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Abstract

Sarcasm is a complex linguistic construct with
incongruity at its very core. Detecting sarcasm
depends on the actual content spoken and tonal-
ity, facial expressions, the context of an utter-
ance, and personal traits like language profi-
ciency and cognitive capabilities. In this paper,
we propose the utilization of synthetic gaze
data to improve the task performance for mul-
timodal sarcasm detection in a conversational
setting. We enrich an existing multimodal con-
versational dataset, i.e., MUStARD++ with
gaze features. With the help of human partic-
ipants, we collect gaze features for < 20% of
data instances, and we investigate various meth-
ods for gaze feature prediction for the rest of
the dataset. We perform extrinsic and intrinsic
evaluations to assess the quality of the predicted
gaze features. We observe a performance gain
of up to 6.6% points by adding a new modal-
ity, i.e., collected gaze features. When both
collected and predicted data are used, we ob-
serve a performance gain of 2.3% points on the
complete dataset. Interestingly, with only pre-
dicted gaze features, too, we observe a gain in
performance (1.9% points). We retain and use
the feature prediction model, which maximally
correlates with collected gaze features. Our
model trained on combining collected and syn-
thetic gaze data achieves SoTA performance
on the MUStARD++ dataset. To the best of
our knowledge, ours is the first predict-and-use
model for sarcasm detection. We publicly re-
lease1 the code, gaze data, and our best models
for further research.

1 Introduction

Sarcasm originates from the Greek word sarkasmós
adapted from sarkázein, which means a sneering or
cutting remark. Sarcasm depends on “bitter, caus-
tic, and other ironic expressions that are usually
directed against an individual.” (Gibbs, 1986). It

1https://www.cfilt.iitb.ac.in/emnlp23sarcgaze

is a complex linguistic phenomenon that gets ex-
pressed with words that mean the opposite of what
the speaker intends to say; e.g., I love being ig-
nored expresses the bitterness of the speaker. The
roots of sarcasm lie in incongruity (Joshi et al.,
2015), which makes computational sarcasm detec-
tion a challenging problem; and the NLP commu-
nity has attempted to tackle this problem using
innovative approaches. Sarcasm detection in the
text has largely been attempted by focusing on lex-
ical indicators (Bamman and Smith, 2021), senti-
ment incongruity (Joshi et al., 2015), etc., in both
rule-based and learning-based systems (Abulaish
and Kamal, 2018). However, sarcasm is also ex-
pressed through tonal changes and/or facial expres-
sions. Hence researchers have started investigating
modalities other than text, viz., audio and video, to
help detect sarcasm (Castro et al., 2019a; Cai et al.,
2019; Gupta et al., 2021; Chauhan et al., 2022;
Ray et al., 2022). Mishra et al. (2017a) observed
that gaze features are helpful in detecting sarcasm
within short sentences without context, which is
our inspiration. In a conversational setting, sar-
casm often results from an earlier utterance, which
is the problem we focus on in this work. To the best
of our knowledge, ours is the first attempt at multi-
modal detection of sarcasm using gaze behaviour
in a conversational setting.

1.1 Gaze Terminology

A fixation is a relatively longer stay of gaze on an
object (word), and saccades refer to quick shifting
of gaze between two positions of rest (Mishra et al.,
2017b). An Interest Area (IA) is a part of the screen
that is of interest to us. In these areas, the text is
displayed and each word is a separate and unique
IA. Forward and backward saccades are called pro-
gressions and regressions, respectively, while a
scanpath is a line graph that contains fixations as
nodes and saccades as edges.

We use the MUStARD++ dataset (Ray et al.,
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Figure 1: Sample images from a Gaze data collection setup which shows saccadic movements (yellow lines) and
fixations (blue circles) for 1) a sarcastic (left image) and 2) a non-sarcastic dialogue (right image).

2022) which is a multimodal conversational
dataset with videos annotated for sarcasm, sarcasm
type and emotions. This data has several video
frames as visuals linked with the utterance that
is marked sarcastic or non-sarcastic Our primary
hypothesis in this work is that there are distinctive
eye movement patterns when a human reader is
processing sarcasm due to the presence of incon-
gruous words within the utterance or previously
spoken sentences (Mishra et al., 2016b). Unlike
previous studies, we perform the task of sarcasm
detection in a conversational setting, exploiting
multimodality and gaze features. Figure 1 illus-
trates gaze fixations (blue circles w/ bigger circles
for longer duration) and progressions-regressions
for a sarcastic, and a non-sarcastic utterance.

Gaze features, however, are costly in terms of
resources- subjects, data, time, and money. One ma-
jor contributions of our work is predicting gaze fea-
tures and harnessing predicted features for sarcasm
detection. We thus venture into generating and us-
ing synthetic data for sarcasm detection. Overall,
our Contributions are:

• A novel method for generating synthetic data
from collected gaze features.

• Enriching the MUStARD++ dataset with eye-
tracking/gaze features for 1155 samples col-
lected from 5 human participants. This will
be useful for research in eye-tracking-based
sarcasm and similar language phenomena de-
tection.

• Comparing various gaze feature prediction
techniques and utilizing gaze data, both col-
lected and synthetic, to achieve SoTA perfor-
mance (2.3% point gain) for multimodal sar-
casm detection.

1.2 Motivation
From Figure 1, it can be observed that the non-
sarcastic utterance has a significantly lower regres-
sive eye movement (yellow lines) as compared to

the sarcastic utterance. The number of fixations is
also lower in number. In the sarcastic utterance, we
see a lot of regression on the part of the text contain-
ing “look up at the stars without a roof over your”,
we also observe regressive movement towards the
previous utterance in the context- towards“PhD in
astrophysics”. Such indicators can also be used
to explain the origin of sarcasm from a conversa-
tional context. However, we observe that the non-
sarcastic example (right) also has a few regressive
paths leading to previous utterances, which will
happen for any reader, given they would like to
understand the context in the dialogue fully. We be-
lieve capturing these regressions and progressions
present in gaze data can help detect sarcasm and
generate similar gaze data for new samples, as fixa-
tions, movements, and regressions can be learned
from them. We also believe the creation of quality
synthetic eye-tracking data will be useful in reduc-
ing dependency on highly time-consuming human
eye-tracking annotations.

2 Related Work

Existing studies demonstrate how cognitive fea-
tures have been used to improve performance for
various NLP tasks. User understandability of sar-
casm can be evaluated with the help of gaze be-
haviour (Mishra et al., 2016a), where incongruity
in the text induces gaze behaviour characterized by
longer fixation durations, repeated regressions, and
also scan path complexity (Mishra et al., 2017b).
Previously, sarcasm detection based on only tex-
tual input has shown minor improvements with
the help of gaze-based features (Mishra et al.,
2016b, 2017a). Gaze behaviour has also been
used to identify a reader’s native language (Berzak
et al., 2017), as well as to detect grammatical er-
rors in compressed sentences (Klerke et al., 2015a,
2016). Klerke et al. (2015b) also show that gaze
behaviour can be used to evaluate the output of Ma-
chine Translation systems better than automated
metrics. Similarly, gaze-based features have also
been shown to help the task of cognate and false
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friends’ detection (Kanojia et al., 2021). Gaze be-
haviour has also been used to evaluate how a reader
would rate the quality of a piece of text (Mathias
et al., 2018). Similarly, Mathias et al. (2020b) also
perform the task of essay grading in a zero-shot
setting using only gaze-based features and show
the efficacy of gaze-based features for performing
NLP tasks (Mathias et al., 2020a). However, ex-
isting research does not discuss the correlation of
multimodal features (like visual and audio) with
gaze-based features, and does not investigate these
features for multimodal sarcasm detection in a con-
versational setting. In the subsection below, we
discuss the literature on multimodal studies in NLP.
Lack of data has been a common problem in cases
of both sarcasm as well as cognitive NLP. Numer-
ous efforts have been made in building gaze feature
predictors in order to reduce dependency on gold
gaze data by producing high quality synthetic gaze
data. Study in Takmaz (2022) utilizes "adapter" in
a language model to match the results of a fully fine
tuned language model for predicting eye tracking
features with a highly efficient network in terms of
the number of parameters. Ding et al. (2022) pro-
pose a Bi-LSTM-based network that, with the help
of a few psycho-linguistic features, predicts eye
tracking features. The paper states that the read-
ability of a text reflected in the linguistic features is
important to predict eye movement patterns (Scar-
borough et al., 2009). The creation of synthetic
gaze data has also been performed in multilingual
settings. In Srivastava (2022), a model trained on a
completely different set of languages predicts gaze
data for a completely new language.

2.1 Multimodal NLP

Existing literature on multimodal sentiment clas-
sification refers to the MOUD (Pérez-Rosas et al.,
2013) and MOSI (Zadeh et al., 2016) datasets and
the IEMOCAP dataset (Busso et al., 2008) for the
task of multimodal emotion recognition. Poria et al.
(2017) propose the use of a bidirectional contex-
tual long short-term memory (bc-LSTM) architec-
ture for both tasks and show improvements over
baseline on all three datasets. However, Majumder
et al. (2018) later propose context modelling with
a hierarchical fusion of multimodal features and
achieve improved performance in a monologue set-
ting. In the conversation setting, Hazarika et al.
(2018) propose using a Conversational Memory
Network (CMN) to leverage contextual informa-

tion from the conversation history and achieve im-
proved performance. Novel multimodal neural ar-
chitectures (Wang et al., 2019; Pham et al., 2019)
and multimodal fusion approach (Liang et al., 2018;
Tsai et al., 2018) have propelled the deployment
of computational models. Efficient multimodal fu-
sion approaches have also been discussed in (Sahay
et al., 2020; Tsai et al., 2019; Liu et al., 2018).
For multimodal sarcasm detection, a recent sur-
vey discusses the datasets and approaches in de-
tail (Bhat and Chauhan, 2022). The MUStARD
dataset (Castro et al., 2019b) provides clips com-
piled from popular TV shows, including Friends,
The Golden Girls, The Big Bang Theory, and Sar-
casmaholics Anonymous, annotated with sarcasm
labels. Ray et al. (2022) extend upon this dataset by
adding emotion labels and additional clips while
also benchmarking for the multimodal sarcasm
detection task. They call this extended dataset
MUStARD++ and utilise feature fusion and a feed-
forward network to predict the sarcasm label. The
authors show an F1-score of 70.2% points using
audio, text and video modalities.
Our work utilises a similar approach with the addi-
tional gaze modality and also reproduces the base-
line experiments. With this work, we aim to un-
derpin how gaze-based features perform in a multi-
modal setting and if they correlate well with feature
sets other than textual (visual and audio). We also
investigate predicting gaze-based features to save
annotation time/cost for multimodal studies.

3 Dataset and Gaze Annotation

MUStARD++ is a multimodal dataset that consists
of textual utterances with context, audio, and video
from a corresponding clip. This data has been
acquired from publicly available sources for five
television shows: Friends, The Big Bang Theory
(seasons 1–8), The Golden Girls, Burnistoun, and
The Silicon Valley. Each dialogue is presented as a
combination of the main ‘utterance’ and the ‘con-
text’ in which it was uttered. It contains a total
of 1,202 instances, out of which 601 are sarcastic,
and 601 are non-sarcastic. Along with sarcasm
annotation, the dataset also provides additional in-
formation like an emotion class, valence, arousal,
and sarcasm type. We chose this dataset for our
experiments and performed gaze annotation on 231
samples, where 129 are sarcastic, and 102 are non-
sarcastic. To avoid any skew, the sarcastic instances
are chosen to encompass all four types of sarcasm
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Average Fixation Duration IA Regression Path Duration
µ_Pos ± σ_Pos µ_Neg ± σ_Neg p µ_Pos ± σ_Pos µ_Neg ± σ_Neg p

P1 208.0± 15.1 217.8± 13.7 0.0011 657.3± 305.3 495.4± 190.7 0.0140
P2 209.6± 16.3 224.6± 27.5 0.0147 572.5± 232.2 466.2± 221.0 0.0274
P3 241.6± 14.0 253.6± 21.1 0.0124 638.2± 130.8 502.0± 102.1 0.0001
P4 252.1± 10.4 241.2± 11.9 0.0001 727.4± 269.2 568.5± 160.1 0.0030
P5 212.6± 17.9 226.7± 16.2 0.0084 952.9± 280.3 696.3± 218.5 0.0002

Table 1: Two-sampled T-test statistics for average fixation duration and interest area regression path duration for
Positive labels (Sarcastic) and Negative labels (Non-sarcastic) for participants P1-P5.

with a distribution similar to the one in the source
data from MUStARD++. The selected instances
include dialogues with short contexts (in the range
of 2-5 speaker turns) as well as long contexts (6-13
speaker turns).

3.1 Datasets

For our multimodal sarcasm detection experiments,
we now have three variants as datasets. The first
variant is the complete dataset from MUStARD++,
i.e., D1. Since we are only able to acquire gaze
data over 231 samples out of 1202 as discussed
above, D2 is the other variant, which consists of
a total of 1,155 data instances (231 samples x 5
participants). Please note that textual, audio and
video features for the 231 samples remain the same
while gaze features vary for each participant in
this D2 variant. For the portion of samples we do
not get manually collected gaze data, we choose
to predict the gaze tracking features as described
below (Section 4.1), and call it D3. This variant,
i.e., D3 consists of 971 samples in total. We show
the train/test split statistics in Table 2. We also
try to maintain a balance between various types of
sarcasm in these instances, the distribution details
of which are provided in Figure 2; and we provide
the details of the gaze annotation process below.

Figure 2: Sarcasm-type distribution from D1 (left) and
D2 (right) datasets.

3.2 Gaze Annotation
We instruct five annotators to read the ‘textual ut-
terances with its context’ on the screen and ask
them to provide annotations for the implied binary
sentiment in the dialogue, i.e., positive or negative.
These samples are shuffled, and the experiment
builder software is allowed to choose a random in-
stance from the 231 samples to be presented next
on the screen. We do not instruct the annotators to
look for sarcasm to avoid the Priming Effect, i.e., if
sarcasm is expected beforehand, it becomes easier
to process. It may have resulted in unattentive par-
ticipation by annotators (Sáchez-Casas et al., 1992).
It ensures the ecological validity of our experiment
as 1) the participant has no clue which utterance
to expect, and no special attention is paid to ei-
ther class from the instances, and 2) it also ensures
attentive participation. Our annotators are gradu-
ate students between the ages of 22-27 with good
proficiency in the English language. Annotator se-
lection was made after ensuring they had English as
the medium of instruction through undergraduate
and their ongoing post-graduate degree program.
We ensure that they consent to record their eye
movement pattern to be used for this research.

We provide two unrecorded samples at the start
of the experiment to acquaint them with the an-
notation process. While annotating for sentiment
over 231 samples, we provide our annotators with
a short break after every 30 samples to ensure mini-
mal annotator fatigue, and re-calibrate for their eye
movements after each break. The head movement
was minimised using a chin-rest during the anno-
tation process. The gaze tracking device used is
an SR-Research Eyelink-1000 (monocular remote
mode with a sampling rate of 500Hz) that captures
the eye movement of the reader/annotator.

3.3 Annotation & Feature Validity
We compute inter-annotator agreement using a
pair-wise Fleiss’ kappa (Scott, 1955), which re-
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Figure 3: The architecture diagram for multimodal sarcasm detection setup shows how gaze-based features are
introduced in the pipeline with other features (text/audio/video) while a collaborative gating mechanism fuses these
features for predicting labels via a feed-forward neural network.

sulted in a statistically significant (p<0.05) moder-
ate agreement (0.41) among our annotators. To val-
idate features for our experiment, we chose a stan-
dard gaze-based feature and a saccadic regression-
based feature, i.e., average fixation duration and
interest area regression path duration (Table 8),
respectively. In Table 1, we show the analysis from
a two-sampled t-test over feature data from each
participant. We observe that for each participant
(P1-P5), the difference between sarcastic and non-
sarcastic instances is statistically significant, which
further motivates us to use these features for sar-
casm detection/classification.

Variant Train Test Total

D1 947 255 1202
D2 172 59 231
D3 776 195 971

Table 2: Train/test split statistics for dataset variants.

4 Our Approach

An architecture diagram for our setup is shown in
Figure 3. We reproduce the multimodal sarcasm
detection experiments as in Ray et al. (2022) as
the baseline, with the addition of gaze features as
the fourth modality in addition to text, speech and
visual modalities. For textual features, we utilize
the pre-trained BART language model (Lewis et al.,
2019) and obtain embeddings for both textual ut-
terance and the context from the dialogue. BART
provides a feature vector representation xt ∈ Rdt

for every instance x. We encode the text using the
BART Large model with dt = 1024 and use the
mean of the last four transformer layer representa-
tions to get a unique embedding representation for

both the utterance and the context.
For audio features, like in Ray et al. (2022),

we sampled the audio signal at 22.5KHz as a pre-
processing step. Since the audio has background
noise and canned laughter (we deal with sitcoms),
we used the vocal-separation method2 to process
it. We extract three low-level features: Mel Fre-
quency Cepstral Coefficients (MFCC), Mel spectro-
gram (using Librosa library (McFee et al., 2022)),
and prosodic features using OpenSMILE3. We split
the audio signal into equal segments of 1-second
duration each to maintain consistent feature repre-
sentation in all instances. Since the audio signal
length varies with utterances, this segmentation
helps in keeping the vector size constant across
the dataset. For each segment, we extract MFCC,
Mel spectrogram and prosodic features of size
dm , ds , dp respectively. Then we take the average
across segments to get the final feature vector. Here
dm = 128 , ds = 128 , dp = 35 , so our audio fea-
ture vector is of size da = dm + ds + dp = 291 .

For visual features from the videos, we use
a pool-5 layer from pre-trained ResNet-152 (He
et al., 2016) image classification model. To im-
prove the video representation and reduce noise,
we extract the keyframes to be passed to ResNet-
152. The computer vision community widely uses
key frame extraction, which is defined as the frames
that form the most appropriate summary of a given
video (Jadon and Jasim, 2019). We use an open-
source tool, Katna4, to perform key-frame extrac-
tion. For the final feature vectors, we average the

2https://librosa.org/doc/main/auto_examples/
plot_vocal_separation.html

3https://audeering.github.io/opensmile/
4https://katna.readthedocs.io/en/latest/
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vectors of each key frame of an instance (context
and utterance) extracted from ResNet-152. The
size of the final video feature representation is
dv = 2048 .

For gaze-based features, we obtain a total of
31 features from the SR Research Experiment
DataViewer software5, but do not use them all for
our experiments. We employ the KBest feature
selection method from the scikit-learn library (Pe-
dregosa et al., 2011) to optimize the features. Given
the sarcasm label along with gaze-based features,
the method resulted in the selection of a total of
25 correlated gaze-based features. Due to space
constraints, we provide this list in Appendix C with
a feature description in Table 8.

4.1 Gaze Feature Prediction

We provide details of our gaze feature prediction
model here. To remind, we predict 25 gaze-based
features, but, to report the correlations between
the actually collected gaze features and the pre-
dicted gaze features, we choose the three most
important features, i.e., the average fixation du-
ration, the regression path duration, and the re-
gression count. In a sarcastic utterance, if the hu-
man eye rests on the text for a longer duration, it
signifies the presence of some incongruity, which
may be because of sarcasm; this phenomenon is
captured in the feature named average fixation du-
ration. Similarly, suppose the eye regresses back
to the context again and again. In that case, this
depicts that there is some difference between the
surface meaning and the deep meaning of the utter-
ance that is creating complexity in understanding.
This we capture in the regression features. Since
collecting gaze data requires human effort and is
costly in terms of time and money, we try to pre-
dict these gaze-based features for our D3 variant
of the MUStARD++ dataset (see 3.1 on datasets
for an explanation of D3), containing 971 sam-
ples. We used SVM (Cortes and Vapnik, 1995)
as well as feed-forward NN (FFNN) (Bebis and
Georgiopoulos, 1994), convolutional NN (CNN)
(O’Shea and Nash, 2015), RoBERTa (Liu et al.,
2019b), and adapters-infused RoBERTa (Pfeiffer
et al., 2020) to compare the quality of the gaze fea-
tures predicted using these techniques. We evaluate
the quality of the gaze features by calculating two
different correlation metrics, i.e., Pearson correla-

5https://www.sr-research.com/
experiment-builder/

tion (Freedman et al., 2007) and Spearman correla-
tion (Spearman, 1904) between the predicted gaze
and actual collected gaze feature values for a spe-
cific set of samples. These correlation coefficients
are given in Table 9, 10 and 11 in Appendix D. Our
best-performing model for the gaze features predic-
tion task is a feed-forward neural network-based
architecture. The BART encoding for the text ut-
terances (discussed in section 4) is used as input to
the FFNN in a matrix form. The architecture con-
stitutes 3 hidden layers, an input layer having 1024
nodes (equal to the size of text embedding). The 4
layers are followed by fully connected layers with
a single output node, the gaze feature values being
the ground truth labels for the prediction task.

4.2 Experimental Setup

To perform feature fusion, we use a collaborative
gating mechanism (Liu et al., 2019a) on all the
features described above. We first compute pro-
jection Ψ (i)(V ) where i ∈ {t , tc, a, ac, v , vc, g}
and t , a, v , c, g are text, audio, video, correspond-
ing context, and gaze. This mechanism implements
two tasks, 1) finding the attention vector predic-
tion over provided input vectors and 2) performing
expert response modulation using the computed at-
tention vector prediction. For response modulation
of each modality projection, we perform

Ψ (i)(V ) = Ψ (i)(V ) ◦ σ(T (i)(V )) (1)

where σ is an element-wise sigmoid activation and
◦ is the element-wise multiplication, i.e., Hadamard
product (Horn, 1990). These modulated projections
are then concatenated and passed to fully connected
linear layers (ReLU) followed by a softmax layer
to predict target class probability distribution. We
use the standard cross-entropy loss for sarcasm
detection/classification. For training, we perform
hyper-parameter search with dropout in range of
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], learning rate in [0.001,
0.0001], batch size [256, 384], shared embedding
size [2048, 1024] and the projection embedding
size [1024, 256].

For benchmarking our results, we train over
three iterations with different (randomly chosen)
seed values of 42, 200, and 1005. The seed val-
ues ensure that the dataset samples are randomly
shuffled. Our experiments were performed using
a single nVidia RTX A6000, where each iteration
takes approximately 2 hours. We report the mean
± standard deviation on the test splits in terms of
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macro precision, recall and F1-scores. We note that
the quality of predicted gaze features plays a key
role in the performance of our multimodal sarcasm
detection task, as described in the section below.

5 Results and Discussion

Modality macro-P macro-R macro-F1

Vid + Aud + Text
+ Gaze 0.816 ± 0.008 0.814 ± 0.009 0.815 ± 0.009
Vid + Text + Gaze 0.832 ± 0.013 0.832 ± 0.012 0.832 ± 0.013
Vid + Aud + Gaze 0.792 ± 0.011 0.784 ± 0.010 0.785 ± 0.011
Aud + Text + Gaze 0.802 ± 0.008 0.801 ± 0.007 0.802 ± 0.008
Vid + Gaze 0.864 ± 0.014 0.862 ± 0.014 0.862 ± 0.014
Aud + Gaze 0.774 ± 0.002 0.768 ± 0.004 0.769 ± 0.004
Text + Gaze 0.830 ± 0.013 0.829 ± 0.012 0.829 ± 0.012

Vid + Aud + Text 0.75 ± 0.008 0.749 ± 0.009 0.749 ± 0.009
Vid + Text 0.731 ± 0.013 0.725 ± 0.012 0.725 ± 0.013
Vid + Aud 0.688 ± 0.011 0.683 ± 0.010 0.684 ± 0.011
Aud + Text 0.732 ± 0.008 0.732 ± 0.007 0.732 ± 0.008
Vid 0.654 ± 0.014 0.655 ± 0.014 0.655 ± 0.014
Aud 0.588 ± 0.002 0.585 ± 0.004 0.586 ± 0.004
Text 0.718 ± 0.013 0.718 ± 0.012 0.718 ± 0.012

Table 3: Results obtained on the D2 dataset via experi-
ments with Video (Vid), Audio (Aud), Textual (Text), and
Gaze-based (Gaze) features where macro-P/R/F1 are macro
Precision, Recall and F1-score, respectively. These results are
compared with results obtained on same dataset without using
gaze features for the sarcasm detection task.

We first describe the results on the D2 variant
in Table 3. This table reports the results while ab-
lating on various feature combinations. A clear
performance improvement can be observed when
the gaze modality is added. Compared to the base-
line, i.e., all modalities except gaze, there is a sig-
nificant gain of 6.6% points when all features, in-
cluding gaze, are used for sarcasm detection. We
do reproduce the baseline experiments on the D1
variant and show the results in Table 4, where we
also observe a slight gain (0.8% points) on the best
baseline score provided by MUStARD++ authors
when they used the standard video, audio and tex-
tual modalities. We compare the results on D1 from
baseline experiments with combinations of video,
audio, and textual modalities with our experiments
on D1 with the same feature combinations.

We observe from Table 4, that adding predicted
gaze-based features lowers the performance bench-
mark significantly. However, a combination of
PredGaze and Gaze added to each combination still
outperforms all the baseline combinations with up
to 6.8% point gain by using only video, PredGaze,
and Gaze (highlighted with underlined in the ta-
ble). On using all the available features, we still
outperform the baseline scores by 2.3% points
(highlighted using bold). We also observe that

by only using predicted and collected gaze-based
(PredGaze+Gaze) features, we are able to obtain an
F1-score of 0.679, which is encouraging. It shows
that our model can predict sarcasm with some cer-
tainty even without using standard modalities like
video, audio, or text, only on the basis of eye move-
ment patterns. This, however, encouraged us to
probe the efficacy of the predicted gaze features.

Reproduced Baseline Experiments on D1 without gaze

Modality macro-P macro-R macro-F1

Vid + Aud + Text
(baseline) 0.710 ± 0.006 0.710 ± 0.006 0.710 ± 0.006
Vid + Text 0.693 ± 0.002 0.693 ± 0.003 0.693 ± 0.003
Vid + Aud 0.688 ± 0.029 0.688 ± 0.028 0.688 ± 0.028
Aud + Text 0.674 ± 0.031 0.674 ± 0.031 0.674 ± 0.031
Vid 0.591 ± 0.004 0.591 ± 0.004 0.591 ± 0.004
Aud 0.645 ± 0.005 0.645 ± 0.005 0.645 ± 0.005
Text 0.690 ± 0.003 0.690 ± 0.003 0.690 ± 0.003

Our Experiments on D1 with collected & predicted gaze

Vid + Aud + Text
+ PredGaze + Gaze 0.732 ± 0.001 0.732 ± 0.001 0.733 ± 0.001
Vid + Text + PredGaze
+ Gaze 0.718 ± 0.001 0.718 ± 0.001 0.718 ± 0.001
Vid + Aud + PredGaze
+ Gaze 0.712 ± 0.006 0.709 ± 0.006 0.711 ± 0.006
Aud + Text + PredGaze
+ Gaze 0.724 ± 0.001 0.723 ± 0.001 0.724 ± 0.001
Vid + PredGaze
+ Gaze 0.662 ± 0.006 0.660 ± 0.005 0.659 ± 0.004
Aud + PredGaze
+ Gaze 0.695 ± 0.004 0.695 ± 0.004 0.694 ± 0.004
Text + PredGaze
+ Gaze 0.721 ± 0.003 0.722 ± 0.003 0.722 ± 0.003

PredGaze + Gaze 0.680 ± 0.003 0.679 ± 0.004 0.679 ± 0.004

Table 4: Results obtained on the D1 dataset via baseline
experiments with Video (Vid), Audio (Aud), and Textual
(Text), Collected Gaze-based (Gaze) and Predicted Gaze-
based (PredGaze) features where macro-P/R/F1 are macro
Precision, Recall and F1-score, respectively. The best F1-
score achieved on D1 is highlighted in bold.

Our Experiments on the D3 variant, where only
predicted gaze-based features are available, also
show an improvement of at most 1.9% points when
video, audio and text are the modalities used along
with predicted gaze features. We compare the
results of sarcasm detection on this D3 dataset with
and without gaze features in Table 6, accuracies
without the use of gaze features being the baseline
for this experiment. When used along with other
modalities, i.e., video, text and audio, the model
was able to beat the corresponding baseline
by 1.9% points which is encouraging as this
improvement came from complete synthetic data.
We report the accuracies from the best performing
model among the models we experimented with.

5.1 Discussion

Upon looking at the results from our task while
ablating for feature combinations, we also perform
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Final Utterance Ground
Truth

Prediction
(w/o Gaze)

Prediction
(with Gaze)

Sarcasm
Type

Video
Frame

BERNADETTE: And I love
that I work and do all the
cleaning, and you’re okay
with that Sarcastic Non-Sarcastic Sarcastic Propositional

CHANDLER Oh, uh,
no thanks. I just had an M&M. Sarcastic Non-Sarcastic Sarcastic Illocutionary

Moderator: Sarcastic? Us?
Nooo. Sarcastic Non-Sarcastic Non-Sarcastic Illocutionary

Gilfoyle: But the fact
that you’re so sorry makes it
all better. Sarcastic Non-Sarcastic Non-Sarcastic Embedded

Table 5: Qualitative analysis, which presents instances from the dataset and their sarcasm label predictions with and without
the presence of gaze in the input.

Modality macro-P macro-R macro-F1

Vid + Aud + Text
+ PredGaze 0.699 ± 0.007 0.699± 0.007 0.700 ± 0.007
Vid + Text + PredGaze 0.655 ± 0.001 0.655 ± 0.001 0.655 ± 0.001
Vid + Aud + PredGaze 0.658 ± 0.010 0.658 ± 0.009 0.658 ± 0.009
Aud + Text + PredGaze 0.689 ± 0.004 0.688 ± 0.004 0.689 ± 0.004
Vid + PredGaze 0.611 ± 0.007 0.612 ± 0.007 0.612 ± 0.008
Aud + PredGaze 0.659 ± 0.001 0.659 ± 0.001 0.659 ± 0.001
Text + PredGaze 0.696 ± 0.004 0.697 ± 0.004 0.697 ± 0.004
PredGaze 0.583 ± 0.004 0.583 ± 0.004 0.583 ± 0.004

Vid + Aud + Text 0.681 ± 0.007 0.683 ± 0.007 0.683 ± 0.007
Vid + Text 0.642 ± 0.001 0.641 ± 0.001 0.641 ± 0.001
Vid + Aud 0.648 ± 0.010 0.648 ± 0.009 0.648 ± 0.009
Aud + Text 0.678 ± 0.004 0.678 ± 0.004 0.678 ± 0.004
Vid 0.584 ± 0.007 0.582 ± 0.007 0.581 ± 0.008
Aud 0.656 ± 0.001 0.655 ± 0.001 0.655 ± 0.001
Text 0.66 ± 0.004 0.658 ± 0.004 0.658 ± 0.004

Table 6: Results obtained on the D3 dataset via experiments
with Video (Vid), Audio (Aud), Textual (Text), and Pre-
dicted Gaze-based (PredGaze) features where macro-P/R/F1
are macro Precision, Recall, and F1-score. These results are
compared with results obtained on the same dataset without
using gaze features for the sarcasm detection task.

a qualitative analysis of data samples which encour-
ages the use of gaze as a modality. We randomly
choose two samples which are shown at the top
in Table 5. The first two samples (rows one and
two) show the final textual utterance in the first
column, which are examples of ‘Propositional’ and
‘Illocutionary’ sarcasm. Starting with a positive
and ending with an implied negative sentiment has
incongruity, which should be detected with the help
of computational models. However, the label for
this sample was incorrectly predicted by all fea-
ture combinations, and only after introducing gaze-
based features, the model correctly predicts the
label. We also show a representative image from

the video clip during the final utterance. The im-
age is only a single frame, but our analysis of the
clip shows that the character maintains a similar
expression throughout the utterance except for the
final few frames when she utters the part, ‘with
that’. We believe that selecting key frames from
the video using an automated method may not be
very effective in such a case; therefore, even the
visual features are unable to help.

However, we have other examples which are
still hard to label accurately. The last two rows in
Table 5 show two examples where the first is a sar-
castic utterance of the illocutionary type. Ironically,
the word ‘Sarcastic’ is present within the utterance
itself. Given the full context of this utterance and,
on observing the clip, audio-based features should
have helped in this scenario. The moderator utters a
very grumpy ‘Nooo.’ and high-pitched ‘Sarcastic?
Us?’. We believe that the low-level audio features
are not able to capture these tonal changes, but the
failure of other feature sets also begets further in-
vestigation. Also, the video clip shows the scene to
be focused on the whole group, and there is a lesser
chance of detecting key frames for visual features
to capture subtle changes. Due to space constraints,
we provide full context and utterance for all these
samples in another table present in the Appendix B,
i.e., Table 7.

Similarly, in the last example, despite sufficient
conversational context (can be seen from Table 7),
neither of the computational models is able to
capture the sarcasm present in the final utterance.
There is sufficient incongruity present in this sam-
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ple instance of the embedded type of sarcasm.
However, the final utterance, “But the fact that
you’re so sorry makes it all better” can come across
as an emotional and caring statement.

6 Conclusion and Future Work

This paper discussed the use of gaze-based features
for the task of sarcasm detection in a multimodal
and conversational setting. We propose the use of
textual, audio, and video in combination with the
gaze modality by showing a substantial improve-
ment in performance with the addition of collected
gaze-based features. We collect gaze data over a
small number of samples and predict these features
for a larger portion of the data, both of which we
will release with the code and the best models from
our experiments. With predicted gaze-based fea-
tures, however, we observe a small improvement
in the task performance in this case. To the best of
our knowledge, our results indicate that adding col-
lected gaze-based features certainly improves task
performance in every feature combination, proving
the efficacy of gaze-based features. Our qualitative
analysis also suggests that better audio and visual
features should help improve task performance.

In future, we would like to improve the qual-
ity of predicted gaze-based features further in a
multi-task setting of sarcasm detection and gaze
prediction.

Limitations

Our work has certain limitations, as gaze data col-
lection is challenging. Multimodal datasets are also
scarce, and it’s challenging to benchmark the per-
formance of this approach over multiple datasets.
We release the complete gaze data with annotator-
provided sentiment labels, but our inter-annotator
agreement is only moderate. The subjectivity of
sarcasm and cultural contexts present in humour,
are the key reasons for the inter-annotator agree-
ment value being lower than expected. The under-
standing of sarcasm varies from person to person
depending upon the age, culture, context, famil-
iarity with the characteristics present in the utter-
ance, etc. This makes sarcasm a very hard and
cognitively loaded phenomenon for even linguists
to annotate. Collection of eye-tracking/gaze data
is a tedious and costly process; it requires hours
of human participation without any loss of con-
centration of the annotator. Transformers-based
models, in the case of video, audio, as well as text,

require large amounts of data to be able to gener-
alise and perform well. Thus, dataset contribution
becomes essential to push boundaries and enable
more research in the field.

Ethics Statement

MUStARD++ used in our experiments is ethically
verified in the previous works that used the dataset
(Ray et al., 2022; Castro et al., 2019b). We took
consent from all 5 annotators for the gaze annota-
tions, which involved tracking the participant’s eye
while they read the text displayed on a screen. We
also pay the annotators for their time and efforts in
the annotation.
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A Appendix

The appendix section contains five tables referred
to in the paper, on the three pages below.

B Appendix: 1

Refer to Table 7 for the examples used in Discus-
sion section and related error analysis.

C Appendix: 2

Refer to Table 8. The table contains all the 25 gaze
features and their definitions used in our experi-
ment.

D Appendix: 3

The three tables, i.e, Table 9, 10 and 11 compare
the quality of predicted gaze feature values with the
original collected gaze feature values for three dif-
ferent features. We choose these three features to
include both regressions as well as fixation features
in the comparison study. The models that are com-
pared include a feed-forward neural network model,
a support vector machine, and a transformer model:
RoBERTa-base. The transformer model was also
used with a pretrained adapter infused with it (Tak-
maz, 2022). We observe that the feed-forward NN
produced the best correlation values and was used
finally to predict all 25 gaze feature values for the
971 samples of the MUStARD++ dataset.
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Final Utterance Ground
Truth

Prediction
(w/o Gaze)

Prediction
(with Gaze)

Sarcasm
Type

Video
Frame

Howard: And I love that you’re
strong and independent.
BERNADETTE: And yet, I still love
when you hold a door for me.
Howard: "I love that I’m kind of a slob
around here, and... you’re
okay with that."
BERNADETTE: Uh-huh.
BERNADETTE: And I love
that I work and do all the
cleaning, and you’re okay
with that. Sarcastic Non-Sarcastic Sarcastic Propositional

PERSON: Hey, you guys the water is great.
You should really go in!
CHANDLER Oh, uh,
no thanks. I just had an M&M. Sarcastic Non-Sarcastic Sarcastic Illocutionary

Scott: No seriously.
Moderator: Sarcastic? Us?
Nooo. Sarcastic Non-Sarcastic Non-Sarcastic Illocutionary

Monika: Things are just really different at Raviga,
and I had nothing to do with the
decision. Guys, I’m so, so sorry.
Dinesh: Wait, so the company that offered us the
most until Richard talked them into offering
us the least is now offering us nothing?
Gilfoyle: But the fact
that you’re so sorry makes it
all better. Sarcastic Non-Sarcastic Non-Sarcastic Embedded

Table 7: Error Analysis table, presents instances from the dataset and their sarcasm label predictions with and
without the presence of gaze in the input.
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Gaze Feature Feature Description

Avg. Blink Duration
Mean of all blink duration’s in a Dialogue/
trial.

Avg. Fixation Duration
Average duration(in milliseconds) of all selected
fixations in a trial.

Total Regression Duration Total time of eye regression in a trial.

Run Count Total runs/count of fixations in a trial.

First Fixation Duration
Time for which the eye fixated first time
in a trial.

Total Duration Total Duration for a trial.

Fixation count Total number of fixations in a trial.

Max. Fixation Duration
time

Maximum time for which eye fixated in a trial.

Min. Fixation Duration Time Minimum time for which eye fixated in a trial.

Interest Area Count Number of Interest Areas in a trial.

IP Duration Duration of Interest Period in milliseconds.

Out Regression Count Total number of Regression in a trial.

Regression In count
Number of times regression happened to a
lower id interest area.

Fixation Duration Median Meadian of fixation durations in a trial.

Max Pupil Size Largest size of the pupil in the trial recording.

Mean Pupil Size Mean of the pupil sizes in a trial recording.

Min. Pupil Size Smallest pupil size in trial recording.

Min Pupil Size x
X position of the pupil at the time when pupil size
is minimum.

Interest Area Run
count

Mean of number of times the interest area was
entered and left.

Saccade count Total number of saccades in a trial.

Sample count Total number of samples in the trial.

Fixation Duration
SD

Standard deviation of all fixation durations.

Saccade Amplitude SD Standard deviation of all saccade amplitudes.

Visited IA count Total number of times the interest area was visited.

RT Reaction time associated with the trial.

Table 8: Gaze features and their description, these are the final set of gaze features that were used in the sarcasm
detection experiment.
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Total Regression Duration
Models Pearson corr Spearmann corr
FFNN -0.32 0.50
CNN -0.23 .47
SVM -0.185 -0.44
Roberta-base -0.062 0.13
Roberta-base + pretrained adapter -0.062 0.13

Table 9: Pearson correlation and Spearman correlation coefficient values to compare the quality of predicted gaze
feature: total regression path duration, using different models

Out Regression Count
Models Pearson corr Spearmann corr
FFNN 0.41 0.213
CNN 0.341 0.184
SVM 0.2515 0.12676
Roberta-base 0.078 0.11
Roberta-base + pretrained adapter 0.078 0.11

Table 10: Pearson correlation and Spearman correlation coefficient values to compare the quality of predicted gaze
feature: total regression count, using different models

Average Fixation Duration
Models Pearson corr Spearmann corr
FFNN -0.204 -0.32
CNN -0.186 -0.28
SVM -0.08002 -0.07692
Roberta-base 0.063 -0.041
Roberta-base + pretrained adapter 0.063 -0.041

Table 11: Pearson correlation and Spearman correlation coefficient values to compare quality of predicted gaze
feature: average fixation duration, using different models
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