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Abstract

In this paper, we introduce a novel approach for
evaluating natural language generation (NLG)
using retrieval-augmented in-context learning.
Our method empowers practitioners to lever-
age large language models (LLMs) for diverse
NLG evaluation tasks without the need for fine-
tuning. We put our approach to the test in the
context of the Eval4NLP 2023 Shared Task,
specifically in translation evaluation and sum-
marization evaluation subtasks. The results in-
dicate that retrieval-augmented in-context learn-
ing holds great promise for the development
of LLM-based NLG evaluation metrics. Fu-
ture research directions involve investigating
the performance of various publicly available
LLM models and identifying the specific LLM
attributes that contribute to enhancing metric
quality.

1 Introduction

Like any machine learning task, the NLG problem
requires a quality metric to compare model outputs
to a gold standard. The most popular method for
human evaluation is MQM (Lommel et al., 2014),
which allows building an interpretation of the gen-
eration model through error detection. However,
this technique requires expensive manual work of
an expert. As a consequence, automatic evaluation
systems that would have a high correlation with
state-of-the-art evaluation techniques, in particular
MQM, would be highly desirable as a replacement
for human MQM annotations. One such approach,
became entrenched after the appearance of LLMs,
is zero-shot or few-shot generation by text query,
prompt. The score is obtained from the model by
(i) the numerical estimate itself (Kocmi and Feder-
mann, 2023), (ii) aggregation over the probabilistic
distribution of the model (Liu et al., 2023) or (iii) a
real function over the resulting text, repeating the
existing methodology of expert evaluation (Fernan-
des et al., 2023).
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Figure 1: Architecture of the proposed approach

The shared task of Eval4NLP 2023 (Leiter et al.,
2023b) challenges to solve the problem of evalu-
ating machine translation and summarization re-
sults using a fixed set of LLMs without any fine-
tuning techniques and in a reference-free manner.
Reference-free means that the metric rates the pro-
vided machine translation solely based on the pro-
vided source sentence/paragraph, without any addi-
tional, human written references.

The shared task has the following goals:

1. What is the best strategy for constructing
LLM-based evaluation metrics using prompt-
ing?

2. How could we explain obtained scores?

The main judgement metric during the compe-
tition is segment-level Kendall-7 correlation be-
tween model scores and MQM expert annotations.
For the second goal listed above, the organizers
will evaluate explanations manually.

The following list of models from Huggingface
(Wolf et al., 2019) was available during the compe-
tition:

* Guanaco-65B-GPTQ: a four-bit quantized ver-
sion of Guanaco-65B (Dettmers et al., 2023)
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* Platypus2-70B-Instruct-GPTQ: based on
LLaMA?2, a quantized version (Lee et al.,
2023)

* WizardLM-13B-V1.1-GPTQ: a four-bit quan-
tized version of WizardLM-13B-V1.1 (Xu
et al., 2023)

* Nous-Hermes-13b: a model by Nous Re-
search

* OpenOrca-Platypus2-13B: based on LLaMA?2
(Mukherjee et al., 2023)

 orca_mini_v3_7b: smaller than the others on
this list and also performs well on LLM leader-
boards

We consider only large model tracks in our work
due to the empirical discovery that it is easier to
produce adequate texts from large models. The
project code is open-sourced and available by the
link!.

2 Related Work

In general, designing high-quality evaluation met-
rics for NLG tasks such as summarization and
machine translation is an highly active field of re-
search. It is especially active since the recognition
that decades old metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) are inade-
quate for evaluation (Mathur et al., 2020; Peyrard,
2019; Freitag et al., 2022). The focus in recent
years is on developing high-quality LLM based
metrics (Zhang et al., 2020; Zhao et al., 2019)
that are (among others) explainable (Kaster et al.,
2021; Leiter et al., 2022a, 2023a, 2022b; Sai et al.,
2021), efficient (Kamal Eddine et al., 2022; Griin-
wald et al., 2022; Zouhar et al., 2023; Belouadi and
Eger, 2023), robust (Chen and Eger, 2023; Rony
et al., 2022), and reproducible (Chen et al., 2022;
Grusky, 2023). The focus of Eval4NLP’s Shared
Task is on explainable high-quality metrics induced
from prompting the most recent classes of LLMs in-
cluding variants of LLaMA (Touvron et al., 2023).

The ability of GPT-4 (OpenAl, 2023) to solve
different NLG problems in a zero-shot manner led
to appearance of new NLG evaluation approaches
utilized this model. GEMBA (Kocmi and Feder-
mann, 2023) used a set of instruction prompts for
machine translation evaluation which differ from
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Figure 2: Workflow of the proposed method for English-
German machine translation evaluation

each other with score ranges and its descriptions,
model is expected to generate repeatedly the text
until it is a score as sequence of digits. Another
usage of GPT-4 in NLG evaluation is G-Eval (Liu
et al., 2023), which used a similar approach for
summarization evaluation with zero-shot instruc-
tion based generation but with another score ob-
taining. The final score is an aggregation of digits
with their token generation probabilities.

AutoMQM (Fernandes et al., 2023) is a fine-
grained approach which allows to construct inter-
preted evaluation via modeling MQM metric. The
model is expected to generate error major and mi-
nor spans, after that the deterministic score based
on MQM error weights is alculated. The vanilla
approach used full transformer architecture, we try
to repeat this approach with decoder-only model.

Similarly to our proposed approach, retrieval-
augmented in-context learning was used for multi-
class text classification in (Milios et al., 2023). In
this paper, the pretrained retrieval model from Sen-
tenceTransformers (Reimers and Gurevych, 2019)
is used to collect the in-context examples, closest
to the input text. In their case, the length of the
examples is consistently small, so they are able to
fit as many as 110 in-context examples by greedily
selecting examples until they completely fill the
model’s context window.

3 Approach

The basis of our approach is the selection of several
few-shot examples for each specific instance. To do
this, we use an index, a large array of source texts
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from the training dataset for different language
pairs. In the index, all texts are stored as embed-
dings, which are then compared to the source text
by the cosine distance. We specifically compare
samples by their source texts, as we hypothesize
that for similar source examples, the way to evalu-
ate translation/summarization is usually similar.

The whole workflow with the examples is illus-
trated on Figure 2. The few-shot examples them-
selves use the same prompt format as the request
— only with an already inserted score. All the ex-
amples go in a row, forming a single prompt from
several few-shot parts and a prompt with the re-
quested rating. For a more accurate assessment, we
obtain various examples from the index, both with
high and low scores.

3.1 Machine Translation

### Instruction:

Score the following translation from
{src_lang} to {tgt_lang} on a continuous
scale from @ to 100 that starts with
"No meaning preserved”, goes through
"Some meaning preserved”, then "Most
meaning preserved and few grammar
mistakes”, up to "Perfect meaning
and grammar”.

{src_lang} source: "{src}”
{tgt_lang} translation: "{hyp}"

### Response:

Score (0-100):{score}

Figure 3: The prompt we used for the machine transla-
tion task

The final method for the machine translation
evaluation task was to generate the score itself. The
main difference with summarization task was in the
selected text embedding model: for the summariza-
tion task we had to use a model which was trained
to handle the retrieval of long texts.

3.2 Fine-grained error identification

We also tried the AutoMQM (Fernandes et al.,
2023) approach for machine translation evaluation.
Instead of evaluating the sample score itself, the
model was instructed to generate a list of all transla-
tion errors in the example, indicating their critical-
ity — based on this, the score is calculated follow-
ing the MQM (Freitag et al., 2021) scoring method.
To do this, we modified few-shot prompts to in-

clude fine-grained translation errors. However, this
approach was unsuccessful: often the error spans
were not recognized correctly. We believe this is
because the model we tried was a decoder-only one,
unlike the model in the original paper; (Fernandes
et al., 2023) used an encoder-decoder architecture,
which may be better for in-context learning (we
leave a thorough investigation to future work).

3.3 Summarization

### Instruction:

Score the summarization with respect to
the summarized document on a continuous
scale from @ to 100, where a score of zero
means "irrelevant, factually incorrect and
not readable” and score of one hundred
means "relevant, factually correct, good
readability”.

Source text: "{src}"

Summary: "{hyp}"

### Response:

Score (0-100):{score}

Figure 4: The prompt we used for the summarization
task

For the summarization evaluation task, we used
a model for large texts because the source texts
have a long length.

4 Experimental Setup

Following the competition rules, our choice of
base LLMs was limited. Eventually, we have
conducted experiments using 3 different mod-
els: «TheBloke/Platypus2-70B-Instruct-GPTQ»,
«Open-Orca/OpenOrca-Platypus2-13B», «NousRe-
search/Nous-Hermes-13b».

All experiments were conducted on a single
Nvidia A40 GPU with 48GB of VRAM. We used
model implementation in PyTorch 2.0 (Paszke
et al.) together with transformers (Wolf et al., 2019)
framework. We used greedy decoding limited to
generation of 3 new tokens to generate scores for
the analyzed text. At this time, we have not imple-
mented any controlled generation to enforce gen-
eration of digit tokens, if model have generated
something that could not be parsed into an integer,
we did a fallback to default score of 0.
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4.1 MT Evaluation

To construct the pool of examples for retrieval-
augmentation, we use a set of datasets from pre-
vious years of WMT Metrics Shared Task. We
took datasets from 2017 to 2022, with DA (Di-
rect Assesment) scores. In total, the pool of exam-
ples containes around 1.5m examples. The nearest-
neighbors index was constructed on sentence em-
beddings vectors of source texts of these examples.
We employ LaBSE (Feng et al., 2020) to construct
embeddings due to its superior performance on mul-
tilingual tasks”. The overall pipeline is illustrated
on Figure 1.

For each analyzed example, we collect 10 in-
context examples, which have semantically-closest
source text. In order to avoid accidental data leak-
age, we have queried 10+1 examples from the index
and excluded the first one with the highest simi-
larity score. Both input example and in-context
examples were formatted according to GEMBA’s-
SQM{[noref] (Kocmi and Federmann, 2023) prompt
template and concatenated to form a single prompt.

4.2 Summarization Evaluation

For the construction of the example pool for sum-
marization, we use SummEval (Fabbri et al., 2021)
dataset. This dataset contains 100 distinct source
texts and 16 different summaries per text. In or-
der to increase diversity of in-context examples,
we take a single summary out of 16 for each of
the source texts at random. The nearest-neighbor
index is constructed on embeddings of the source
texts. The embeddings are computed using e5-
base-v2 model (Wang et al., 2022). We choose this
model because it was specifically trained to han-
dle retrieval of long texts. According to the model
specifications, we add the prefix "passage: ".

Due to large size of in-context examples for this
task, we reduce the number of in-context examples
to 3 in order to fit into the base LLMs context
window.

5 Results & Discussion

The results of evaluation of the proposed ap-
proaches are presented in Table 1. As illustrated
in the table, the «Platypus2-Instruct-70B» model,
which has the largest number of parameters, out-
performs all other approaches. It suggests that

2See ‘Bitext mining’ section at the leaderboard: https:
//huggingface.co/spaces/mteb/leaderboard

Model en- en- en- summ
de zh es
platypus-70b | 0.24 | 0.13 | 0.18 | 0.35
platypus-13b 0.07 | 0.04 | 0.10 | 0.35
nous-hermes 0.09 | 0.06 | 0.10 | n/a
fine-grained 70b | 0.11 | n/a n/a n/a

Table 1: Kendall-7 correlations of the tested models/ap-
proaches on the shared task test set. The first three lines
refer to models tested with score generation, while the
last lines refer to a fine-grained error identification ap-
proach. ‘n/a’ refers to subtasks that we have not been
able to evaluate on with particular models due to time
restrictions as well as technical difficulties. indicates
the variant that was submitted to the shared task.

retrieval-augmented in-context learning, expect-
edly, does benefit from LL.Ms with more param-
eters. However, for the summarization task we
see no difference in obtained scores. These find-
ings suggest that our approach has substantial lim-
itations when applied to summarization. Indeed,
while the pool of in-context examples for MT evalu-
ation consists of 1.5m examples, in the case of sum-
marization, we only have 100 examples to choose
from. This does limit the variability of the scores
and texts that are included in in-context examples.
An additional limitation factor is the context win-
dow size of the LLM, which reduces the amount of
in-context examples that we could include.

From the multilingual perspective, all our mod-
els rely on substantially limited/non-existent mul-
tilingual pretraining of the base model as well as
the fine-tuned versions. In fact, all those models
use the small vocabulary of 32k tokens. This does
seem to be enough to capture word pieces for En-
glish and similar Latin scripted languages: Spanish
and German. However, in the case of the English-
Chinese language pair, we see a consistent drop in
metric correlation among all tested LLMs.

Lastly, the fine-grained approach described
above yielded only 0.11 on Kendall-T correla-
tion with human judgment for the English-German
translation subtask. While we were not able to fin-
ish its inference on other MT subtasks in time, we
did find several problems with this approach. In
most cases, the model failed to accurately produce
spans for identified errors as they contained some
words from the translated text but in a disarranged
order, along with unrelated words. Also, we found
that in some cases, the model generated a list of du-
plicate or near duplicate errors, which resulted in an
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overly pessimistic approximation of the translation
quality. We hypothesize that it was likely due to the
model we have used. In the original paper (Fernan-
des et al., 2023), the authors use Google’s private
PalLM-2 (Anil et al., 2023) model which is a) has
more (540B) parameters, b) was pre-trained on
‘parallel data covering hundreds of languages’ and
¢) is based on encoder-decoder architecture. In con-
trast, in our case, the largest model had only 70B
parameters and was mostly pretrained on mono-
lingual English data. Also, according to (Ding
et al., 2023), the decoder-only CausalLMs are sub-
optimal for the case of in-context learning, while
PrefixLMs (encoder-decoder) are better suited to
utilize in-context examples for generating predic-
tion.

6 Conclusion

During experiments for Eval4NLP 2023 Shared
Task, we considered approaches with in-context
learning and fine-grained evaluation and observed
that adding reference examples could boost the
generation result, even though it is the only score.
However, this method is sensitive to the encoder
model with index setup, examples’ set size and
requires a lot of diverse references. We did not
manage to observe good results for fine-grained ap-
proach with AutoMQM, we think that the problem
is with the model size and architecture.

Some ideas for further research include: a) ex-
ploring the capabilities of LLMs with more param-
eters when applied with our prompting strategy, b)
utilizing models with larger (or unlimited) context
window to increase the number of in-context exam-
ples, ¢) experimenting with LLMs pre-trained on
multilingual data for translation evaluation and d)
applying encoder-decoder LL.Ms to achieve better
incorporation of in-context examples.
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