her

sister Emma likes to wear a green skirt. She looks nice.
David often wears a white cap and black pants. Peter

often wears a white coat and black pants.
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Figure 2: Model architecture.

reading comprehension ability.

Machine reading comprehension (MRC) is a
highly researched area, with state-of-the-art (SoTA)
systems (Zhang et al., 2021; Yamada et al., 2020;
Zaheer et al., 2020; Wang et al., 2022) often ap-
proaching or even exceeding human level per-
formance on public benchmarking leaderboards
(Clark et al., 2018; Lai et al., 2017; Trischler et al.,
2017; Yang et al., 2018). Existing work has anal-
ysed the robustness of MRC systems, where re-
searchers have questioned whether systems fully
leverage context and whether they accomplish the
underlying comprehension task (Sugawara et al.,
2020; Rajpurkar et al., 2016; Kaushik and Lipton,
2018; Jia and Liang, 2017; Si et al., 2019). Most
notably Kaushik and Lipton (2018) show that for
a range of question-answering tasks, passage-only
systems can often achieve remarkable performance,
which has been observed in the MCRC setting
(Pang et al., 2022).

Most existing work has discussed model robust-
ness, demonstrating that for some tasks it is possi-
ble to obtain high average system performance with
no context information. In contrast, this paper fo-
cuses on the attributes of individual questions and
options, identifying questions where "world knowl-
edge" can be leveraged, and the extent to which
this knowledge can be leveraged. This could be a
useful tool to enable test designers to monitor the
questions being proposed, and whether alternative
distractors or questions should be considered.

2 Multiple choice reading comprehension

Multiple-choice reading comprehension is a
popular task where given a context passage C' and
question @), the correct answer must be deduced
from a set of answer options {O}. Current
SoTA MRC systems are dominated by pre-trained
language models (PrLLMs) based on the transformer
encoder architecture (Devlin et al., 2019; Liu et al.,
2019; Clark et al., 2020).
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Model Architecture Our question-answering
system follows the standard MCMRC architecture
of Figure 2 (Yu et al., 2020; Raina and Gales,
2022). Each option is individually encoded along
with the question and the context into a score, and
a softmax layer converts the 4 options’ scores
into a probability distribution. At inference, the
predicted answer is the option with the greatest
probability.

‘No Context’ Shortcut System A requirement for
good MCRC questions is that information from
both the question and the context passage must be
used to determine the correct answer. To probe
whether this is an issue for MCMRC, we train sys-
tems using ‘context free’ inputs (similar to Pang
et al. (2022)). The standard set-up (Figure 2) is
still followed, however the input is now altered to
exclude the context, as shown in Figure 3.

Standard
Context-free

[CLS] <Context> [SEP] <Question> <Option> [SEP]
[CLS] <Question> <Option> [SEP]

Figure 3: System inputs for shortcut system.

Effective Number of Options Consider the out-
put probability distribution of the predicted answer,
P(y). One can determine the entropy, #(Y"), which
can be converted into the more interpretable effec-
tive number of options, N'(Y'), a value bounded
between 1 and the maximum number of options:

N(Y) =2"0 H(Y) = = > P(y)log, P(y)

yey

ey

For well designed questions, one would expect
systems with missing information (i.e. the
‘shortcut’ models) to have no information of what
the answer is. This would correspond to a uniform
distribution output (the distribution of maximum
entropy), with an effective number of options equal
to the total number of answer options. However,
if the effective number of options is significantly
lower than the total number of answer options,



then this implies that prior information stored
during training can be used to answer the question,
without comprehension.

Mutual Information To probe how much informa-
tion is gained by the context, one can additionally
look at an approximation of mutual information of
the context. This looks at how much the entropy
decreases between the ‘no context’ shortcut system
and the ‘context’ baseline system .

Z(Y;C1Q,{0}) = H(Y]Q,{0}) - H(Y|Q, {0}, C) (2)

An alternative approach would be to use random
contexts (Creswell and Shanahan, 2022) however
we consider the stricter ‘no context’ setting.

3 Experiments

Data We consider three popular MCMRC datasets:
RACE++ (Lai et al., 2017), COSMOSQA (Huang
et al., 2019) and ReClor (Yu et al., 2020). RACE++
is a dataset of English comprehension questions
for Chinese high school students, COSMOSQA
is a large scale commonsense-based reading com-
prehension dataset, while ReClor is a challenging
logical reasoning dataset at a graduate student
level. All datasets have 4 options per question, one
of which being the correct answer.

| TRN DEV  EVL

RACE++ 100,388 5,599 5,642
COSMOS 25,262 2,985 -
ReClor 4,638 500 1000

Table 1: Dataset statistics

Training An ELECTRA-large! model is fine-tuned
on the training split TRN, hyper-parameters are
tuned on the developement set DEV, and perfor-
mance reported on the test split EVL for RACE++
(DEV splits are used for COSMOS and ReClor due
to unavailability of the EVL splits). All model
parameters (transformer and classifier) are up-
dated during fine-tuning. Additionally, models are
trained and evaluated using the ‘no context’, as
described in Section 2. Final hyperparameters are
given in Appendix B.1. Three seeds are trained,
and ensemble accuracy is used as the default metric
when reporting performance.’
"https://huggingface.co/docs/

transformers/model_doc/electra

2code for experiments available at:
https://github.com/adianliusie/MCRC

3.1 Results

Context-Free Performance We compare the per-
formance of the baseline ‘standard’ system against
the shortcut ‘no context’ systems for the various
MCMRC datasets. Table 2 illustrates that the short-
cut systems achieve high performance across all
MCMRC datasets, all above 50%, significantly
above the expected random performance of 25%.
Further, we find that the shortcut rules can gener-
alise across domains, most notably seen with the
54% performance when training the shortcut sys-
tem on RACE and evaluating on COSMOS. This
highlights that the shortcut performance cannot be
explained purely by dataset bias, but that there is a
skill, unrelated to comprehension, that the systems
are meaningfully leveraging.

Training data RACE++ COSMOS ReClor

\
- | 25.00 25.00 25.00
stan. 85.01 70.05 48.60
RACEH 10 con, ‘ 5732 5404 34580
stan. 66.81 84.49 41.20
COSMOS no con. ‘ 38.73 68.51 27.80
ReCl stan. 52.69 41.68 69.80
crlor nocon. | 3127 33.13 51.80

Table 2: Cross-performance of systems on RACE++,
COSMOSQA and ReClor (standard vs no context).

RACE++ Effective Number of Options Figure 4
presents the count and accuracy plots of the effec-
tive number of options (bin width of 0.2) for both
the standard and shortcut systems on RACE++ (see
Appendix for other datasets). The counts plot show
the number of questions within the bin range, while
accuracy refers to the accuracy over all the exam-
ples within the bin. Since the systems are slightly
overconfident’, the systems’ output probabilities
are calibrated using temperature annealing (Guo
etal., 2017) (see Appendix B.3).

The baseline system has high certainty for most
points, which is somewhat expected given the
baseline’s high accuracy. However the shortcut
system, without any contextual information,
has a significant number of examples in the
very low entropy region. This shows that for a
subset of questions, the system can confidently
answer questions correctly without doing any
comprehension at all. In other cases, the shortcut
system can leverage some information from the

3For both models, the mean of the maximum probability
is 5% above the overall accuracy.
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Figure 4: Distribution of effective number of options
and corresponding (binned) accuracy.

question and can reduce the number of effective
options to between 2-3, which implies that
certain poor distractors can be eliminated by
the question alone. We also show that for both
models, there is a clear linear relationship between
uncertainty and accuracy, illustrating that the
context-free system’s use of world knowledge
is sensible and that it leverages meaningful task
information (see Appendix D for low-entropy
examples). This confirms that the systems are well
calibrated and that the effective number of op-
tions is a good measure of actual model uncertainty.

Mutual Information To further look at the
influence of context, the mutual information (MI)
between prediction and context was approximated
for each example using Equation 2. Examples
with a high MI are questions where the model
is certain of the answer with context, but is
uncertain without context - a desired property
for comprehension questions. Figure 5 shows
the counts when all the examples are ordered by
MI (see Equation 2) along with both the baseline
and shortcut system accuracies. We note that the
count distribution has a mix of high and low MI
questions, which shows that the benefit of context
is not a system-wide property but instead varies
over questions. The accuracy of the baseline
system increases considerably when context is
useful, while accuracy falls for the shortcut system.
It is interesting that a small fraction of questions
have negative MI. Though MI should always
be positive, negative values can be observed
since models are only approximations of the true
underlying distributions. The low accuracy of the
shortcut model on negative MI questions occurs
when standard world knowledge is not consistent
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Figure 5: Distribution of counts and corresponding ac-
curacy when points are sorted by MI approximation.

with the information in the context.

Human Evaluation of Metrics We perform human
evaluation to judge the practical use of our metrics.
We select 100 questions with lowest and highest
entropy, and three volunteer graduate students in-
dependently answer the questions without access
to the context. We further select 50 questions with
lowest and highest M1, and get our volunteers to
first answer questions without context, then with
context, and calculate the accuracy increase. All
questions are shuffled, and volunteers attempt to
best answer all questions. We find that our met-
rics are very effective in measuring their desired
properties. Without context, humans are often able
to answer the questions that the shortcut systems
answer confidently, with humans achieving an aver-
age accuracy of 92% on the 100 lowest entropy and
32% on the 100 highest entropy examples respec-
tively. Further, for high MI questions humans get
a performance boost of 71% when context is pro-
vided, and only 22% for low mutual information
questions.

| lowent. highent. | high MI low MI
human 91.7i1‘9 31.7i2,9 A69.3i0,9 A24.7i5‘0
system | 99.010.0 24.316.2 | A68.0x09 A3.3147

Table 3: Human and system ‘no context’ accuracy on
lowest and highest entropy questions as well as human
and system change in accuracies on lowest and highest
mutual information questions.

4 Conclusions

For popular MCMRC datasets, systems can achieve
reasonably high performance without performing
any comprehension. Without passage information,
‘shortcut’ systems can confidently determine some



correct answer options, eliminate some unlikely
distractors, and use general knowledge to gain in-
formation. Rather than focusing on average system
performance, our work analyses individual ques-
tion’s reliance on world knowledge. We propose
a metric based on the shortcut systems to automat-
ically flag questions that are answerable without
comprehension. We further provide evidence that
the flagged questions are answerable by humans
without any context. Lastly, using an approxima-
tion of the mutual information, we show that the
importance of context varies over the questions in
the dataset, and reason that high MI questions can
be thought of as candidates for high-quality ques-
tions that truly measure comprehension abilities.

5 Limitations

We propose an approach that can automatically flag
questions that can be answered without contextual
information. However, the remaining questions are
not necessarily high-quality questions, since many
other aspects make up question quality. Second,
the experiments are conducted using only the Elec-
tra model, though it is expected similar trends will
be picked up by alternative transformer-based lan-
guage models. Further, exams might be aimed at
a level where a lack of specific knowledge may be
assumed. Our work does not consider variable can-
didate knowledge levels, and our evaluation was
only done by highly educated (we’d like to think)
graduate students. Finally, we acknowledge that
our human evaluation was limited in size and ques-
tions, however it is clearly demonstrated that for
low ‘shortcut entropy’ questions, comprehension
is not necessarily required.
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Appendix A Additional Results

Appendix A.1 COSMOSQA
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Figure Appendix A.1: Distribution of effective number
of options and binned accuracy for COSMOSQA.
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Figure Appendix A.2: Distribution of counts and cor-
responding accuracy when points are sorted by MI ap-
proximation for COSMOSQA.

We repeat the entropy plot (Figure Appendix
A.1) for COSMOSQA and find similar trends to
those seen in RACE++. The shortcut no-context
system has a very flat distribution with a substantial
number of questions answerable without context,
with the effective number of options again having
a clean linear relationship with accuracy. The re-
peated mutual information plot (Figure Appendix
A.2) for COSMOSQA also has the same trend seen
in RACE++, validating that our findings are more
general that just for RACE++.

Appendix A.2 ReClor

ReClor show roughly the same trends, however
the questions of ReClor are much more challeng-
ing than in either RACE++ and COSMOSQA, and
so we notice that the counts distribution is pushed
considerably to the higher entropy side. Addition-
ally, since ReClor is much smaller than RACE++
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Figure Appendix A.3: Distribution of effective number
of options and binned accuracy for ReClor.
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Figure Appendix A.4: Distribution of counts and cor-
responding accuracy when points are sorted by MI ap-
proximation for ReClor.

and COSMOSQA (see Table 1), the curves are less
smooth and largely suffer from noise.

Appendix A.3 Other Shortcuts

We also consider other shortcut approaches, such as
having context and options (i.e. missing question)
and only options (Figure Appendix A.5). Perfor-
mance of the systems is shown in Table Appendix
Al

Options only -
Question and Options -
Option and context -
Baseline -

[CLS] <Option> [SEP]

[CLS] <Question> <Option> [SEP]

[CLS] <Context> [SEP] <Option> [SEP]

[CLS] <Context> [SEP] <Question> <Option> [SEP]

Figure Appendix A.5: System inputs for alternative
shortcut systems.
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Training data | RACE++ COS. ReClor

~ | 2500 2500 25.00

{0} 4176 2144 34.00

Q+{0} 5732 5404 3480

RACEH  0)iC | 6820 5461  46.00
Q+(0}+C | 8501 7005 48.60

(0} 2095 5739 2520

Q+({0) 3873 6851  27.80

COSMOS 414 5241 7896 4040
Q+{O}4+C | 6681 8449  41.20

{0}, 2607 1829  49.00

Q+{0} 3127 3313 51.80

ReClor {0}+C 39.83 3688  68.40
Q+{O}4+C | 5269 4168 69.80

Table Appendix A.1: Cross-performance of systems on
RACE++, COSMOSQA and ReClor using accuracy.

Appendix B Model Information

B.1 Training Details

For all systems, deep ensembles of 3 models are
trained with the large * ELECTRA PrLLM as a part
of the multiple-choice MRC architecture depicted
in Figure 2. Each model has 340M parameters.
Grid search was performed for hyperparameter
tuning with the initial setting of the hyperparam-
eter values dictated by the baseline systems from
Yu et al. (2020); Raina and Gales (2022). Apart
from the default values used for various hyper-
paramters, the grid search was performed for the
maximum number of epochs € {2, 5,10}; learning
rate € {2e —7,2e—6,2e —5}; batch size € {2,4}.
For RACE++, training was performed for 2 epochs
at a learning rate of 2e-6 with a batch size of 4
and inputs truncated to 512 tokens. For systems
trained on ReClor the final hyperparameter settings
included training for 10 epochs at a learning rate
of 2e-6 with a batch size of 4 and inputs truncated
to 512 tokens. For COSMOSQA, training was per-
formed for 5 epochs at a learning rate of 2e-6 with
a batch size of 4 and inputs truncated to 512 tokens.
Cross-entropy loss was used at training time with
models built using NVIDIA A100 graphical pro-
cessing units with training time under 3 hours per
model for ReClor, 5 hours for COSMOSQA and 4
hours for RACE++. All hyperparameter tuning was
performed by training on TRN and selecting values
that achieved optimal performance on DEV. For
fairness, the ‘shortcut’ systems (omitting various

*Configuration at: https://huggingface.co/
google/electra-large-discriminator/blob/
main/config. json.
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forms of the input) for each dataset were trained
with the same hyperparameter settings as their cor-
responding baseline systems.

B.2 Evaluation Details

For each dataset, the systems are trained on the
training split and hyperparameter tuned on the de-
velopment split. For RACE++, systems are evalu-
ated on the held out test data, but for COSMOSQA
and ReClor, the evaluations are performed on the
development split because their test splits have their
labels hidden.

B.3 Calibration

The trained models were calibrated post-hoc using
single parameter temperature annealing (Guo et al.,
2017). Uncalibrated, model probabilities are deter-
mined by applying the softmax to the output logit
scores ;'

3)

P(y = k;0) o< exp(sy)

where k denotes a possible output class for a predic-
tion y. Temperature annealing ‘softens’ the output
probability distribution by dividing all logits by a
single parameter 71" before the softmax.

Poar(y = k;0) < exp(sy/T) 4

As the parameter 7' does not change the relative
rankings of the logits, the model’s prediction will
be unchanged and so temperature scaling does not
affect the model’s accuracy. The parameter 7' is
chosen such that the accuracy of the system is equal
to the mean of the maximum probability (which
would be expected for a calibrated system).

Appendix C Licenses

This section details the license agreements of the
scientific artifacts used in this work. The dataset
COSMOSQA (Huang et al., 2019) has BSD 3-
Clause License. The datasets RACE++ (Lai et al.,
2017) and ReClor (Yu et al., 2020) are freely avail-
able with the limitation on the latter that it can
only be used for non-commercial research purposes.
Huggingface transformer models are released un-
der: Apache License 2.0. All the scientific aritfacts
are consistent with their intended uses.
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Appendix D Low Entropy Examples

Make-A-Wish "is a charity to help _ .
A: sick children

B: serious officers

C: famous actors

D: popular singers

€&

D: Providing extra space.

T

Children with low self-control are more likely to_
A: become wealthy in later life

B: get good school performance

C: have better financial planning

D: adopt negative behaviors

CEYTTY

The word SEASICK means" _ ".

A: to be eager to go to the sea

B: what has nothing to do with the sea
C: to be sick because of the sea

D: that the sea is terrible

What is Google used mainly for?
A: Commanding the gateway.

B: Searching for information.

C: Storing reference books.

(Gowmm=)

B: cut
C: enlarged

The word "scorched" in line 6 is closest in meaning to
A: burned
D: bent

(Toerd)
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Abstract

Automatic fact verification has become an in-
creasingly popular topic in recent years and
among datasets the Fact Extraction and VER-
ification (FEVER) dataset is one of the most
popular. In this work we present BEVERS, a
tuned baseline system for the FEVER dataset.
Our pipeline uses standard approaches for doc-
ument retrieval, sentence selection, and final
claim classification, however, we spend con-
siderable effort ensuring optimal performance
for each component. The results are that BEV-
ERS achieves the highest FEVER score and
label accuracy among all systems, published
or unpublished. We also apply this pipeline to
another fact verification dataset, Scifact, and
achieve the highest label accuracy among all
systems on that dataset as well. We also make
our full code available'.

1 Introduction

The danger of misinformation online has gained
significant attention in recent years. This has
been reignited by the recent COVID-19 pandemic,
where social media sites and other entities were
tasked with identifying misleading content or false
content to warn users. Being able to develop sys-
tems to automate or build tools to improve this
process could reduce the need for human annota-
tors to mark content as being misleading or false.
The Fact Extraction and VERification (FEVER)
dataset (Thorne et al., 2018) is one the largest
and most popular datasets aimed at automated fact
verification. The FEVER dataset is comprised of
185,445 claims and uses a 2017 dump of Wikipedia
as the corpus to verify the claims, which results in
a corpus size of over 5,000,000 articles. For each
claim, the task is to find the relevant Wikipedia
page(s), the relevant sentence(s) within the page(s),
and finally given the relevant sentences and claim
determine if the claim is supported, refuted, or

lhttps ://github.com/mitchelldehaven/bevers
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there is not enough information. As such, a fairly
standard pipeline of a document retrieval system,
a sentence selection system, and a final claim clas-
sification system is used by most of the systems
for the task. The primary metric for the dataset
is FEVER score. The FEVER score requires both
that the predicted label is correct as well as at least
one piece of correct evidence being retrieved as
predicted evidence.

Much of the recent work has examined parts of
the pipeline and made novel improvements over
baseline approaches. For our system, rather than
making novel improvements against the baseline
pipeline, we instead tune each of these compo-
nents to ensure maximum performance. In fact, our
pipeline is quite similar to one of the first FEVER
systems to utilize Transformer models (Soleimani
et al., 2020). We call our system Baseline fact
Extraction and VERIification System (BEVERS).
Despite its relative simplicity, our system attains
state of the art (SOTA) performance on the FEVER
blind test set. When applying our baseline pipeline
to another popular fact verification dataset, Sci-
fact (Wadden et al., 2020), our system achieves the
highest label F1 score on that dataset as well.

2 Related Work and Methods

2.1 Document Retrieval

The initial baseline for FEVER (Thorne et al.,
2018) utilized a standard TF-IDF document re-
trieval model. Hanselowski et al. (2018) improved
on this by using named entity recognition (NER) to
extract query terms from the claim text and query
those terms against WikiMedia’s API?, which has
become widely used among other systems. Re-
cently systems such as those from Stammbach
(2021) and Jiang et al. (2021) have used a combina-
tion of traditional IR approaches with Hanselowski
et al.’s (2018) NER approach. We follow a sim-

2https: //www.mediawiki.org/wiki/API:Main_page
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ilar setup, however, we replace the approach of
Hanselowski et al.’s (2018) use of WikiMedia’s
API. We similarly extract named entities to form
query terms, however, we run those against a fuzzy
string search system using the titles of the docu-
ments. For our TF-IDF, we build separate repre-
sentations for documents and titles. This is for two
reasons. First, it allows us to separately optimize
the parameters for titles and documents. Second, it
forces the retrieval system to give titles more atten-
tion as it is forced to retrieve half of all documents
based on the title alone. We give an ablation over
these design decisions in Appendix B.

2.2 Sentence Selection

After retrieving documents, the next step is to score
evidence and form a ranking for the predicted evi-
dence of the claim. The simplest approach to do-
ing this is referred to as “point-wise” ranking, in
which each sentence is scored individually against
the claim. This is the approach utilized by most
systems. Soleimani et al. (2020) looked at im-
proving on this utilizing a pairwise approach to
ranking. Stammbach (2021) found that utilizing
document-wide context via sparse attention Trans-
formers improves on point-wise approaches. Our
system utilizes a simple point-wise approach to
sentence selection to form the predicted evidence.
We look at two cases, treating the task as both a
binary classification task and a ternary classifica-
tion task. In the binary case, the label set is simply
RELEVANT and IRRELEVANT with the softmax
score of RELEVANT being used for ranking. In the
ternary case, we use REFUTES, NOT ENOUGH
INFO, and SUPPORTS as the labels and use 1—
NOT ENOUGH INFO softmax score for ranking.
We randomly sample sentences from the document
retrieved from our document retrieval approach for
negative samples. In the binary case, these ran-
dom negative samples are assigned to the IRRELE-
VANT label class and all true evidence is assigned
to RELEVANT. In the ternary case, the negative
samples are assigned to NOT ENOUGH INFO, and
the true evidence is assigned to its respective labels,
REFUTES and SUPPORTS.

In addition, we utilize a process we call evidence-
based re-retrieval. The FEVER dataset includes hy-
perlink information for each sentence in the dataset.
This process takes the initial set of predicted ev-
idence for a claim and extracts additional docu-
ments based on hyperlinks found in the initial sen-
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tences retrieved. Sentences from these additional
documents are scored and combined with the ini-
tial sentences to form a final top 5 predicted evi-
dence. This process is very similar to Stammbach’s
(2021) “multi-hop retrieval”, with slight differences
in how sentences are discounted when combining
the two sets of sentences. Stammbach sets evidence
from re-retrieved documents just above a prede-
fined threshold for selection to prevent re-retrieved
evidence from pushing evidence from the initial re-
trieval outside of the top 5. We similarly found that
simply combining both sets together actually hurts
recall, because evidence from re-retrieval some-
times pushes out relevant evidence from the initial
retrieval. In our approach, we scale the sentence
selection scores of the re-retrieved sentences by the
score of the original sentence that was responsible
for its retrieval. Thus, if evidence s; was retrieved
due to a hyperlink in s; the final retrieval score is
score(s;) x score(sj). Scaling this way reduces
re-retrieved evidence pushing evidence from the
initial retrieval from the top-5 selection. It also al-
lows re-retrieved evidence scores to be proportional
to the score of the initial evidence responsible for
its retrieval.

2.3 Claim Classification

The claim classification portion has recently seen
the most diversity in approaches to the task. The
initial Transformer approach of Soleimani et al.
(2020) formed predictions for each claim and evi-
dence pair, using a simple set of rules to aggregate
labels across the different pieces of evidence. Sub-
sequently, several works examined the use of graph
neural networks as the claim classification model
(Liu et al., 2020; Zhong et al., 2020), showing im-
provements over simply using Transformers due to
their ability to aggregate information over differ-
ent pieces of evidence. More recently, increasing
the size of the Transformer models and concate-
nating all evidence sentences together have shown
further improvements, with Jiang et al. (2021) us-
ing TS (Raffel et al., 2020) and Stammbach (2021)
using DeBERTa V2 XL MNLI (He et al., 2021).
Finally, the previous SOTA among public systems,
Proof VER (Krishna et al., 2022), utilizes natural
language proofs generated via seq2seq models for
interpretable inference steps.

For our approach, we look at prediction over sin-
gleton, concatenated, and a mixed case. We predict
a top-5 evidence set for each claim for training us-



Hyperparameter Values
Force Lowercase  True, False
Force ASCII True, False
Norm L2, None
Sublinear TF True, False
Max Ngram 1,2

Table 1: The hyperparameter search for our TF-IDF
system.

Hyperparameter Values
Label Set binary, ternary
Negative Samples 5, 10, 20, 40
Learning Rate le-5, 6e-6, 3e-6
Label Smoothing 0.0,0.1,0.2

Table 2: The hyperparameter search our sentence selec-
tion model.

ing our document selection and sentence selection.
In the singleton case, we generate a prediction for
each piece of evidence using as input the (claim,
evidence) pairs. In the concatenated case, we con-
catenate all the evidence together and form the
input based on (claim, evidencey, evidences, .. .).
For the mixed approach, we mix the singleton ap-
proach and concatenated approach together. For
the singleton and mixed approach, we have multi-
ple predictions for each claim. To aggregate these
into a single score, we use the softmax scores for
each prediction with the retrieval scores and train
a gradient boosting classifier (Friedman, 2001) on
these inputs to produce a single prediction. In the
singleton case, the input is a 5 X 4 matrix (5 pieces
of evidence, 3 softmax scores and a retrieval score).
In the mixed case, the input is a 6 X 4 matrix (in-
cludes the additional concatenated input softmax
scores and the retrieval score, computed from the
average retrieval scores of the 5 pieces of evidence).
The singleton and concatenated approaches have
been used previously (Soleimani et al., 2020; Jiang
et al., 2021), while we are not aware of any works
that look at simply mixing these approaches to-
gether.

3 Experimental Setup

What we believe to be the source of improvements
for our system is hyperparameter tuning for each
component. We identify hyperparameters and po-
tential values and run a grid search to find the op-
timal configurations for each component. In this
section, we will go over each of the grid searches
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Hyperparameter Values
Learning Rate 0.1,0.3
Estimators 20, 40, 60, 80, 100
Max Depth 2,4,6,8

Table 3: The hyperparameter search our gradient boost-
ing model.

providing additional details on the exact setup.

For our TF-IDF system, we utilize SciKit
Learn’s (Pedregosa et al., 2011) TF-IDF represen-
tation. In Table 1 we list the hyperparameters and
their candidate values used in the grid search. We
use recall @ 5 on the development set for finding
the best configuration. The fuzzy string search is
implemented using Sqlite’s spellfix1 virtual table?.
We set a simple edit distance threshold for retriev-
ing additional documents.

Our sentence selection hyperparameter tuning
is split into two sections. First, we optimize the
number of negative samples selected as well as
binary vs ternary classes for ranking. Since the
FEVER dataset does not provide evidence for NOT
ENOUGH INFO claims, negative samples must be
used to generate training examples for these. Using
the best selection from the initial setup, we tune
the learning rate and label smoothing. The candi-
date values for the tuning can be found in Table 2.
Given the imbalance in the training set and the bal-
anced nature of the dev and test set, we oversample
the minority classes so that label distribution in
the training set matches that of the dev and test
sets. We use the dev set for determining optimal
hyperparameter values. RoOBERTa Large (Liu et al.,
2019) is used as the initial model for fine-tuning.

The claim classification tuning setup is quite
similar to sentence selection. We initially tune the
learning rate and label smoothing using the same
candidate values for the concatenated case. Instead
of tuning the model types of singleton, concate-
nated, and mixed, we simply use the best hyperpa-
rameter configuration and train a model for each
of these to draw final comparisons. Again, given
the imbalance in classes in the train set, we use
class weighting to compensate for this imbalance.
For fine-tuning we use RoBERTa Large MNLI and
DeBERTa V2 XL MNLI.

Finally, for the singleton and mixed approaches,
we use XGBoost (Chen and Guestrin, 2016) for
training a classifier to aggregate the predictions

3https: //www.sqlite.org/spellfix1.html
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System Test LA Test FEVER
Soleimani et al. (2020) 71.86% 69.66%
KGAT Liu et al. (2020) 74.07% 70.38%
LisT5 Jiang et al. (2021) 79.35% 75.87%
Stammbach (2021) 79.20% 76.80%
ProoFVer Krishna et al. (2022) 79.47 % 76.82%
Ours (RoBERTa Large MNLI) singleton 78.01% 76.09%
Ours (RoBERTa Large MNLI) concatenated  79.14% 76.69%
Ours (RoBERTa Large MNLI) mixed 79.39% 76.89%
Ours (DeBERTa V2 XL MNLI) mixed 80.24% 77.70%

Table 4: Full system comparison for label accuracy (LA) and FEVER score on the blind test set.

into a single prediction. Similarly, we define a hy-
perparameter grid to find the optimal values. Since
the previous steps were all trained on the train set
and thus the softmax scores and retrieval scores
will be overly optimistic on the training set, we
instead train the XGBoost classifier on the dev set.
We use 4-fold cross-validation to find the optimal
configuration.

4 Results
System Dev Recall @ 5
Hanselowski et al. (2018) 87.10%
Liu et al. (2020) 94.37%
Soleimani et al. (2020) 88.38%
Jiang et al. (2021) 90.54%
Stammbach (2021) 93.62%
Ours 92.03%
+ re-retrieval 94.41%

Table 5: The results of several sentence selection sys-
tems in terms of recall @ 5 on the dev set.

For sentence selection, the primary metric used
isrecall @ 5. This is due to the fact that when com-
puting FEVER score, the scoring metric will only
consider up to 5 pieces of predicted evidence. In
Table 5 we compare our sentence selection system
against several other top systems on the dev set. As
can be seen, our sentence selection system outper-
forms all previous systems in terms of recall @ 5
on the dev set. This is despite using a substantially
smaller model relative to Jiang et al.’s (2021) TS
approach as well as only using pointwise scoring
for sentence selection as opposed to Stammbach’s
(2021) full document context approach. We sep-
arate our results from using initial retrieval and
including evidence-based re-retrieval, which shows
a very large improvement in recall by doing re-
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retrieval, consistent with Stammbach’s (2021) find-
ings.

For claim classification results, we present the
entire end-to-end results for our system in Table 4.
The simple approach of mixing the singleton and
concatenate approaches gives a small improvement,
although is not a substantial source of improvement.
Despite the singleton approach being incapable of
modeling claims that require multi-hop evidence,
it still performs well. Despite using a relatively
smaller model of 300 million parameters when
compared to 3 billion with TS and 900 million
with DeBERTa V2 XLL MNLI, our RoBERT Large
MNLI system achieves the highest FEVER score
among all published systems. When we utilize De-
BERTa V2 XL MNLI using our mixed approach,
we achieve the highest label accuracy and FEVER
score amongst all systems, published or unpub-
lished, on the blind test set.

S Beyond FEVER: Scifact

System SS+L Abstract LO
Pradeep et al. (2021)  58.8 64.9
Zhang et al. (2021) 63.1 68.1
Wadden et al. (2022)  67.2 72.5
Ours 58.1 73.2

Table 6: System comparison for SS + L F1 score and
Abstract LO F1 score on SciFact blind test set.

To test this pipeline for automatic fact verifi-
cation beyond the FEVER dataset, we also apply
these methods to the SciFact dataset (Wadden et al.,
2020). SciFact is very similar in structure to the
FEVER dataset, however, the corpus is composed
of scientific articles. A source of difficulty is that
claims are often phrased in lay terms, which can
be a stark difference in form from how topics are



presented in scientific articles. The overall size of
the dataset is quite a bit smaller as well, contain-
ing only 1,409 claims and 5,183 article abstracts,
which serve as the corpus. Despite this, we keep
our pipeline nearly identical to FEVER, excluding
only the fuzzy string search component. We follow
the approach of Wadden et al. (2022) for improv-
ing the initial models for finetuning given the low
resource nature of the dataset.

We show the results of our pipeline in Table 6
compared to the current SOTA (Wadden et al.,
2022) and other top systems. The metrics reported
are sentence selection + label (SS + L) and abstract
label only (Abstract LO). These metrics roughly
correspond to FEVER Score and label accuracy for
FEVER. As can be seen in the SS + L metric, the
simplicity of our document retrieval system appears
to hold the overall system back. Our system only
uses TF-IDF whereas the three others add neural re-
rankers on top of their retrieval. Despite this, on the
Abstract LO metric our system achieves the highest
F1 score on the blind test set, outperforming the
SOTA on this metric.

6 Conclusion

We presented BEVERS, a strong baseline approach
for the FEVER and SciFact datasets. Despite being
similar to previous works in structure (Soleimani
et al., 2020) and utilizing little in terms of novel im-
provements, our system was able to achieve SOTA
performance on FEVER and the highest label ac-
curacy on SciFact. We primarily attribute these
improvements to diligent hyperparameter tuning
and error analysis. While several previous works
have shown novel contributions to portions of the
pipeline can yield improvements, in this work we
show a well-tuned baseline is very strong.

7 Limitations

As shown with SciFact, this pipeline struggles in
situations where there is a mismatch in how claims
are phrased and how evidence is phrased in the cor-
pus. Since our retrieval method is term-based, syn-
onymous terms are often missed, and thus in such
systems utilizing neural retrieval methods will of-
fer better performance. In addition, this work does
not thoroughly examine which design decisions or
approaches led to the improvements seen in this
pipeline. We note that evidence-based re-retrieval
does give substantial improvements, yet even with-
out re-retrieval, our sentence selection outperforms
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most previous systems by a substantial margin, so
it is not the sole source of improvement.
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A Optimal Hyperparameter Settings

In Table 7 we show the optimal hyperparameter
settings for the various TF-IDF configurations. To
minimize space, we use "Cat" to refer to the con-
catenated TF-IDF setup. In Table 8 and Table 9
we show the optimal hyperparameter values for
sentence selection and claim classification mod-
els. Finally, in Table 10 we include the optimal
hyperparameter values for the XGBoost classifier.

Hyperparameter Cat Title, Document

Force Lowercase  True True, False
Force ASCII True True, True
Norm None L2, None

Sublinear TF True True, True
Max Ngram 2 2,2

Table 7: Optimal hyperparameters for the concatenated
and separated TF-IDF configurations.

Hyperparameter Optimal Value

Label Set Ternary
Negative Samples 10
Learning Rate 3e-6
Label Smoothing 0.0

Table 8: Optimal hyperparameters for sentence selection
model.

Hyperparameter Optimal Value
Learning Rate 3e-6
Label Smoothing 0.2

Table 9: Optimal hyperparameters for claim classifica-
tion model.

B Ablation Studies

In Table 11 we show the impacts of various design
choices for document retrieval and their impacts
on sentence selection. We use our best sentence
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Hyperparameter Optimal Value

Max Depth 2
Number of Estimators 60
Learning Rate 0.3

Table 10: Optimal hyperparameters for XGBoost aggre-
gation classifier.

selection model for ranking the sentences retrieved
by the document retrieval approaches. Previous
works use OFEVER from the original paper as a
metric for comparing document retrieval methods,
however, OFEVER does not account for different
approaches retrieving different numbers of docu-
ments given that is an oracle approach. Thus, we
find measuring the sentence selection in this way
gives a better representation of improvements.

Retrieval Approach Dev Recall @ 5

TF-IDF (concatenated) 84.49 %
+ fuzzy string search 91.35 %
+ document re-retrieval 93.58 %
TF-IDF (separated) 87.09 %
+ fuzzy string search 92.03 %
+ document re-retrieval 94.41%

Table 11: Dev set recall @ 5 using various document
retrieval approaches.

In Table 12 we compare our claim classifica-
tion setup with KGAT’s. Rather than utilizing
our document retrieval and sentence selection, we
use KGAT’s sentence selection outputs which they
make publicly available. This allows for a more
direct comparison since we are using the same evi-
dence for forming predictions. The only changes
we make: re-score the top 5 evidence from KGAT’s
sentence selection using our own best sentence
selection model and re-train the gradient boost-
ing classifier. Despite using the same evidence as
KGAT, our claim classification still outperforms
using either RoOBERTa Large or ROBERTa Large
MNLI. So while some of the improvement in our
system 1is attributable to improvements in docu-
ment retrieval and sentence selection our approach
to claim classification still outperforms previous
systems when using the same retrieval outputs.
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Author (Model) Test LA Test FEVER
KGAT (RoBERTa Large) (Liu et al., 2020) 74.07 % 70.38 %
KGAT (CorefRoBERTa) (Ye et al., 2020)  75.96 % 72.30 %
Ours (RoBERTa Large) 76.60 % 73.21 %
Ours (RoBERTa Large MNLI) 77.95 % 74.08 %

Table 12: Comparison between KGAT’s claim classification and ours. We use KGAT’s released outputs for evidence
retrieval, so differences in performance are not attributable to improvements in our system’s retrieval approach.
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Abstract

In this paper we present a thorough investiga-
tion of automatic bias recognition on BASIL, a
dataset of political news which has been anno-
tated with different kinds of biases. We begin
by unveiling several inconsistencies in prior
work using this dataset, showing that most ap-
proaches focus only on certain task formula-
tions while ignoring others, and also failing to
report important evaluation details. We pro-
vide a comprehensive categorization of these
approaches, as well as a more uniform and clear
set of evaluation metrics. We argue about the
importance of the missing formulations and
also propose the novel task of simultaneously
detecting different kinds of biases in news. In
our work, we tackle bias on six different BASIL
classification tasks in a unified manner. Even-
tually, we introduce a simple yet effective ap-
proach based on data augmentation and prepro-
cessing which is generic and works very well
across models and task formulations, allowing
us to obtain state-of-the-art results. We also per-
form ablation studies on some tasks to quantify
the strength of data augmentation and prepro-
cessing, and find that they correlate positively
on all bias tasks.

1 Introduction

News outlets have expanded to become one of the
most influential and prominent platforms within
mass media. News articles play a central role in
transforming individual and public opinion (Ham-
borg et al., 2019). Public opinion of journalists
influence viewers to become biased towards a par-
ticular issue. The consequence of media bias is
massive, and raises questions about the credibil-
ity of news. For example, Bernhardt et al. (2008)
reported that media bias led to the election of the
wrong candidate, and according to Wolton (2019),
voters are always well-informed with unbiased
rather than biased media outlets. Moreover, biased
media outlets have also been found to provide less
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information, which reduces voter’s welfare Duggan
and Martinelli (2011).

Misinformation has enormous potential in chang-
ing the individual and public beliefs, expectations,
or desired conclusions. The harmful biases con-
tained in news media require rigorous analysis to
be detected and quantified, but once addressing
these issues can improve the quality of research
process to maximize the accuracy and credibility of
research results (Johnson et al., 2020). To enhance
transparency and reliability in promoting accurate
information, it is important to realize bias in ma-
chine learning methods and how humans perceive
bias (Sun et al., 2019).

Seminal work by Fan et al. (2019) has been a
key contribution in bias detection in news, with the
introduction of the BASIL dataset. Critically, to
the best of our knowledge, this dataset is the first
to be annotated with different kinds of bias. This
is due to the fact that, as pointed out by Fan et al.
(2019), some kinds of bias can only be analyzed
in a broader context, because a given sentence be-
comes ambiguous in isolation at any given time.
In this sense, their proposal was to differentiate
informational bias from lexical bias. On one hand,
the former is usually presented using speculative,
imperative, and tangential clauses that convey in-
formation in a factual and neutral way (van den
Berg and Markert, 2020) to sway readers’ opin-
ions towards news entities (Guo and Zhu, 2022a),
therefore depending mostly on the context. On
the other hand, lexical bias instead depends on lin-
guistic attributes like word choice and syntax and
originates from content realization or how things or
events are expressed, and is generally not depend-
ing on the context (Greene and Resnik, 2009; Hube
and Fetahu, 2019; Iyyer et al., 2014; Yano et al.,
2010; Recasens et al., 2013). Table 1 shows exam-
ples of informational and lexical bias on New York
Times (NYT) news (2nyt; source: nyt, event: 2)
on the BASIL dataset. The three sentences report
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Bias Polarity Sentence

Index #

Informational Neg

The president again suggested that he should win the Nobel

10

Peace Prize, and he reviewed which conservative commenta-
tors had been supportive of him, while dismissing Ann Coulter,

who has not.

Lexical Neg

Sounding alternately defensive and aggrieved, Mr. Trump ex-

11

plained his failure to secure wall funding during his first two years
in office when Republicans controlled both houses of Congress by
saying, I was a little new to the job.

Neutral None

He blamed certain people, a particular one, for not having pushed

12

this faster, a clear reference to former Speaker Paul D. Ryan of
Wisconsin, a Republican.

Table 1: Examples extracted from BASIL dataset, from New York Times (NYT) section and discussing the same
event, showing how informational and lexical bias manifest. In the examples, text spans annotated with informational
bias and lexical bias are highlighted in bold, and we refer to sentences annotated with no bias as ’Neutral’.

on Donald Trump as the main event. As seen, in-
formational bias covers the article context broadly,
often depending on the complete sentence, whereas
lexical bias is expressed in polarized words as high-
lighted.

Though the development of datasets such as
BASIL has brought an interesting new paradigm to
look at bias in news, thereby drawing the attention
of several members of the research community and
leading to abundant prior work, we note that these
studies mostly focus on informational bias only
(van den Berg and Markert, 2020; Guo and Zhu,
2022b; Fan et al., 2019; Lei et al., 2022), with lexi-
cal bias studied solely by Fan et al. (2019). While
we surmise that this could be partially due to the
fact that lexical bias appears comparatively less
frequently in news articles, making the automatic
detection of both kinds of bias simultaneously dif-
ficult, we think this should be no reason to focus
on either and argue that detecting lexical bias from
informational bias should be equally significant. In
this context, our take is well-aligned with previous
work by Zhou and Bansal (2020), who highlighted
the uniqueness of lexical bias and demonstrated its
importance through several experiments.

In light of this issue, in our work, we propose
approaches to detect both informational and lexi-
cal bias simultaneously. Our holistic view on bias
detection enables us to reveal important trade-offs
between informational and lexical bias, and we
perform a sensitivity analysis of such trade-offs in
various task formulations. Based on our findings,
we propose a set of data augmentation techniques
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which we combine with deep learning models to
improve performance.

Furthermore, our focus on both bias detection
problems leads us to propose more clear and con-
sistent task formulations. Specifically, we note out
several inconsistencies in the reporting of perfor-
mance on previous work, and provide a framework
to improve uniformity and clarity, and to avoid
problems we found in prior work. Consequently,
we highlighted incoherent task formulations of bias
classification tasks, absence of a significant task of
detecting both informational and lexical bias simul-
taneously, and missing evaluation metrics of bias
interpreted labels. Our findings are connected to a
related issue which has been brought to attention
by van den Berg and Markert (2020), showing that
sentence-based splits can introduce data leakage
since labeled sentences from the same or similar
articles can appear in training and test subsets, re-
sulting in overestimation of the predicting accuracy.
Our proposed framework not only enables us to ad-
equately compare our results with previous work,
which we often find lacks structure in this sense,
but also helps pave the way for future research in-
volving the BASIL dataset. In summary, our work
provides the following contributions:

1. We unveil and remove inconsistencies in prior
work, providing uniform and more clear eval-
uation metrics with various task formulations
on BASIL.

To the best of our knowledge, we are the first
to propose the task of simultaneously detect-
ing both informational and lexical bias, and



distinguish them from neutral examples. We
propose models to tackle this new task and es-
tablish its importance in overall bias detection
problem setting.

3. We propose an approach based on data aug-
mentation and preprocessing which is generic
and works well across a selection of mod-
els and settings in bias detection in news, al-
lowing us to obtain state-of-the-art results on
BASIL.

2 Related work

There has been a growing interest in the investiga-
tion of linguistic information presented by neural
models (Liu et al., 2019a). A study by Jia et al.
(2019) worked on the bias and distortion of online
commentary information based on online reviews,
and illustrate online review components signifi-
cance over increased reputation and false reviews.
Hovy and Prabhumoye (2021) study five sources of
bias including data, annotation process, input rep-
resentations, models, and research design where re-
search design is the most difficult to detect because
it requires systematic analysis and subjectivity of
human perceptions.

The work on BASIL dataset in the literature
is not exhaustive to the best of our knowledge.
BASIL dataset provided by Fan et al. (2019) use
BERT and RoBERTa for informational and lexical
bias detection while treating sentences in isolation,
whereas informational bias is also explored with
different types of contexts like textual, article, event
and domain using BiLSTM’s, BERT and Event
Context-Inclusive Model (EvCIM) inspired by Con-
text Aware Model of Papalampidi et al. (2019), we
will omit a detailed explanation of these models, re-
ferring readers to (van den Berg and Markert, 2020).
Fan et al. (2019) demonstrate that informational
bias is more challenging to detect due to its depen-
dence on content selection as compared to lexical
bias. Another study by Lee et al. (2021) intro-
duce a general purpose misinformation UnifiedM?2
model for bias detection in BASIL and handle tasks
like fake news, clickbait and rumors. Contrastive
learning and Graph Attention Network in the Mul-
tiCTX (Multi-level ConTeXt) model uses triplets
of BASIL to detect informational bias as proposed
by Guo and Zhu (2022b). Similarly, bias sentence
identification is also studied by Lei et al. (2022)
through local and global discourse structures using
RoBERTa for addressing bias. We compare our
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results with the aforementioned current state-of-
the-art methods to investigate the significance of
our proposed approach.

Another topic relevant to our work is data aug-
mentation. In general, data augmentation in NLP is
at an emerging stage compared to Computer Vision
(Shorten et al., 2021; Shleifer, 2019). Among data
augmentation techniques in NLP one that has re-
cently shown excellent results in the context of ma-
chine translation is backtranslation (Sennrich et al.,
2015). The idea is to pair monolingual data with
an automatic backtranslation generated by a given
model or external system, which led to consider-
able performance improvements on neural machine
translation, showing that even for small amounts
of in domain monolingual data, backtranslation is
effective for domain adaptation. More recently,
Edunov et al. (2018) scale backtranslation to hun-
dreds of millions of monolingual sentences and
achieve substantial improvements. The same ap-
proach is more recently been successfully adapted
to other task. For example, Shleifer (2019) focus
on sentiment classification and use backtranslation
on only 500 examples, obtaining an 8.1% improve-
ment over the augmentation-free baseline based on
ULMFit (Howard and Ruder, 2018) on the IMDB
dataset. Our work is similar to this, but we adapt
the approach for bias detection.

Finally, our work is related to stemming, the
process of linguistic normalization where variant
forms of a word are converted to a stem or root
word. There are different methods for stemming,
but most of them follow a rule-based or linguistic
approach, each one with its own advantages and
limitations (Jivani et al., 2011). Relevant for us
is the fact that stemming has been shown to add
semantic value in feature selection, as for exam-
ple Biba and Gjati (2014) proved that stemming
of composite words greatly improves classification
of fake news. Moreover, Mahendra et al. (2021)
showed that cleaning and stemming resulted in the
greatest model performance on the medical domain
for the task in mortality prediction on ICU (In-
tensive Care Unit) patients. We refer readers to
a thorough survey of stemmers spanning over the
past 50 years by Singh and Gupta (2016).

3 Proposed Approach

The Bias Annotation Spans on the Informational
Level (BASIL) dataset, provided by Fan et al.
(2019), is based on three news sources, i.e., Huff-



ington Post (HPO), Fox News (FOX), and New
York Times (NYT) from 2010 to 2019, containing
300 news articles with 100 triplets of news arti-
cles taken from each news source. BASIL contains
both binary sentence classification labels of infor-
mational and lexical bias together with span level
annotations for token classification. An isolated
sentence is biased if it contains at least one bias
span. There are 7,977 sentences in BASIL having
1,249 sentences with informational and 478 sen-
tences with lexical bias (Fan et al., 2019). BASIL
has more prevalence of informational bias than lex-
ical bias. It covers news articles of reasonable time
i.e., 10 years, representing conservative from FOX,
neutral from NYT, and liberal from HPO, respec-
tively.

Since informational bias is presented in a factual
and neutral way, there is increasing prevalence of
informational bias in news media, as evidenced by
Fan et al. (2019). This factual reporting of informa-
tional bias makes its prediction more challenging
on a sentence level. On the other hand, lexical
bias is reportedly easier to capture because of its
non-contextual nature, depending mostly on word
choice (Chen et al., 2020). For example, a study
on Tagalog-speaking Filipino pre-school children
by Devanadera and Alieto (2019) showed that lexi-
cal bias is related to lexical inventories like nouns,
verbs and adjectives produced by young children,
with nouns as the leading or dominant lexical bias
among children in their narrative production. De-
spite these facts, the detection of both types of bias
remains a difficult and challenging task, as evi-
denced by the study on BASIL performed by Chen
et al. (2020), which includes approaches for the
automatic detection of both types of bias (although
not distinguishing them).

BASIL has 7,977 sentences, from which 1,249
and 478 are labeled as containing with informa-
tional bias and lexical bias, respectively. Following
the formulation of Fan et al. (2019), this leads to
6,250 sentences with no bias. After careful consid-
eration of models proposed in prior work utilizing
BASIL, we note inconsistencies in the task formu-
lation across papers, which are derived from the
way in which these labels are interpreted and used.

In order to shed light into this issue, we begin
by organizing prior work and defining the notation
we will utilize in the rest of the manuscript, for the
sake of simplicity. We refer to sentences annotated
with no bias as ‘NEU’, sentences annotated with
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LABELS Baseline

Fan Berg Lee Guo Lei Ours

INF v/s LEX
INF v/s NEU
INF v/s OTH
LEX v/s NEU - -
BIAS v/s NEU - v -
INF v/s/ LEX v/s NEU - - - -

v -

N
RN
AN

Table 2: Comparison of formulations proposed by prior
work on bias detection using BASIL, showing the differ-
ent class combinations adopted for training. In the table,
work by Fan et al. (2019) is denoted as "Fan’, van den
Berg and Markert (2020) as *Berg’, (Lee et al., 2021)
as ’Lee’, Guo and Zhu (2022b) as *Guo’, and Lei et al.
(2022) as ’Lei’.

informational bias as ‘“INF’, sentences annotated
with lexical bias as ‘LEX’. Additionally, we refer
to the combination of neutral sentences with and
sentences with lexical bias as ‘OTH’, while ‘BIAS’
refers to the combination of samples that have both
informational and lexical bias.

Using the above definitions, we proceeded to
analyze the settings proposed by previous work by
Fan et al. (2019), van den Berg and Markert (2020),
Lee et al. (2021), Guo and Zhu (2022b), and Lei
et al. (2022) which we summarize in Table 2, above.
We can see that there is a clear disparity in the way
in which the bias detection tasks are approached.
We further observe that detection of informational
bias strikes as being the main focus in literature
so far. We surmise that this issue may be due to
the fact that lexical bias samples on BASIL ap-
pear to be considerably fewer than informational
bias. However, we think that detection of lexical
bias (Zhou and Bansal, 2020) should be at least as
important as informational bias. While previous
results focus mainly on the INF-related settings,
we propose to experiment on classifying LEX bias
from INF as, depicted in the first row of Table 2. To
the best of our knowledge, no prior work on BASIL
tried to make such a distinction. The relevance of
our approach is evidenced by Chen et al. (2020),
who showed that the detection of both INF and
LEX bias together is difficult, with bias detection
becoming harder at the article level.

In light of these observations, our work shows
the results of several experiments we perform to
compare and distinguish different bias in BASIL,
using various settings. To further study the rela-
tionship between labels, we also propose a novel
three-way classification approach to directly differ-



entiate informational, lexical and neutral samples
(INF/ LEX/ NEU), respectively.

As aresult of our extensive study, we note that in
many cases, performance gaps are due to lack of an-
notated examples for a given label, with this being
particularly the case for lexical bias. In light of this
issue, in this paper, we also adapt backtranslation
as a mechanism for selective data augmentation
in bias detection and use Google Translate python
API for backtranslation. Our approach is inspired
by previous work of Ma and Li (2020), who pro-
posed a Chinese text data augmentation based on
back-translation to generate a corpus to enrich the
lexical features of text data, and reported increased
performance on text classification tasks, especially
when training on smaller datasets. Back-translation
is also a commonplace to improve the performance
on machine translation tasks (Miyabe and Yoshino,
2015). Our idea is also motivated by seminal work
by Mikolov et al. (2013) who achieved 90% preci-
sion for translation of words between English and
Spanish and found word vectors of both languages
contain similar geometric arrangements. We used
Google Translate python API which is accessible
free under the MIT License.

Finally, we note that data preparation plays a
significant role in machine learning, especially for
natural language processing tasks (Marinov and
Efremov, 2019). Inspired by the work by Zainol
et al. (2018) and Ladani and Desai (2020), we pre-
process sentences in the BASIL dataset to remove
noise. Our proposed text preprocessing strategy in-
volves two steps, first the removal of special charac-
ters and stop words i.e., words like ‘after’, ‘before’,
‘the’, ‘some’, ‘all’, ‘such’, and second reduction of
words into their grammatical root or stem. In the
context of bias classification task, as well shown
in Section 5 we found that reducing the number of
dimensions in terms of space (Rakholia and Saini,
2016) by removing most common words or words
that normally carry no meaning has significant im-
pact on bias detection.

4 Experimental Framework

In this section, we discuss the experimental frame-
work including the setup, baselines, implementa-
tion details and give details of the models we train.

4.1 Setup

Backtranslation is performed separately on lexi-
cal and informational bias samples with one extra
example per original (one half original and other
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half translated), hence doubling the size of lexical
bias sentences to 956 samples and informational
bias sentences to 2,498 samples respectively. Nat-
urally, our backtranslation-based augmentation is
performed only on the training set, with valida-
tion and testing always containing the original data
samples

Our backtranslation approach is applied on the
specific label of interest. For example, for the INF
v/s LEX task, augmentation is only performed on
lexical bias samples; while in INF v/s LEX v/s
NEU task augmentation is performed on both lex-
ical and informational bias samples, whereas no
augmentation is performed on neutral sentences
in all of of our experiments including this. INF
v/s LEX v/s NEU task represent bias detection of
whole BASIL corpus data, with neutral samples
included. In the task INF v/s OTH, augmentation
is only performed on informational bias sentences,
where OTH represents the combination of lexical
bias and neutral sentences.

We note that other kinds of splits exist for
BASIL. Specifically, we find “story splits” by
van den Berg and Markert (2020), also exist, where
context is created by integrating events and articles.
However, our work focuses on sentence classifi-
cation without access to more context, and thus
we report results on the traditional splits to retain
consistency. Similarly, our testing data has no aug-
mented example.

4.2 Baselines

Several deep learning approaches for the detection
of bias in media have been proposed in previous
work. Most of this work focuses on the detection of
informational bias, and is based on the fine-tuning
of large pre-trained models. In this paper, we con-
cretely consider the informational bias detection
approach by Fan et al. (2019), who proposed BERT-
based (Devlin et al., 2018) approach and TF-IDF
for this.

We also consider several models proposed by
van den Berg and Markert (2020), which are used
to detect informational bias in different ways. For
starters, we compare with their BERT-based model
as well as with their RoBERTa-based model Liu
et al. (2019b). We also consider WinSCC (win-
dowed Sequential Sentence Classification) which
is a variant of SSC Cohan et al. (2019), ArtCIM (Ar-
ticle Context-Inclusive Model) and EvCIM (Event
Context-Inclusive Model). We note that ArtCIM



INF/ LEX INF/ LEX /NEU INF/ OTH
Model Aug. Preproc.
Ace F1-score Ace F1-score Ace F1-score
INF LEX INF LEX NEU INF OTH
- - 74.46% 0573 0342 79.57% 0.383 0.194 0.880 76.55% 0.404 0.881
BERT v 76.69% 0.687 0.534 77.78% 0377 0309 0.895 80.14% 0423 0.871
v - 81.37% 0.667 0.691 77.56% 0.432 0.417 0.864 81.53% 0.463 0.868
v v 83.97% 0.712 0.678 81.54% 0429 0401 0.881 83.86% 0.507 0.899
- - 72.63% 0512 0348 74.88% 0.301 0.209 0.856 73.93% 0311 0.855
LSTM v 7024% 0594 0432 71.34% 0.277 0.187 0.869 76.09% 0.332 0.823
v - 70.01% 0.677 0.655 73.76% 0.319 0.456 0.873 7534% 0.360 0.875
v v 75.34% 0.692 0.671 75.56% 0.325 0.450 0.851 78.89% 0.381 0.868
SVM v/ v 70.98% 0491 0.795 7423% 0212 0346 0.877 81.72% 0.178 0.890

Table 3: Results of our ablation study to understand the performance impact of our proposed backtranslation and data
preprocessing approaches on three task formulations. In the Table, *Aug.” denotes the usage of our augmentation
techniques, while "Preproc.” denotes models that included our preprocessing appraoch. We note that no prior work
has done for the detection of the first two tasks we consider (INF v/s LEX and INF v/s LEX v/s NEU).

Model INF / NEU BIAS /NEU LEX/NEU INF/OTH
Acc INFF1 Acc BIASF1 Acc LEXF1 Acc INFF1

TE-IDF (Fan et al., 2019) - 26.02 - - - - - -

BERT (Fan et al., 2019) - 43.27 - - - 31.49 - -

RoBERTa (Lee et al., 2021) - - 72.80 65.50 - - - -

UnifiedM2 (Lee et al., 2021) - - 81.00 70.20 - - - -

BERT (van den Berg and Markert, 2020) - - - - - - - 38.26
RoBERTa (van den Berg and Markert, 2020) - - - - - - - 49.89
WinSSC (van den Berg and Markert, 2020) - - - - - - - 38.67
ArtCIM (van den Berg and Markert, 2020) - - - - - - - 42.80
EvCIM (van den Berg and Markert, 2020) - - - - - - - 44.10
MultiCTX Guo and Zhu (2022b) - - - - - - - 46.08
RoBERTa Lei et al. (2022) - - - - - - - 46.47
BERT (Ours) 87.00 49.60 82.34  69.00 95.70 62.30 83.86 50.70

Table 4: Comparison with previous work on four bias tasks using our BERT model. Results of our BERT on INF
v/s NEU with augmentation of only informational bias, BIAS v/s NEU with augmentation of both informational
and lexical bias, LEX v/s NEU with augmentation of only lexical bias, and INF v/s OTH with augmentation of only
informational bias, respectively. BERT (Ours) report averaged results of three seed runs on all bias tasks. In the
Table, *Acc’ denotes accuracy and only one prior work on task BIAS v/s NEU (Lee et al., 2021) reported accuracy.

and EvCIM integrate article and event context
respectively and use BiLSTM’s (Hochreiter and
Schmidhuber, 1997) for bias detection. We also
consider MultiCTX, as proposed by Guo and Zhu
(2022b), which is based on contrastive learning
on triplets sampled from different articles. We
compare another model by Lei et al. (2022) built
on RoBERTa that incorporates global functional
discourse structure and local rhetorical discourse
relations for detecting bias.

We further compare our models with the binary
classification of informational and lexical bias with
a RoBERTa model fine-tuned by Lee et al. (2021),
and with their proposed UnifiedM2 model. This is
a comprehensive misinformation detection model
that was trained on the concatenation of multiple
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misinformation domains into a single unified setup.

4.3 Implementation Details

Our models are mainly based on BERT, in partic-
ular the implementation from HuggingFace (Face,
2021). We fine-tune BERT on our augmented and
preprocesed data, using learning rate of 5 x 1075,
and batch sizes of 16 or 32. The maximum epoch
count in our experiments reaches up to 15.

We additionally use a model based on a LSTM
that receives the same data which is already pre-
processed as described previously. For this LSTM,
we use a hidden size dimension of 200, with embed-
dings based on GloVe (Pennington et al., 2014). Fi-
nally, we also propose a simple approach based on
a linear kernel SVM where we pass preprocessed



augmented training sentences to the model.

For all of our experiments, we use 80/10/10 split
with non-overlapping samples for train-validation-
test, respectively. We reported the average perfor-
mance of our models using three seed runs in our
experiments.

5 Results & Discussion

We begin by testing the impact of our proposed
data augmentation and preprocessing approaches
by running ablation studies on three task settings.
We first consider the newly-introduced tasks of
INF/ LEX and INF/ LEX/ NEU, in addition to the
more standard INF/ OTH setting, which is generic
and of particular interest in the prior work. We mea-
sure the impact of each component of our proposed
work by repeating the experiments and dividing
our ablation test into two steps. To study and mea-
sure the significance of our proposed components,
we first experiment only with data augmentation
(denoted as *Aug.’) which involves the backtransla-
tion of samples with bias, which is followed by our
preprocessing step (denoted as *Preproc.”) which
includes data cleaning, removal of stop words and
stemming. The evaluation criteria we used is ac-
curacy as *Acc’ and F1-micro score separately on
each class of the bias i.e, INF, LEX, NEU, and
OTH as explained earlier.

From our literature review, as discussed in Sec-
tion 3 we found that many potentially relevant task
formulations were missing. We surmise this could
be due to the scarcity problem of lexical bias sam-
ples in BASIL, with interest focusing on only in-
formational bias. We therefore propose to tackle
all relevant task formulations.

Concretely, as to the best of our knowledge there
is no prior work done to classify lexical bias from
informational, we believe we are the first to identify
and report experiments on the tasks of INF/ LEX
as binary classification, as well as INF/ LEX/ NEU,
use a multi-class classification.

As shown in Table 3, we found that in these
tasks considerable performance improvements is
achieved when both data augmentation and prepro-
cessing are applied. For the binary INF/ LEX, we
found that just by augmenting lexical bias, we are
able to attain excellent performance. An improved
accuracy of 83.97% with INF F1-score of 0.712 is
achieved as compared to LSTM and SVM when
both data preprocessing and augmentation are ap-
plied. We also observe that the highest LEX F1-
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score of 0.691 is comparatively lower than informa-
tional bias in the INF/ LEX task. One possible rea-
son for that is the larger class imbalance of lexical
bias sentences, which persists even after augmenta-
tion of lexical bias samples —1,259 informational
v/s 956 lexical bias sentences, respectively. De-
spite this we note that the F1-score of lexical bias
detection still approach considerably high value
suggesting lexical bias can be classified from infor-
mational bias when computed together. Similarly,
we observe that our augmentation approach has a
more significant impact in performance compared
to our pre-processing technique. When augmenta-
tion is applied alone, it improves the LEX F1-score
from 0.534 to 0.691 using BERT, and from 0.432
to 0.655 for the LSTM. While our preprocessing
also consistently improve performance, the gains
are not as dramatic as the ones provided by the data
augmentation.

We further note that our three-way classifica-
tion task INF/ LEX/ NEU follows a similar trend,
with significant performance improvements due to
our data augmentation technique. A sharp rise in
accuracy is observed by inclusion of both augmen-
tation and preprocessing, leading to an accuracy of
81.54% when using BERT.

While we believe our experiments clearly show
the effectiveness of our data cleaning and augmen-
tation approaches in detecting all kinds of bias in
BASIL, it is also worth pointing out that there are
some limitations to what these techniques can do.
For example, we note that when we only use our
preprocesing, a decline in accuracy from 79.57%
to 77.78% and INF F1-score from 0.383 to 0.377
using BERT are observed, while for the LSTM ac-
curacy drops from 74.88% to 71.34% with a drop
in INF F1-score from 0.301 to 0.277. We believe
a possible reason for this might be similar to what
Wendland et al. (2021) observed on a similar ex-
periment, where it was shown that stemming could
lead to lower accuracy and F1 scores. Since data
preparation plays a significant role in capturing
the knowledge gaps of natural language processing
tasks, our rigorous ablation analysis of the tasks in
Table 3 support the hypothesis that improvements
in the detection of both informational and lexical
bias at the sentences can be improved by perform-
ing data augmentation based on backtranslation
and by preprocessing the data using stemming.

From prior work on BASIL as discussed previ-
ously and as shown in Table 2, most of the attention



has been given to detecting only informational bias,
especially the task of INF/ OTH, namely to classify
informational bias from a combination of neutral
and lexical bias sentences, which prompts us to
consider this task also for our ablation study. Since
informational bias is more common and difficult
to detect as found by Fan et al. (2019); Chen et al.
(2020), we highlight this task for our ablation study
to demonstrate the significance of our proposed
methods and to provide uniform results while com-
paring it with other methods in further experimen-
tal work. From these results, we observe similar
trends compared to the other tasks, again showing
the effectiveness of our proposed approach, which
leads our BERT-based model to obtain a maximum
F1-score of 0.507.

Having established the effectiveness of our pro-
posed techniques, we now move on to compare
our models with previous work, as shown in Table
4. Concretely, we compare against our selection
of baseline models on four different existing tasks
formulations derived from BASIL. For the com-
parisons in this section, we use our best model for
each task i.e., the BERT-based approach combined
with both of our proposed components, as evident
from Table 3. Similarly, as before, we report accu-
racy and F1-score of each of the class. However,
due to lack of completeness in the evaluation met-
rics found in previous work, we are only able to
compare F1-scores of the baseline models with our
proposed approach, except in the case of BIAS/
NEU task, where some previous work also report
accuracy.

The first task shown in Table 4, INF/ NEU or
namely to detect informational bias from neutral
sentences, is only performed by Fan et al. (2019).
We could only compare INF F1-score of baseline
models with our proposed approach and found an
improvement of 15% with final score of 49.60 us-
ing our BERT model, which compares against the
reported performance of 43.27 F1-score.

In our second binary task, BIAS/ NEU, we use
the same model configurations as Lee et al. (2021)
with a batch size of 32, a learning rate of 5 x 1076
with 15 as a maximum epoch count. Here BIAS
corresponds to the combination of informational
and lexical bias sentences, while NEU symbol-
izes only neutral sentences, which therefore cor-
responds to detecting bias v/s no bias sentences
irrespective of their type. In this task, the high-
est BIAS Fl-score is reported by UnifiedM2, and
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though we see that our proposed BERT-based ap-
proach does not outperform this model, our results
are competitive as we observe we attain a similar
performance. Furthermore, we note that our results
in this task indicate that small focused data aug-
mentation techniques as ours could be nearly as
effective as more complicated training procedures
including many tasks, as the approach proposed by
UnifiedM2.

To detect lexical bias alone from neutral sen-
tences, we study the task of LEX/ NEU. As shown
in Table 4, in this case, the only baseline available
is the BERT model proposed by Fan et al. (2019).
For this task, we perform data augmentation of only
lexical bias sentences, and we can see that BERT-
based model outperforms the baseline BERT result-
ing in almost doubled LEX F1-score improvement,
with our model attaining an F1-score of 62.3, while
for the baseline BERT the value is just 31.49. We
note that although BERT is our best model choice
on this setting in terms of F1-score, our LSTM out-
performs our BERT in terms of accuracy, obtaining
86.64%.

Finally, we consider the task of INF/ OTH,
where we find most of previous work has focused.
Concretely, for this task, we compare our BERT-
based model with six previous models from the
literature. As can be seen, we find that our model is
able to outperform all existing prior work, achiev-
ing the best performance in terms of with INF
F1-score of 50.9. Our model is followed by the
RoBERTa model fine-tuned by (van den Berg and
Markert, 2020) with INF F1-score of 49.89, where
RoBERTa by Lei et al. (2022) as third with 46.47
and MultiCTX follows in the fourth position with
F1-score of only 46.08. We believe this indicates
that our approach is also better at recognizing in-
formational bias as a type of misinformation.

Furthermore, we note that for the INF/ OTH
task, many of our considered baselines are based on
pre-trained models similar to ours, such as BERT
or RoBERTa. As our model is based fundamen-
tally on the same deep learning model, we believe
these results suggest that our augmentation and
pre-processing approaches might work for those
models also. This adds to our observations derived
from Table 3, where we saw that combining the
LSTM with our proposed approach leads to consis-
tent improvements also.



6 Conclusion

This paper presents different techniques of phras-
ing bias to tackle media bias in new outlets. We
propose an approach that relies on current neural
network models to capture sentence level biased
language. We defined how data augmentation is
applicable to less frequent bias in news articles
and measure the effect of its performance across
different models. Human annotation is costly and
conditions where obtaining new misinformation
samples is difficult, our approach is significant to
such real life cases. Since our proposed approach
involves simple feature extraction techniques to
tackle a particularly small and unbalanced biased
dataset, we believe our work can be used to mitigate
bias and improve the quality of the model’s predic-
tions in real-world scenarios. We identify some
novel tasks in BASIL and our augmentation tech-
nique effectively detect informational and lexical
bias sentences simultaneously, while also outper-
forming in other tasks. In our work, we incorporate
different methods to process bias and illustrate the
importance of our proposed components. A key
distinguishing feature of our work is the removal of
inconsistencies of prior work in reporting and eval-
uating bias types of BASIL. Ablation studies are
also performed by varying training data in differ-
ent tasks and our technique suggest significance of
each proposed component in different experimen-
tal settings. We found the performance improve-
ment of our proposed approach in almost all tasks
as compared to several state-of-the-art techniques,
hence this proves that our methodological stand-
point in using small augmented data is well-aligned
in finding informational and lexical bias sentences
in different classification tasks. Similarly, our work
tries to propose a way of regulating different task
formulations of BASIL which are unclear in prior
work. We intend to explore context in BASIL news
articles as future work, besides trying other feature
selection techniques. We believe further parame-
ter optimization and fine-tuning for different task
formulations can also improve the results.

Limitations

One major limitation of our work is that we only
experimented on an English dataset. While other
lexical and syntactic features can be captured by
text processing techniques and also backtranslation
performed with other or multiple languages can
be used to see the effect on performance. Other
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English news articles may also be useful for ana-
lyzing bias, and require further research analysis to
verify media bias. Similarly, though our proposed
approach works well for detecting bias in BASIL,
we provide no evidence to suggest if this will also
work on other misinformation-related tasks. The
same applies for models other than the ones we
tested in this paper, which though includes a broad
selection (SVMs, LSTMs and Transformers) is not
completely comprehensive.

Ethical Considerations

The interpretation of bias detection results is cru-
cial. For cases, where different political entities are
debatable in news media, may mislead the bias de-
tection model and removing such bias require more
flexible and tolerating approach while dealing with
such entities. Therefore, the results reported in our
work highlight the need for mitigating bias and fur-
ther research is required to investigate the biased
influence towards particular issues at various stages
of the training model.
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