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Abstract

For monitoring crises, political events are ex-
tracted from the news. The large amount of
unstructured full-text event descriptions makes
a case-by-case analysis unmanageable, partic-
ularly for low-resource humanitarian aid orga-
nizations. This creates a demand to classify
events into event types, a task referred to as
event coding. Typically, domain experts craft
an event type ontology, annotators label a large
dataset and technical experts develop a super-
vised coding system. In this work, we propose
PR-ENT1, a new event coding approach that
is more flexible and resource-efficient, while
maintaining competitive accuracy: first, we ex-
tend an event description such as “Military in-
jured two civilians” by a template, e.g. “People
were [Z]” and prompt a pre-trained (cloze) lan-
guage model to fill the slot Z. Second, we
select suitable answer candidates Z∗ = {“in-
jured”, “hurt”...} by treating the event descrip-
tion as premise and the filled templates as hy-
pothesis in a textual entailment task. In a fi-
nal step, the selected answer candidate can be
mapped to its corresponding event type. This
allows domain experts to draft the codebook di-
rectly as labeled prompts and interpretable an-
swer candidates. This human-in-the-loop pro-
cess is guided by our codebook design tool2.
We show that our approach is robust through
several checks: perturbing the event description
and prompt template, restricting the vocabulary
and removing contextual information.

1 Introduction

Decision-makers in politics and humanitarian aid
report a growing demand for comprehensive and
structured overviews of socio-political events (Lep-
uschitz and Stoehr, 2021). For this purpose, news
papers are automatically screened for event men-
tions, a task referred to as event detection and
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Figure 1: (A) The conventional event coding pipeline
involves many hand-overs between involved stakehold-
ers and is strictly tailored to the event ontology. (B) Our
approach combines prompting and textual entailment to
perform flexible, unsupervised event coding.

extraction. The sheer amount of extracted, full-
text event descriptions day-to-day is impossible to
be parsed by humans, especially when limited by
scarce financial and computational resources.

Event coding seeks to automatically classify
event descriptions into pre-defined event types.
Event coding is conventionally approached via a
multi-step pipeline as shown in Fig. 1A. It incurs
large costs in terms of human labor and time. We
sketch out this pipeline expressed in human intelli-
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gence tasks (HITs)3 (ul Hassan et al., 2013).
As a first step, an event ontology is defined in

terms of a codebook. Codebook development re-
quires multiple domain experts (Goldstein, 1992)
spending up to 200 HITs. The initial develop-
ment phase of the widely-used Conflict and Me-
diation Event Observations (CAMEO) (Schrodt,
2012) codebook reports a 3-year initial develop-
ment phase. Next, context-relevant event descrip-
tions need to be collected to serve as training data.
This often requires paid access to online newspaper
distribution services and data collection infrastruc-
ture, estimated at 200 HITs. Next, human anno-
tators need to be recruited and trained to annotate
data according to the codebook accounting for an-
other 200 HITs. Finally, a machine-based coding
system needs to be developed, trained and vali-
dated, costing another 200 HITs. In earlier days,
systems were dictionary- and pattern- based (King
and Lowe, 2003; Norris et al., 2017), while more
recently machine learning-based approaches have
gained momentum (Piskorski and Jacquet, 2020;
Olsson et al., 2020; Hürriyetoğlu, 2021).

In total, the conventional event coding pipeline
amounts to roughly 800 HITs. This development
cost is often not bearable by non-profit / non-
governmental organizations in the humanitarian
aid sector. Moreover, the process requires multi-
ple hand-overs between workers of different back-
ground which leads to errors, misunderstanding
and delays. It is also important to highlight that the
developed coding system is specifically tailored to
a fixed event ontology. Any post-hoc changes of
event types or even a different dataset incurs huge
costs. In practice, event types frequently change
and even vary widely between different divisions
of the same organization.

To address these shortcomings, we present a new
paradigm for highly adaptive event coding. Based
on our method illustrated in Fig. 1B, domain ex-
perts are able to work directly with an interactive
coding tool to design a codebook. They express
event types by means of prompt templates and
single-token answer candidates. For automated
coding, a pre-trained language model is prompted
to fill in those answer candidates taking a full-text

3In our formulation, one HIT corresponds to roughly one
hour of low-skill work by a single person such as reading and
labeling single-sentence event descriptions. Our estimations
are based on practical experience in working with domain
experts and human annotators in the field of political event
coding and serve the purpose of providing a very approximate
quantification of required resources and labour.

event description as an input. Since prompting
can be noisy (Gao et al., 2021), we propose filter-
ing answer candidates based on textual entailment.
Specifically, our contributions are as follows: (1)
We propose a methodology combining prompting
(§3.1) and textual entailment (§3.2) for event cod-
ing, termed PR-ENT. (2) We thoroughly evaluate
this paradigm based on three aspects: accuracy
(§4.1), flexibility (§4.2) and efficiency (§4.3). (3)
We present two online dashboards: (a) A demo of
the PR-ENT coding tool. (b) An interactive code-
book design tool that guides the codebook design
by presenting accuracy validation in a human-in-
the-loop manner (§6).

2 Event Data and Types

We consider a subset of the Armed Conflict Loca-
tion and Event Data (ACLED) (Raleigh et al., 2010)
dataset. It is widely-used and has large coverage
of political violence and protest events around the
world. Each event is human annotated with a short
description, its event type and additional details
such as the number of fatalities and actor and tar-
gets. The event types are based on ACLED’s own
event ontology which distinguishes 6 higher-level
and 25 lower-level event types. Some event types
are easily separable (e.g. protests vs battles), while
others are harder to distinguish semantically (e.g.
protests vs riots) (see Fig. 9 in the appendix).

We sample 4000 ACLED events (3000 for train-
ing, 1000 for testing) in the African region while
maintaining the event type distribution of the full
dataset (see Fig. 9). We remove empty event de-
scriptions and annotator notes (e.g. “[size: no
report]”). In Fig. 8 in the appendix, we present
statistics of the test set, showing different aspects
of linguistic complexity. In §4.2, we consider
the Global Terrorism Dataset (GTD) (LaFree and
Dugan, 2007) to study the effect of domain shift.

3 Entailment-based Prompt Selection

Our approach, PR-ENT, represents a real-world
use case of prompting and textual entailment to
code event descriptions e ∈ E into event types
y ∈ Y as shown in Fig. 1B.

3.1 Prompting

Methodological Approach. In traditional super-
vised learning, a model is trained to learn a map-
ping between the input e and the output class y.
Prompting (Liu et al., 2021) is a learning paradigm
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making use of (cloze) language models that have
been trained to predict masked tokens within text.4

Prompt-based learning transfers this capability to
perform classification in the following way:

We extend each event description e ∈ E by a
template t ∈ T to form the input ⟨e, t⟩ ∈ E × T .
Each template contains a masked slot Z, e.g. “This
event involves [Z]”, “People were [Z]”.5 The lan-
guage model takes ⟨e, t⟩ as input and returns an
output distribution of probabilities over the answer
vocabulary Z . Each token ze,t ∈ Z can serve as
a potential slot filler to Z = ze,t. However, we
only consider the top k most probable answer can-
didates zke,t ∈ ZK

e,t. Z can be a constrained subset
Zt that only features a template-related answer vo-
cabulary to increase interpretability as pointed out
in §5. We discuss how to map answer candidates
to event types in §4.1.

Implementation Details. We discuss the design
of templates and constrained answer vocabularies
resulting in a codebook (Tab. 7) in §6. In particular,
we prompt DistilBERT-base-uncased (Sanh et al.,
2020), a distilled version of the BERT model which
is more computationally efficient at the cost of a
small performance decrease. For each prompt, we
consider the K = 30 most probable tokens as the
set of answer candidates ZK

e,t. Ideally, we select a
larger set, but performance gains are minimal while
computational costs increase in subsequent steps.

3.2 Textual Entailment

Limitations of Prompting. Prompting yields
event-related tokens for event coding, but comes
with challenges. There is no guarantee that a
prompted answer candidate zke,t ∈ ZK

e,t is suited
to represent an event. Answer candidates may be
semantically unrelated as shown in Fig. 2. To ad-
dress this shortcoming, we propose filtering ZK

e,t

via textual entailment. Textual entailment, or nat-
ural language inference (NLI) (Fyodorov et al.,
2000; Bowman et al., 2015) can be framed as the
following task: Given a “premise”, verify whether
a “hypothesis” is true (entailment), false (contra-
diction), or undetermined (neutral). It has been
evaluated as a popular method for performing text
classification (Wang et al., 2021).

4“Cloze” pertains to filling in missing tokens not necessar-
ily uni-directional left-to-right, but anywhere in a string.

5The first prompt template is intended to provide a one-
word summary of the event. For the second template, we
expect a verb describing the actions undertaken by the actor
or a verb that describes what happened to the target.
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Figure 2: Given the event description “Several demon-
strators were injured.” and two templates (A) and
(B), prompting alone can yield tokens that fit syntacti-
cally but not semantically (blue bar). In contrast, filter-
ing prompted answer candidates via textual entailment
leaves us with tokens more closely related to the event
(orange bar). To this end, we treat the event description
as premise and the filled template as hypothesis.

Selecting Entailed Answer Candidates. We
consider the event description e as premise and
the template t′ filled with a prompted answer can-
didate as hypothesis. For example, given the
premise “Two bombs detonated...”, we automat-
ically construct hypotheses “This event involves
[zke,t] ∈ ZK

e,t = {explosives, civilians...}”, see
Tab. 1. We pass the concatenation of the premise
and hypothesis to RoBERTa-large-mnli (Liu et al.,
2019). If the model finds premise and hypothesis
to be entailed, then the prompted answer candidate
zke,t is considered an entailed answer candidate z∗e,t
(e.g. z∗e,t = explosives). We combine the categories
“neutral” and “contradiction” into one since we are
interested in a hypothesis being entailed or not.

This means, PR-ENT has two hyperparameters:
the top K answer candidate tokens yielded by the
prompting step and the acceptance threshold in the
entailment step that governs whether an answer can-
didate is kept. We empirically analyse the effect of
both hyperparameters on the final F1 classification
score in Fig. 5. In Fig. 5A, we verify that consid-
ering the top 30 answer candidate tokens leads to
good performance on average. Further, we find a
suitable threshold of 0.5 on the entailment model’s
output probability in Fig. 5B.

3

https://huggingface.co/distilbert-base-uncased
https://huggingface.co/roberta-large-mnli


Event Description + Template ⟨e, t⟩ Answer Candidates zke,t Entailed Answer Candidates z∗e,t
Several demonstrators
were injured.
+ People were [Z].

arrested, killed, hospitalized,
injured, evacuated,
wounded, shot,
homeless, hurt, detained

injured, wounded, hurt

Several demonstrators
were injured.
+ This event involves [Z].

fireworks, demonstrations,
protests, violence, suicide,
bicycles, shooting, strikes,
motorcycles, cycling

demonstrations, protests,
violence

The sponsorship deal
between the shoes brand
and the soccer team
was confirmed.
+ This event involves [Z].

sponsorship, nike, sponsors,
fundraising, cycling,
advertising, charity, donations,
concerts, competitions

sponsorship, sponsors,
advertising, competitions

Table 1: We prompt a language model based on an event description e and template t with slot Z. We keep only
those prompted answer candidates zke,t ∈ ZK

e,t entailed in a subsequent textual entailment task z∗e,t ∈ Z∗
e,t.

4 Evaluation: Event Classification

We compare PR-ENT against the conventional
event coding pipeline in an evaluation along three
dimensions: accuracy, flexibility and efficiency.

4.1 Accuracy

So far we have not discussed how to map entailed
answer candidates z∗e,t ∈ Z∗

e,t onto event types
y ∈ Y . We choose to do hard prompting, as op-
posed to soft prompting. This means, tokens in
Z∗
e,t are mapped onto event types y via a simple lin-

ear transform y = f(z∗e,t). When f is the identity
function, no additional mapping is needed (§4.2).
Hard prompting allows defining event types, i.e.
an event ontology, in terms of interpretable answer
candidates. As an example, we present an inter-
pretable event ontology in Tab. 7 in the appendix.
We use it to classify “lethal” and “non-lethal” event
as explained in §4.2. Generally, we observe a
trade-off between accuracy and interpretability. We
want different sets of entailed answer candidates
to uniquely define different event types at a high
accuracy. At the same time, we require the set to
be limited to a few, interpretable tokens only, that
are highly representative for the event type. In the
following, we learn a shallow mapping between
Z∗
e,t and the 6 high-level event types Y provided

by the ACLED event ontology as ground truth.

Baselines and Ceilings. As baselines, we con-
sider bag-of-words (BoW) and GloVe (Pennington
et al., 2014) embeddings of event descriptions. Em-
beddings are mapped onto event types via logistic
regression (LR). Further, we contrast our PR-ENT
with a prompting-only (PR) approach also using

Model Accuracy F1 Score
BoW + LR 80.5 77.1
GloVe + LR 78.5 74.6
Random Tokens + BoW + LR 77.1 72.2
PR + BoW + LR 82.9 80.8
PR-ENT + BoW + LR 85.1 83.7
DistilBERT 87.1 86.0

Table 2: Classification of 6 event types in the ACLED
dataset. As expected, DistilBERT performs best as it is
fine-tuned specifically on this classification task. Our
approach PR-ENT is more ad-hoc and does not fall far
behind. The additional entailment step reduces noise
compared to the prompting-only approach PR. On top
of the two standard baselines using BoW and GloVe,
we introduce an additional baseline where we select 10
random tokens from ZK

e,t for each ⟨e, t⟩. Compared to
all baselines, PR-ENT performs better.

logistic regression as a classification layer. As a
ceiling model, we consider DistilBERT fine-tuned
in a sequence classification task.

Our Approach PR-ENT. To evaluate our ap-
proach, we only consider the template “This event
involves [Z]” and construct a BoW feature matrix
by extending the event descriptions e with the en-
tailed answer candidates z∗e,t. The resulting feature
matrix serves as input to logistic regression. We
report classification results in Tab. 2 and find that
PR-ENT is only outperformed by the supervised,
fine-tuned DistilBERT ceiling, but performs better
than all baselines.
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Figure 3: Comparison of the different classification approaches on a varying number of training instances. Our
approach PR-ENT shows better performance in terms of accuracy and F1 Score than the baseline models at all
points. At the same time, it does not lack far behind the fine-tuned DistilBERT ceiling model, which is however less
flexible and resource-intensive. PR refers to prompting-only, BoW to bag-of-words and LR to logistic regression.
The baseline “random” consists of sampling 10 random tokens from ZK

e,t for each ⟨e, t⟩.

4.2 Flexibility

We explore the flexibility of PR-ENT along 3 di-
mensions: changing the number of training in-
stances, omitting the shallow mapping for classifi-
cation and switching to another dataset.

Number of Training Instances. As can be seen
in Fig. 3, our approach shines at classifying event
types if only few training instances are given.
PR-ENT shows better performance than all base-
line approaches introduced in §4.1. At the same
time, it is not far behind the fine-tuned DistilBERT
ceiling model.

Removing the Shallow Mapping. We may re-
move the requirement of adding a shallow mapping
y = f(z∗e,t). Therefore, we predict if an event is
“lethal” (y = 1) or not (y = 0) based on its descrip-
tion. We use PR-ENT to generate entailed answer
candidates Z∗

e,t based on the template “People were
[Z].”. If Z = “killed” ∈ Z∗

e,t then y = 1. We
compare PR-ENT against fine-tuned DistilBERT
trained on 100 samples and present results in Tab. 3.
PR-ENT is competitive against DistilBERT, even
outperforming it in this setting. Moreover, while
the prompting-only approach (PR) has very high
recall, it lacks precision. The additional entailment
step in PR-ENT balanced this out, yielding a high
F1 score.

Domain Shift. We scrutinize the robustness of
PR-ENT by switching to another dataset. We re-
peat the binary “lethal versus non-lethal” classifica-
tion task on the Global Terrorism Database (GTD)

Model F1 Score Precision Recall
PR-ENT 91.6 85.3 98.8
Prompting Only 50.6 33.9 100
DistilBERT 84.1 76.5 93.4

Table 3: Binary classification of “non-lethal versus
lethal” events based on ACLED’s fatality counts. In
PR-ENT and prompting-only PR, we code “lethal” if
“killed” is present in the answer candidates of “People
were [Z].”. We observe the added value of the entail-
ment step in the increase in precision. PR-ENT outper-
forms DistilBERT trained on 100 data instances and
tested on 1000 event descriptions.

(LaFree and Dugan, 2007). The results in Tab. 4,
again suggest high performance of PR-ENT.

Model F1 Score Precision Recall
PR-ENT 96.3 94.0 98.8
Prompting Only 67.3 50.7 100
DistilBERT 93.4 89.9 97.2

Table 4: Binary classification of “non-lethal versus
lethal” based on the Global Terrorism Database (GTD).
PR-ENT and prompting-only PR predict “lethal” if
“killed” is prompted from “People were [Z].”. PR-ENT
outperforms DistilBERT trained on 100 data instances
and tested on 1000 event descriptions.

4.3 Efficiency
In §1, we estimated the cost of 800 human intelli-
gence tasks (HIT) for the conventional event coding
pipeline. We perform the same estimation exercise
for our approach: domain experts design suitable
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Perturbation Type Paraphrase Remove Stop Words Remove Entities Duplication
Model Type PR PR-ENT PR PR-ENT PR PR-ENT PR PR-ENT

1 Perturbation 0.33 0.14 0.22 0.15 0.15 0.08 0.18 0.09
2 Perturbations 0.34 0.18 - - - - 0.28 0.16

Table 5: Average Jensen-Shannon distance across 1000 event descriptions. We conduct 4 perturbation tests:
paraphrasing the template, removing stop words from the event description, replacing named entities by a placeholder,
and duplicating words in the template. PR-ENT is more robust than PR: in all cases, the distance between the output
distributions based on the non-perturbed and perturbed input is smaller.
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Figure 4: We compare prompting-only PR and our approach PR-ENT when perturbing the input ⟨e, t⟩. PR-ENT is
more robust to perturbations as indicated by a lower Jensen-Shannon distance between the output distributions over
answer candidates based on non-perturbed and perturbed input. PR is highly sensitive to template phrasing. X-label
represents the top 100 most frequent tokens from 1000 prompts.

templates and answer candidate sets in a trial and
error fashion as elaborated in §6. We estimate total
development costs at about 300 HITs, which makes
it particularly feasible for small teams with few re-
sources such as non-governmental organizations in
humanitarian aid. Overall, our approach requires
fewer people and consequently fewer hand-overs.
Moreover, it is not tied to a specific event ontology
and more flexible for changing event types.

5 Ablation Study

5.1 Perturbation Tests
Our approach is not tailored to a specific event on-
tology, but to a language model. Any performance
gains on these models, such as the recently pub-
lished ConfliBERT (Hu et al., 2022), will impact
our pipeline. A crucial consideration is the pres-
ence of biases within language models. In some
settings, biases may even be desirable inductive
priors, but should at least be known.

We measure the sensitivity of the prompted
model’s output distribution to changes in the input.

To this end: we select a fixed answer vocabulary
Zt of 100 tokens by taking the most frequent to-
kens yielded by the prompted model across 1000
event descriptions. We observe the output distribu-
tion over tokens in Zt before and after perturbing
the input ⟨e, t⟩. Finally, we measure the difference
between the two output distributions in terms of
Jensen-Shannon (JS) distance. We show the results
of the following four perturbation settings in Tab. 5:

(1) Paraphrasing Two prompt designers could
come up with paraphrased templates. In Fig. 4,
we show that the additional entailment step makes
PR-ENT more robust to perturbations in the tem-
plate as opposed to prompting only.
(2) Stop Word Removal We remove stop words
from the event description to test PR-ENT on non-
grammatical text.
(3) Context Removal We remove all named en-
tities in event descriptions and replace them with
placeholder tokens such as “organizations” and “lo-
cations”. This verifies that PR-ENT is less prone
to latching onto context instead of content.
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Figure 5: Impact of different parameters of our pipeline
on ACLED classification. (A) F1 score versus the maxi-
mum number K of allowed answer candidates; K = 0
means that only the event description is used in the clas-
sification. (B) F1 score versus entailment threshold; the
threshold governs if a hypothesis is entailed with the
premise or not, a threshold of 0 means that all prompted
answer candidates are considered. A threshold of 1
means only the event description is considered.

(4) Duplication We duplicate some words in the
template. Specifically, we test the 3 prompts: “This
event involves [Z]”, “This event event involves
[Z]”, “This event event event involves [Z]”.

5.2 Comparing Coded Event Time Series

Using PR-ENT, we construct a codebook (Tab. 7)
to code ACLED event descriptions without the
need of a shallow mapping. We use this codebook
to code events that took place in Mali (Fig. 6) and
Ethiopia (Fig. 6) between 2009 and 2021. This al-
lows comparing time series of event types between
our approach and ACLED’s coding. We find that
both codings yield very similar time series in which
the positioning of spikes align. Yet, the spikes in
the PR-ENT time series are higher / steeper indi-
cating that more events are detected. This may
be attributed to two reasons: firstly, PR-ENT is
potentially more granular and has higher recall.
Secondly, PR-ENT is not limited to coding only
one event type per event description as ACLED
is. For example, the following event description in

ACLED (anonymized) is coded as Armed Clash but
contains several possible event types (Armed Clash,
Killing, Kidnapping, Property Destruction, Loot-
ing): “[...] The militants clashed with [ORG], and
killed one [ORG] and a civilian driver, abducted
one person, burned a vehicle and seized livestock.”

5.3 Qualitative Error Analysis

We perform a qualitative error analysis of our pro-
posed method. Within the ACLED data, there are
many event descriptions containing mentions of
past events (e.g. “Protests over the killing of the
journalist [NAME] shot dead on Monday at his
home by armed bandits.”). Our method, and in
fact, any supervised classifier, may have difficulties
recognizing event co-references. Another frequent
error is due to ACLED event type definitions. For
instance, ACLED features the event type “Violence
Against Civilians”. However, to classify most of
the concerned events, the annotator needs to know
if the target is a civilian or not. Unfortunately, the
dataset does not always contain this information,
except if explicitly written in the event descrip-
tion. Another frequently observed error is caused
by blurry definition of event types. ACLED, dif-
ferentiates between “Riots” and “Protests” which
often have nearly identical event descriptions.

6 Human-Computer Codebook Design

To make use of PR-ENT, domain experts need to
design a codebook (i.e. a mapping), between event
types and entailed answer candidates. Creating this
mapping is non-trivial as there exists a trade-off
between interpretability and accuracy. In essence,
a codebook is interpretable when the answer candi-
dates are representative of the corresponding event
type. A bad codebook contains a large number of
non-readable entailed answer candidates. A code-
book is accurate when a few answer candidates
are sufficient to allow for a clear differentiation of
the event types. To that end, we propose an inter-
active codebook design tool6 that helps designing
templates and answer candidates by presenting ac-
curacy metrics. The assessment of interpretability
is left to the human domain experts.

Codebook Design. Our codebook is a mapping
between event types and entailed answer candi-
dates. For example, an event can be classified as
“kidnapping” if any of the following templates is

6https://huggingface.co/spaces/clef/PRENT-Codebook
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Figure 6: Time series of the number of kidnapping events per month in Mali between 2009-2021. The dashed line
corresponds to all kidnapping events coded by ACLED annotators. The blue line corresponds to all kidnapping
events coded by PR-ENT. We find that the positions of the time series spikes between PR-ENT and ACLED’s
coding align well. However, the spikes in the PR-ENT time series are higher indicating that PR-ENT detects more
events. This may be due to more granular event coding or the advantage of not being limited to only one event type
per event description.

entailed: “This event involves [kidnapping].” OR
“This event involves [abduction].”. A codebook
example is shown in Tab. 7 in the appendix.

We assume two things: first, the availability of
a dataset which contains event descriptions that
need to be labeled. Second, the domain experts
should have decided upon event types of their lik-
ing (e.g. kidnapping, killings,...). Now, the first
step is to come up with an initial set of templates
and entailed answer candidates. For each event
type, the domain expert is asked to draft a canoni-
cal event description. For example: the event type
“kidnapping” could be exemplified by “Two men
were kidnapped by rebels.”. Then using PR-ENT,
the domain expert is presented a list of answer can-
didates (e.g. “This event involves [kidnapping].”,
“This event involves [rebels].”...).

As a second step, domain experts select some
of the entailed answer candidates provided by the
model. If no entailed answer candidate is infor-
mative to classify the event, it is possible to group
multiple entailed answer candidates with an AND
condition. For example, “Riot” event types can
be coded with the two following templates: “This
event involves [protest].” AND “This event involves
[violence].”. The tool also offers the possibility of
excluding certain answer candidates.

On-the-Go Validation. Validating the inter-
pretability of the codebook and the answer can-
didates is a subjective task that we leave to the
domain experts. The coding tools offers however
guidance for the validation of accuracy, despite not
having access to ground truth event type labels. Us-
ing the current state of the codebook and PR-ENT,

randomly selected events are automatically coded
into event types. Domain experts can then accept
or reject the event type suggestions provided by the
model. This creates a labeled dataset “on the go”,
which allows computing a per-class accuracy score.
Repeated rounds of validation allow for a human-
in-the-loop fine-tuning of the codebook by adding
or removing more entailed answer candidates.

Codebook Use. The tool offers interoperability
by enabling the download of the codebook and the
labeled dataset in standard JSON format. The for-
mer can then be used to code a full dataset of event
descriptions into event types. The codebook can
still be modified if more event types are required.

7 Discussion

Is this few-shot, unsupervised tagging? While
we have evaluated accuracy, efficiency and flexibil-
ity, it is up for discussion and definition whether
our approach should be considered few-shot, un-
supervised or tagging-based. In some cases, the
language model copies tokens verbatim from the
input, which could be seen as a form of “event tag-
ging”. In other cases, the answer candidates are ab-
stract tokens outperforming purely tagging-based
approaches. In cases where the answer candidates
map directly to an event type without an additional
shallow classifier §4.2, our approach may be con-
sidered unsupervised and zero-shot. On the con-
trary, the template is designed in an iterative trial
and error fashion. Thus, it is tuned to observed data
instances which arguably violates the zero-shot set-
ting and should be framed few-shot instead.
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Entailment-Only Approach. The presented ap-
proach PR-ENT relies on textual entailment to se-
lect entailed answer candidates from prompts as
motivated in §3.2. However, textual entailment
could have been considered for classification by
itself (Wang et al., 2021; Barker et al., 2021). In
this setting: a predefined set of hypotheses is cre-
ated for each event type and is tested against each
event description. However, this reduces flexibility
as we need to define a broad set of hypotheses in
advance. Our prompting-based approach relies on
large language models which do not require labeled
training data for training. As a consequence, they
are more frequently updated and trained on larger
amounts of data.

Extensions and Applications. Our approach can
be used to filter and search events in a dataset of
full-text event descriptions. An example of this use
case is described in §4.2 where we classify lethal
and non-lethal events in an unsupervised way via
the “killed” token. Promising extension are the
coding of source and target actors in addition to
event types as presented in App. B.1 as well as the
extraction of victim counts (Zhong et al., 2023).

8 Related Work

Similar to our prompting-based approach, exist-
ing work evaluates off-the-shelf QA (Halterman
et al., 2021) and NLI (Barker et al., 2021) models
for event coding. The prompting approach shares
similarities with Shin et al. (2021), who build a
semantic parser to map natural text to canonical
utterances. Their training set is constructed by
prompting a language model in a human-in-the-
loop fashion. Sainz et al. (2021) uses NLI to ex-
tract relationship between two given entities based
on a predefined hypothesis template. Schick et al.
(2020) present an approach to identify words that
can serve as high-accuracy labels for text classi-
fication. However, they are not focusing on inter-
pretability and a particular application domain such
as political event coding. There also exist methods
for automating prompt generation and selective in-
corporation of examples in the prompt (Shin et al.,
2020; Gao et al., 2021). Existing work in prompt-
based classification focuses on sentiment, topic or
intent (Yin et al., 2019; Liu et al., 2021; Schick and
Schütze, 2021).

Within the field of event coding, we distinguish
work on event detection, event type ontologies, and
automated event coding tools. Our work falls into

the latter two. The World Event/Interaction Survey
(WEIS) project (McClelland, 1984) was pioneering
in event data collection and event ontology design.
The WEIS successor CAMEO (Schrodt, 2012) is
one of the most popular event ontologies until to-
day and used by ICEWS (Boschee et al., 2015)
and NAVCO (Lewis et al., 2016) among others.
VRA-Reader (King and Lowe, 2003) is among the
first to automatize event coding based on match-
ing string patterns. Its successors BBN ACCENT
(Boschee et al., 2015), Tabari and Petrarch2 (Norris
et al., 2017) rely on lambda calculus-based seman-
tic parsing. Recent event coding systems rely on
supervised machine learning (Hürriyetoğlu, 2021;
Stoehr et al., 2021, 2022, 2023), word embedding-
(Kutuzov et al., 2017; Piskorski and Jacquet, 2020)
and transformer-based models (Olsson et al., 2020;
Re et al., 2021; Hu et al., 2022; Skorupa Parolin
et al., 2022).

9 Conclusion

We proposed a method to select answer candidates
from prompts using textual entailment. This com-
bined usage of state-of-the-art tools is motivated
by a real-world use case that benefits humanitarian
aid efforts with scarce resources.

https://github.com/Clement-Lef/pr-ent
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Limitations

We explore potential failure modes and the impact
of bias in pre-trained (cloze) language models in §5.
Erroneous event coding can be further mitigated
through incorporation of confidence score. In §7,
we discuss definitional caveats and model limita-
tions. We make our code and interactive dashboard
available for replication and scrutiny by the scien-
tific community. We provide hyperparameter set-
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tings, training times and details on the computing
infrastructure in the appendix (App. A). Since we
are only considering off-the-shelf models, mostly
without further fine-tuning, our experiments can be
reproduced with limited computing resources. Our
experiments are limited to English language, but
can be extended by considering models pre-trained
on other language data.

Impact Statement

As explained in §1, our approach is aimed at help-
ing low-resource organizations to analyze large
amounts of text data efficiently. We do not foresee
risk of misuse beyond the risks already introduced
by conventional event coding pipelines. However,
we would like to emphasize that the intended use
of our approach is to gain additional, empirical in-
sights for research and monitoring purposes, rather
than for completely automatized decision-making.
Application cases such as filtering event datasets
are described in §7 and App. B.1 .
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A Reproducibility Criteria

A.1 Experimental Results

1. A clear description of the mathematical set-
ting, algorithm, and/or model

• See Section §3

2. Submission of a zip file containing source
code, with specification of all dependencies,
including external libraries, or a link to such
resources (while still anonymized)

• Provided in the submission

3. Description of computing infrastructure used

• PR-ENT inference: Dell Latitude 7490
laptop - Intel(R) Core(TM) i7-8650U
CPU @ 1.90GHz / 16 GB RAM

• DistilBERT finetuning: Macbook Pro
M1 Max - M1 Max / 32 GB RAM

• Dashboard: 8 CPU Cores / 16 GB RAM

4. The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or esti-
mated energy cost

• Training:
– No training done for PR-ENT
– For comparison purposes, a Distil-

BERT model was fine-tuned on 3000
samples. It took several minutes on a
laptop.

• Inference:
– PR-ENT: 1-10secs per text depend-

ing on text length on a laptop

5. Number of parameters in each model:

• DistilBERT-base-uncased
(https://huggingface.co/distilbert-
base-uncased): 65M

• RoBERTa-large-mnli
(https://huggingface.co/roberta-large-
mnli): 125M

• RoBERTA-large-squad2
(https://huggingface.co/deepset/roberta-
large-squad2): 125M

• PR-ENT: Top K, Entailment Threshold

6. Corresponding validation performance for
each reported test result

• Not applicable

7. Explanation of evaluation metrics used, with
links to code

• F1 Score, Scikit-learn

• Precision, Scikit-learn

• Recall, Scikit-learn

• Accuracy, Scikit-learn

• Jensen Shannon Distance, Scipy

A.2 Hyperparameter Search

Not applicable

A.3 Datasets

1. Relevant details such as languages, and num-
ber of examples and label distributions

• ACLED: See section §2

• GTD: See section §2

2. Details of train/validation/test splits

• ACLED: 3000 train sample / 1000 test
sample

• GTD: 100 train sample / 1000 test sam-
ple

3. Explanation of any data that were excluded,
and all pre-processing steps

• See section §2

4. A zip file containing data or link to a down-
loadable version of the data

• ACLED: Data is not open source. We
provide a json file containing the event
ID used in train and test set.

• GTD: Data is available on GTD Website
: We provide a json file containing the
event ID used in train and test set

• Provided in the submission

5. For new data collected, a complete description
of the data collection process, such as instruc-
tions to annotators and methods for quality
control.

• Not applicable
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B Additional Material

B.1 Actor and Target Coding.
Until now, we studied how to code event types,
which can be seen as actions or predicates of an
event. We propose an extension to extract the actor
and target of an event using question answering
models similar to Halterman et al. (2021). In He
et al. (2015), questions are constructed around a
known action performed in an event. Given the
example “Military injured two civilians.”, PR-ENT
yields “injured” as an action. Using this action,
we can construct the questions “Who was injured?”
and “Who injured people?” which are then fed to a
QA model RoBERTa-base-squad2 (Rajpurkar et al.,
2016). We present examples of extracted “who-did-
what-to-whom” patterns in Tab. 6. Actor-target
coding is even harder to evaluate, as there can be
multiple actions / targets / actors in an event descrip-
tion and the abstract mapping between manually
annotated entity types (e.g. civilians) and verbatim
mentions (e.g. demonstrators) is not known.
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Event description e: Several demonstrators were injured. 
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B) Template t: This event entails [Z].

Figure 7: Given the event description “Several demon-
strators were injured.”, and the two similar templates
(A) and (B), we get drastically different answer can-
didates as shown by the top 10 outputs of the prompt
model (blue bar). However, in both cases we obtain the
same 3 answer candidates if they are filtered through an
additional entailment step (orange bar).
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Event Description + Extracted Actor-Target Action
Arrests: [WHO (31%): [LOC] police] captured [WHOM (90%): [NAME]],
a senior [ORG] in [LOC]

arrested

On 3 January 2020, [WHO (17%): [LOC] Armed Forces] regained [LOC], [LOC],
[LOC], [LOC] and [LOC] from [ORG]. In the operations 6 [ORG] fighters were
arrested and [WHOM (67%): 461 kidnapped civilians] were rescued.

rescued

On 12 March 2020, [WHO (40%): police and military intelligence officers] raided
the home of retired [WHOM (15%, 6%): Lt. Gen [NAME]]. The candidate was arrested
and charged with treason in relation to remarks he made during a [WHO (29%): TV]
interview; his staff of 18, as well as the MP for [ORG] as well as his son have all been arrested.

arrested;
interviewed

Table 6: Actor-target coding based on our pipeline augmented with an additional extractive question-answering
(QA) model. The first example represents a clear “who-did-what-to-whom” pattern. In the second example, actor
and target are separated into two sentences. Finally, the third example shows an event with two ARG0-V-ARG1
patterns (bolded and underlined). The confidence of the QA model is displayed for each answer.

Event Type Template Entailed Answer Candidate
Arrest People were [Z]. arrested AND NOT kidnapped

Killing
This event involves [Z].
People were [Z].

killing
killed

Looting This event involves [Z]. looting OR theft OR robbery

Sexual Violence
This event involves [Z].
People were [Z].

rape
abused OR raped

Kidnapping
This event involves [Z].
People were [Z].

kidnapping
kidnapped OR abducted

Protest
This event involves [Z].
People were [Z].

protest OR demonstration
protesting

Table 7: Example of an event ontology designed by means of our approach of entailment-based prompt selection
PR-ENT. The final ontology is defined in terms of templates and expected entailed answer candidates. We use
the event type “Killing” versus all others to classify “lethal” versus “non-lethal” events in Tab. 3. It’s also used to
compute results of Fig. 6 and Fig. 10.
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D) Unigram distribution

Figure 8: Statistics over a sample of 1000 ACLED event descriptions; (A) encountering many predicate-argument
structures per event description can be an indication of difficult event coding; (B) number of verbs (actions) per
event description; (C) length distribution of event descriptions; (D) unigram distribution over dataset.
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Figure 9: Event type distribution as visualized using UMAP over GloVe embeddings of the event descriptions.
While some event types are easily distinguishable from each other (e.g. Protests and Battles), others are harder to
tell apart (e.g. Protests and Riots). We also show the proportion of each event type in the legend.
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Figure 10: Time series of the number of protest events per month in Ethiopia between 2009-2021. The dashed line
corresponds to all protest events coded by ACLED annotators. The blue line corresponds to all protest events coded
by PR-ENT. Despite PR-ENT codings being machine-automated, they are very similar to ACLED’s codings. Both
clearly detect the high intensity violence periods in 2016.
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Figure 11: Confusion matrices of DistilBERT and PR-ENT + LR on the test set.
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