An Entity-based Claim Extraction Pipeline for
Real-world Biomedical Fact-checking

Amelie Wiihrl, Lara Grimminger, and Roman Klinger
Institut fiir Maschinelle Sprachverarbeitung, University of Stuttgart, Germany
{amelie.wuehrl, lara.grimminger,
roman.klinger}@ims.uni-stuttgart.de

Abstract

Existing fact-checking models for biomedical
claims are typically trained on synthetic or well-
worded data and hardly transfer to social media
content. This mismatch can be mitigated by
adapting the social media input to mimic the
focused nature of common training claims. To
do so, Wiihrl and Klinger (2022a) propose to
extract concise claims based on medical enti-
ties in the text. However, their study has two
limitations: First, it relies on gold-annotated
entities. Therefore, its feasibility for a real-
world application cannot be assessed since this
requires detecting relevant entities automati-
cally. Second, they represent claim entities
with the original tokens. This constitutes a ter-
minology mismatch which potentially limits
the fact-checking performance. To understand
both challenges, we propose a claim extraction
pipeline for medical tweets that incorporates
named entity recognition and terminology nor-
malization via entity linking. We show that au-
tomatic NER does lead to a performance drop
in comparison to using gold annotations but the
fact-checking performance still improves con-
siderably over inputting the unchanged tweets.
Normalizing entities to their canonical forms
does, however, not improve the performance.

1 Introduction

Fact-checking models trained on synthetic, well-
worded and atomic claims struggle to transfer to
colloquial content (Kim et al., 2021). There are
multiple ways to address this problem: We can
build custom datasets and models that verify med-
ical content shared online (Saakyan et al., 2021;
Mohr et al., 2022; Sarrouti et al., 2021) and tackle
related tasks (Sundriyal et al., 2022; Dougrez-
Lewis et al., 2022). Alternatively, we can adapt
the input before addressing other fact-checking
tasks. Bhatnagar et al. (2022) create claim sum-
maries and find that this improves the detection of
previously fact-checked claims. Similarly, Wiihrl
and Klinger (2022a) extract concise claims from
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Table 1: Example claim represented with original and
normalized entities together with evidence.

user-generated text in an effort to mimic the fo-
cused, well-structured nature of the claims the
fact-checking models were originally trained on.
They find that this improves the accuracy of pre-
trained evidence-based fact-checking models in the
biomedical domain.

However, the study by Wiihrl and Klinger
(2022a) is limited in two ways: (1) Their claim
extraction method relies on gold-annotated, claim-
related entities. For a realistic evaluation, such
an oracle needs to be replaced by an entity recog-
nizer. Only then it is possible measure the impact of
potential error propagation which may ultimately
render the method unfeasible. (2) The claim enti-
ties are represented by the original token sequence.
This is problematic as medical mentions on Twit-
ter potentially contain imprecise, abbreviated, or
colloquial terminology. This is in contrast to the
terminology in the original model input as well
as the documents that we provide as evidence (cf.
Table 1). We hypothesize that for a successful
fact-check we need to close this gap by normal-
izing medical terminology in the input. Previous
work suggested leveraging entity linking for evi-
dence retrieval (Nooralahzadeh and @vrelid, 2018;
Taniguchi et al., 2018; Hanselowski et al., 2018)
leading us to believe that it could also be beneficial
for aligning claim and evidence.

We address both limitations and evaluate a real-
world, fully-automatic claim extraction pipeline for
medical tweets which incorporates an entity rec-
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Figure 1: Overview of the claim extraction pipeline. Input documents go through entity recognition (NER),
normalization, claim candidate generation, main claim detection and fact-checking. Colored boxes represent the
entities which we use to extract claim candidates. Note that we evaluate the normalization module separately from

the evaluation of the rest of the pipeline (see §3).

ognizer. It only relies on the original text as input
that contains the claim. We further evaluate the
impact of an entity linker for normalizing entity
mentions to canonical forms based on the Unified
Medical Language System (UMLS, Bodenreider,
2004). Our pipeline improves the fact-checking per-
formance over tasking models to check unchanged
tweets. Normalizing entities to overcome the termi-
nology mismatch does not improve fact-checking,
potentially due to limitations of biomedical entity
linking for social media.

2 Methods

Figure 1 visualizes our pipeline. It takes text as
input and performs named entity recognition and
optionally term normalization via entity linking.
Each unique entity pair forms the building blocks
for a potential claim (claim candidate generation).
The main claim detection identifies the core claim
among the candidates that presumably represents
the most important aspect of the text. The result-
ing claim is the input to the fact-checker. In our
setting, we assume this to be a frozen pre-trained
fact-checking model. We describe the modules in
the following and the fact-checker in Section 3.2.

NER. We use the SpaCy environment! to train
a custom NER model that detects medical entities.
This framework relies on a transition-based parser
(Lample et al., 2016) to predict entities in the input.
In a preliminary study, we found that relying on
an off-the-shelf model for biomedical NER, i.e.,
ScispaCy (Neumann et al., 2019), does not trans-
fer to medical texts from social media. Refer to
Appendix B.1 for a comparison of the two models.
Claim candidate generation. Wiihrl and Klinger
(2022a) propose two extraction methods, i.e.,
condensegeq and condenseyiple. The first represents
the claim as the token sequence from the first en-
tity to the last entity, while the second relies on
gold-annotated causal relations which they use to

"https: //spacy.io/api/architectures#
TransitionBasedParser
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build the claims. We use the sequence method
condenseseq in our pipeline because both methods
show on par performances (difference in 1pp F;)
and, in contrast to condenseysipie, it does not require
relation classification.

Following the condenseg.q method, we therefore
extract the sequence from the character onset of
the first entity to the character offset of the second
entity for all pairs of entities found by the NER
module.

Entity linking. To normalize entities, we use the
EntityLinking component in ScispaCy (Neumann
et al., 2019). This model compares an entity men-
tion to concepts in an ontology and creates a ranked
list of candidates, based on an approximate near-
est neighbor search. For text normalization, we
retrieve the canonical name of the top concept. For
entities which could not be linked, we use the orig-
inal mention instead. As the knowledge base, we
use UMLS (Bodenreider, 2004).

Main claim detection. For tweets with more
than two predicted entities, claim generation pro-
duces multiple claim candidates. To identify the
claim to be passed to the fact-checking module,
we train a text classifier to detect the main claim
for a given input. We build on ROBERTArg?, a
RoBERTA-based text classification model trained
to label input texts as ARGUMENT or NON-
ARGUMENT. We fine-tune this model to classify
texts as CLAIM vs. NON-CLAIM and to fit the social
media health domain. At inference time, the claim
candidate with the highest probability for the claim
class constitutes the main claim. We refer to this as
ner—+core-claim.

3 Experiments

3.1 Data

CoVERT. We use the CoVERT dataset (Mohr
et al., 2022) to test our pipeline. It consists of

Zhttps://huggingface.co/chkla/
roberta-argument
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Input Claim

Gold entities

Fully automatic (Ours)

condenseseq full tweets ner+rand-ent-seq ner+-core-claim
model P R F1 Afull P R F1 P R F1 Afu]] P R F1 Afull
fever 83.3 1.9 3.7 +37 00 00 00 00 00 0.0 +0 100 04 08 +40.8
fever_sci 87.2 155 264 +184 91.7 42 80 923 47 90 +1.0 824 56 104 +24
scifact 909 7.6 140 +132 100 04 08 100 24 46 +38 100 24 47 +39
covidfact 55.6 284 37.6 +429.7 308 45 79 533 94 16.1 +8.2 58.1 143 23.0 +415.1
healthver 85.9 48.5 62.0 +16.8 828 31.1 452 756 232 355 -—-9.7 774 287 419 —-33
average 80.6 204 28.7 +16.3 61.1 80 124 o642 79 130 406 836 10.1 162 +3.8

Table 2: Performance (precision, recall and F;) of MultiVerS-based models (fever, fever_sci, scifact, covidfact,
healthver) on COVERT data. Model inputs are the full tweets, the entity-based sequence claims (condensegq (Wiihrl
and Klinger, 2022a)), and claims from the fully automatic pipeline, ner+rand-ent-seq and ner+core-claim. Ay :
difference in F; between the full tweet and performance for the respective input claim. We report the average across

all models in the last row.

medical tweets labeled with fact-checking verdicts
(SUPPORTS, REFUTES, NOT ENOUGH INFORMA -
TION) and associated evidence texts. We follow
the same filtering and preprocessing as Wiihrl and
Klinger (2022a) which leaves us with 264 tweets.
For 13 tweets, the NER model predicts only one
or no entities. In these cases, we cannot generate
claim candidates thus we can only consider 251
claims.

BEAR. We require an independent dataset to train
the NER component. We find the BEAR dataset
(Wiihrl and Klinger, 2022b) to be closest in do-
main and text type to the target data from CoVERT.
BEAR provides 2100 tweets with a total of 6324
annotated medical entities from 14 entity classes.
We use 80% of the data for training and 20% for
testing the model.

Causal Claims. To build a classifier that identi-
fies the core claims, we use the CAUSAL CLAIMS
data from SemEval-2023 Task 8, Subtask 1.3 It
consists of medical Reddit posts and provides span-
level annotations for Claim, Experience, Experi-
ence based claim and Question. Our goal is to dif-
ferentiate claims from non-claims. Consequently,
we extract all spans labeled as Claim and Experi-
ence based claim as positive instances for the claim
class and use the remaining text spans as negative
examples. This leads to 1704 claim and 6870 non-
claim spans. We use a train/test split of 90/10%.

3.2 Evaluation

The fact-checking module serves as a by-proxy
evaluation for the claim representations. Provided

3https ://causalclaims.github.io/
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with a claim—evidence pair, the system predicts a
fact-checking verdict that indicates if the evidence
SUPPORTS or REFUTES the claim. We assume that
the fact-checker is a frozen model for which we
adapt the claim input. To gauge the checkability
of a particular input, we compare the performance
for predicting the correct verdict when the model
is presented with claims of this type. This follows
the evaluation in Wiihrl and Klinger (2022a).

The fact-checking models we employ stem
from the MultiVerS architecture (Wadden et al.,
2022).* This framework is designed for scientific
fact-verification and provides five models (fever,
fever_sci, scifact, covidfact, healthver), differing
in training data. We report precision, recall and
F; for predicting the correct fact-checking verdict
(SUPPORTS, REFUTES, NOT ENOUGH INFORMA -
TION) for a given claim-evidence pair.

3.3 Exp. 1: Impact of NER

In Exp. 1, we aim to understand the impact of
automatic NER and main claim detection in the
pipeline, instead of relying on gold-labeled entities.

Table 2 reports the results for our fully automatic
claim extraction pipeline. Each column reports the
performance for a specific type of input claim. Full
tweets is the performance as reported by Wiihrl and
Klinger (2022a) for the unchanged input tweets.
The results denoted with condense;eq describe their
results with gold annotations, to which we compare.
Our main results are in the last column (ner+core-
claim). To understand the impact of the main claim
detection, we compare against a purely random

4https: //github.com/dwadden/multivers
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selection of the main claim from all candidates in
the tweet (ner+rand-ent-seq).

The rows correspond to the various fact-
checking models. A columns report the difference
in F; between the performance of checking the full
tweet and the respective claim representation.

ner—+core-claim shows an average performance
of F; =16.2. The performance varies across the
models. The healthVer model performs the best
(41.9F;). The average is considerably higher than
using the full tweets (A=3.8 pp F1). This improve-
ment is consistent across all models, except for
healthVer, presumably because it already shows
a high performance for the original texts. To bet-
ter understand the model behavior, we provide an
analysis of its prediction in Appendix B.3. We
see a particularly strong impact for the covidfact
model, with A=15.1 pp. Despite this positive re-
sult, we see a performance drop when integrating
entity recognition instead of building claim extrac-
tion on gold entity annotations. This decrease is not
surprising since we expect some error propagation
from an imperfect entity recognizer. Nevertheless,
the results show that entity-based claim extraction
also increases the fact-checking performance even
under some error propagation throughout the real-
world pipeline.

We further see that main claim detection is a
required module — the performance for a randomly
selected claim (ner+-rand-ent-seq) is substantially
lower. This indicates that using the same evidence
and fact-checking model, not all potential claims
in a tweet would receive the same verdict.

3.4 Exp. 2: Impact of Entity Normalization

In Exp. 2, we investigate if it is beneficial to assim-
ilate the linguistic realizations of medical mentions
to the expected input of the fact-checking models.
More specifically, we suggest normalizing entity
strings in the input. In contrast to Exp. 1, in which
we evaluate the overall pipeline, we focus on the as-
pect of the entities here and therefore do not make
use of the core claim detection method or the entity
recognizer. Instead we build on top of gold an-
notations and, consequently, employ condensegiple
described in Section 2.

We use entity linking for term normalization and
use ScispaCy’s entity linking functionality with
en_core_sci_sm as the underlying model (Neu-
mann et al., 2019). For each (gold) entity, we
use the canonical name of the concept with the
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condenseyiple Claims

surface string normalized ent.

model P R F1 P R F1
fever 818 34 65 750 1.1 2.2
fever_sci 89.8 20.1 328 939 11.7 209
scifact 864 72 133 944 64 12.1
covidfact 65.0 30.3 41.3 61.8 20.8 31.2
healthver 79.7 41.7 547 857 31.8 464
average 80.5 205 29.7 822 144 226

Table 3: Performance (precision, recall and Fy) of
MultiVerS-based fact-checking models (fever, fever_sci,
scifact, covidfact, healthver) on COVERT claims built
with non-normalized (surface string) vs. normalized
entities. We report the average across all models in the
last row.

highest linking score. Subsequently, we follow the
condenseyiple method to represent claims.

Table 3 reports the results for claims built with
non-normalized (surface string) vs. normalized en-
tities (normalized ent.). The results indicated as
condenseyiple surface string are analogue to the re-
sults in Wiihrl and Klinger (2022a). We see that
normalization does not have the desired effect: The
verdict prediction performance drops across all of
the fact-checking models (from 29.7 to 22.6 in
avg. F1). We assume that this is, to a considerable
extend, due to entity linking being a challenging
task which leads to a limited performance of the
employed linking module. We present an error
analysis in Appendix B.4.

4 Conclusion & Future Work

We propose a fully automatic claim extraction
pipeline that is capable of handling real-world med-
ical content. We show that entity-based claim ex-
traction has a positive effect on the performance of
multiple fact-checking models — even after replac-
ing the entity oracle with automatic NER. While
we observe a negative impact of error propagation
from NER and a performance drop as a result, fact-
checking the extracted claims is more successful
than checking unchanged tweets. Future research
may therefore focus on improving the pipeline com-
ponents as this clearly has the potential to further
strengthen the verdict prediction performance. In
particular, we expect an improved entity recognizer
to have a considerable impact.

Our work focuses on the biomedical domain and
builds upon the assumption by Wiihrl and Klinger
(2022a) that claims in this domain are strongly cen-



tered around entities. Claims from other domains
may share this property which could make entity-
based claim extraction applicable for such claims
as well. We leave the evaluation for future work.

We find that normalizing entity mentions does
not improve the fact-checking performance. How-
ever, our analysis shows that the off-the-shelf link-
ing module might be too unreliable. To fully gauge
the potential of normalizing entities, future work
needs to ensure correct mappings (creating gold
links or building a reliable linker) before evaluat-
ing the downstream fact-checking performance.
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Limitations

Our work focused on evaluating the impact of
putting together a set of components to achieve
a real-world system for fact-checking. For answer-
ing the research question at hand, the components
offered themselves as appropriate choices. This
being said, to some degree, the particular selection
may limit the expressiveness of the experiments.

By instantiating the pipeline components with
the set of models and underlying data that we chose,
our findings are limited to this setting. However,
the analysis that we provide in Appendix B dissects
the pipeline results and allows us to draw more
general conclusions about the impact of replacing
individual components.

We propose that the main claim detection re-
ceives more attention in future research. This may
mitigate the issue that this module is potentially
the most in-transparent component. Compared to
the NER, this task can be modeled in various ways.
We rely on the output probabilities to identify the
claim candidate the model is most confident about.
While this is a straight-forward approach and we
show that it works as intended, prediction probabil-
ities — especially for deep models — may not always
be a distinctive indicator of model confidence. To
overcome this limitation, alternative ways of de-
tecting the main claim should be evaluated.
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Ethical Considerations

A real-world fact-checking pipeline presents itself
as a valuable tool. However, we advise against
using the pipeline purely automatically that at this
point in time. Unless they are used hand-in-hand
with a human expert performing or supervising the
fact-check, such systems are not reliable enough
yet.

Potential issues are the result of the inherent
opaqueness of sophisticated automatic analysis
pipelines. In the system that we propose, it is
important that the impact of each module needs
to explain itself to the user. While there is recent
work on explainability particularly in the area of
fact checking, this work did not yet focus on entity-
based approaches. It is important that a user can
clearly understand which claim in a statement is
checked and which risks potential error propaga-
tion might lead to. Therefore, before deploying
such systems for fully automatic filtering or la-
beling of problematic messages in a social media
content, there needs to be more research on explain-
ability and transparency of such systems.
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A Implementation details

In the following, we provide implementation de-
tails for the individual model components described
in Section 2.

A.1 Named Entity Recognition

In a preliminary experiment, we use a pre-
trained model for biomedical NER, i.e., the
en_core_sci_sm model by ScispaCy (Neumann
et al., 2019), that was trained on scientific, biomed-
ical and clinical text to identify sequences of
biomedical entities. We find that the off-the-shelf
model transfers poorly to our target data which
stems from social media. We provide the evalua-
tion results for this experiment in Appendix B.2.1.
Therefore, we train a custom NER model in spaCy
on the BEAR dataset. We create an empty model
using spacy.blank() and pass the language ID “en”
for English. We provide the train/test splits and
configuration file we use to train the model which
includes all settings and hyperparameters here:
https://tinyurl.com/bear-ner

A.2 Main Claim Detection

We fine-tune RoBERTArg> to classify texts as
CLAIM vs. NON-CLAIM using the Causal Claim
data. We create a train-validation split of 85/15 %.
We train for 5 epochs with a batch size of 16, 409

Shttps://huggingface.co/chkla/
roberta-argument
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training steps per epoch, 136 warmup steps and a
weight decay of 0.01. We use the same learning
rate that was used in fine-tuning the underlying
RoBERTArg model, i.e., a learning rate of 2.3102e-
06. We evaluate the model every 500 steps using
the validation set. After training, we use the model
with the best performance on the validation set to
make a prediction for each claim candidate.

A.3 Entity linking

We use the EntityLinking component in ScispaCy
(Neumann et al., 2019) and en_core_sci_sm as the
underlying model®. For each entity, the model
maps the mention to the associated concept within
UMLS (Bodenreider, 2004). We include the op-
tion to resolve abbreviations and leave the other
configuration parameters at their default values.

B Analysis

We provide an evaluation and analyses of individ-
ual pipeline components to better understand the
capabilities of the modules.

B.1 Evaluation Setup

NER. Entity recognition consists of two subtasks:
(a) identifying the span of an entity and (b) predict-
ing the entity class. Consequently, we evaluate the
NER component of our pipeline in two modes. In
the strict mode, the entity span and the entity class
have to be identical to the gold data. In the relaxed
mode, the entity span has to be identical to the gold
data, entity class labels is ignored.

Note that the off-the-shelf ScispaCy (Neumann
et al., 2019) model that we compare against only la-
bels the entity span and not the entity class. There-
fore, we can only evaluate its performance in the
relaxed mode.

Further note that we need to map certain en-
tity classes between the CoVERT and the BEAR
dataset. To align CoVERT with BEAR, we
map Medical Condition to med_C, Treatment to
treat_therapy, and OTHER to other, respectively.
The CoVERT dataset further contains the class
Symptom/Side-effect, which corresponds to the
class med_C of the BEAR dataset. Therefore,
we map the class Symptrom/Side-effect to the class
med_C. Entities which have been labeled in BEAR,
but not in CoVERT, are ignored for the evaluation.

We report the macro-average of precision, recall
and F; for both modes.

6https ://allenai.github.io/scispacy/
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Main claim detection. We evaluate the predic-
tion of the model on the held-out test set from the
CAUSAL CLAIM data. We report precision, recall
and F; for both classes (CLAIM vs. NON-CLAIM)
the as well as the macro-average.

B.2 Results
B.2.1 NER

We evaluate the performance of the NER compo-
nent within our pipeline. Table 4 reports the results
for the strict and relaxed evaluation mode. First, we
evaluate the performance on the unseen test split of
the BEAR data — the dataset we use for training the
model. To gauge how well it transfers to our target
data, we evaluate the performance for the entity
predictions in CoVERT. We compare the perfor-
mance of our custom model to the performance of
the pre-trained ScispaCy model.

For the BEAR data, our model reaches an av-
erage F; of 0.41 for the strict evaluation mode.
Note that in this mode only exact span and entity
type matches count as true positives. If we relax
this condition and disregard the entity type, the
model achieves an F;-score of 0.51. When moving
to a slightly different type of input text, i.e., the
CoVERT data, the average F;-scores for the strict
and relaxed evaluation modes reach 0.34 and 0.38,
respectively.

Compared to our custom model, the performance
of the off-the-shelf model from ScispaCy is much
lower. For the relaxed mode, we observe a A in
F; of 0.21 and 0.12 for the BEAR and CoVERT
data, respectively. This showcases the necessity of
a customized model for NER in this setting.

Overall, this evaluation of the entity recognition
shows moderate performance. Importantly, the re-
sults also indicate that improving this component
is likely to improve the overall fact-checking per-
formance.

B.2.2 Main claim detection

We evaluate the performance of the claim detection
model on the held-out test set. We report the results
in Table 5. We can see that the model successfully
differentiates claims from non-claims (F;-scores of
0.94 and 0.99, respectively).

B.3 Analysis of healthver prediction

We want to understand why the healthver model
behaves unexpectedly compared to the other mod-
els (refer to Table 2). We saw that providing the


https://allenai.github.io/scispacy/

target data

BEAR CoVERT
model eval. mode P R F; P R F;
ScispaC strict _ N . - . i
PAY relaxed 2 61 3 .16 72 26
Ours strict 46 37 41 26 51 34
relaxed S56 46 51 29 57 .38

Table 4: Evaluation of our NER module for the test
split of the BEAR dataset and the COVERT data. We
report the macro average precision (P), recall (R) and
F; across all entity classes. We report results for a strict
and a relaxed evaluation mode. We compare against the
performance of an off-the-shelf ScispaCy (Neumann
et al., 2019) model (en_core_sci_sm). This model only
labels the entity span, not the entity class. Therefore,
we only evaluate in the relaxed mode.

class P R F,

Non-claim 098 0.99 0.99
Claim 095 093 094
macro av. 097 096 0.96

Table 5: Performance (precision (P), recall (R), F1) of
the claim detection model for CAUSAL CLAIMS test set.

automatically extracted claim leads to a slight per-
formance decrease compared to inputting the full
tweet, while the claims extracted using gold enti-
ties were more successfully checked. We hypoth-
esize that for this model, the automatic extraction
either removed relevant pieces of the input that it
relied on previously for a successful prediction or
it may have introduced irrelevant noise. Therefore,
we compare the predictions of this model for our
ner+-core-claim inputs to the claims built on gold-
labeled entities condenseseq. Note that we compare
the predictions which are not necessarily in line
with the gold label.

Label distribution. Table 6 reports the distribu-
tion of predicted labels for both input types. The
NEI class increases substantially (115 to 158 pre-
dicted instances) while SUPPORT and REFUTE be-
come less frequent. This indicates that the claims
become less checkable as NEI means a lack of in-
formation to support or refute the claim.

Label flips. To better understand which instances
cause the model to predict a different verdict, we
present the number of label transitions between the
predictions for the gold-labeled entity claims and
the predictions for our pipeline claims (ner+-core-
claim) in Table 7. From those results we can ob-
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# Predicted labels
input claim SUPPORT REFUTE NEI
gold entities 110 39 115
ner+core-claim 69 24 158

Table 6: Labels predicted by the healthver model for
claims extracted using condenseyq based on gold enti-
ties and our pipeline (ner+core-claim). Note that there
are 13 claims more in the gold-entity setting compared
to ner+core-claim inputs. These are cases for which
the NER module predicted < 1 entity.

serve that for a substantial amount of instances
(161) the predicted label actually does not shift.
For 90 instances, we observe a label shift.

Most notably, claims that were supported and re-
futed when inputting the gold-entity claims, get
classified as NEI when we input our extracted
claims (46 and 18, respectively). In an introspec-
tion of this transition type, we observe that in cases,
the automatic pipeline failed to detect the main
claim, potentially rendering the evidence useless.
Refer to Claims 3 and 4 in Table 7 for examples.

Flipped verdicts (SUPPORTS to REFUTES or vice
versa) are less frequent. We observe a total of 11
instances. Refer to Claims 1 and 2 in Table 7.

We observe 15 cases in which the label flips to
the correct gold label when we input our claim as
opposed to the gold-entity-based claim. In the man-
ual introspection, we observe many cases in which
the claim from the pipeline slightly extends the
context compared to the gold entity claim. Refer to
Claims 5 and 6 in Table 7 for two examples.

For cases with consistent labels, we find that
many instances either are identical to the claim
extracted using gold entities (see Table 7, Exam-
ple 7a) or only small amounts of context is added
(see Table 7, Ex. 8).

This being said, we also observe cases in which
the gold-entity and our predicted claim do not over-
lap and yet, the verdict stays consistent (Ex. 7b).
This emphasizes the need to further improve the
main claim detection step and leads us to hypoth-
esize that this module may be another reason for
the limited performance of this model. It appears
that the healthver model is particularly sensitive
to this component being somewhat unreliable and
error propagation in general.

B.4 Entity Linking

Number of established mappings. There are no
gold annotated mappings for the medical entities



example

id  transition #inst. gold-ent-claim ner+-core-claim gold

1 S-R 7  Oral contraceptives cause more blood clots  blood clots and nobody is doing anything S
about that!!! Like 1 per 1,000 compared to
basically 1 per MILLION with the Covid
vaccine

2 R-S 4 COVID-19 vaccines can cause side effects ~ Vaccine reactions are rare. Info about side S
effects

3 S-NEI 46 COVID-19 1) directly causes viral pneu- pneumonia 3) can result in intubation S

monia

4 R-NEI 18  5G causes covid vaccines cause infertility & autism R

5 NEI-S 12 live virus that causes covid-19 vaccines don’t use the live virus that causes S
covid-19

6 NEI-R 3 masks cause plague masks cause plague... fauci knows... R
masks promote bacteria... and not the good
kind... sinus

7a S-S 53 covid vaccine doesn’t cause fertility issues  covid vaccine doesn’t cause fertility issues S

76 S-S all brands of the vaccine can cause prob- death rate of COVID is said to be 10%. It S

lems is probable that some vaccines

8 R-R 14 Wearing a mask does cause disease Wearing a mask does cause disease, harm R
the immune system

9 NEI-NEI 94  Auto-Immune disease causes the white Auto-Immune disease causes the white S

blood cells that normally protect your body
from invaders to turn around and attack

blood cells that normally protect your body

your cells, tissues and organs

Table 7: Label transitions as predicted by the healthver model for claims extracted using condense,.q based on gold
entities (gold-ent-claim) and our pipeline (ner+-core-claim). We provide example instances for each type of label
transitions along with the gold label for the fact-checking verdict.

in the CoVERT dataset that would allow for a full
evaluation. We therefore approximate one aspect
of the quality of the entity linking module by ana-
lyzing the number of entities that are being linked
to any concept in the first place. Out of 719 entity
mentions the linking module established mappings
for 495 instances (68.8 %). We provide insights
from an error analysis in the following section.

Error analysis. We aim to understand the type
of error patterns introduced by the entity linking
module. We analyze predicted links for a randomly
drawn sample of 25 entities. We manually cate-
gorize the predicted concepts with regard to four
properties. Table 8 reports the results as well as
examples. correctly linked instances are mapped
to the appropriate concept within UMLS. Incor-
rect but related link include instances which are
mapped incorrectly, but the concept is related. in-
correct and unrelated link include cases in which
the linking is incorrect and also unrelated.

The analysis shows that the majority of mentions
are linked to the correct (15 out of 25 instances)
or at least a related (6 out of 25 instances) UMLS
concept. Four instances within our sample were
mapped to an unrelated UMLS concept.

While the majority of cases within our sample
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error type # mention pred. concept
correctly linked 15 glandular fever  Infectious

Mononucleosis
incorr., related 6 fibro flare Fibromyalgia
incorr. & unre- 4 COVID Covi  Anxiety
lated Scale [...]

Table 8: Number of error types within a sample of 25
entities along with examples.

are normalized correctly, this module potentially
introduces many errors. Note that as pointed out
before about 30 % of entities are not linked and
consequently not replaced at all. In addition, an in-
correctly mapped and replaced mention, even if the
concept might be closely related, may change the
meaning of a claim drastically. Take the following
example claim: ‘COVID cause of breathlessness’.
While breathlessness is correctly mapped to dysp-
nea, COVID is linked to and subsequently replaced
by an unrelated concept: ‘Covi Anxiety Scale Clin-
ical Classification cause of dyspnea’. This leads
us to believe that the unreliability of the linking
module is the main reason why the verdict pre-
diction performance for the normalized claims is
comparably low.



