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Abstract
Understanding narratives requires reasoning
about the cause-and-effect relationships be-
tween events mentioned in the text. While
existing foundation models yield impressive
results in many NLP tasks requiring reasoning,
it is unclear whether they understand the com-
plexity of the underlying network of causal re-
lationships of events in narratives. In this work,
we present CRAB, a new Causal Reasoning
Assessment Benchmark designed to evaluate
causal understanding of events in real-world
narratives. CRAB contains fine-grained, con-
textual causality annotations for ∼ 2.7K pairs
of real-world events that describe various news-
worthy event timelines (e.g., the acquisition
of Twitter by Elon Musk). Using CRAB, we
measure the performance of several large lan-
guage models, demonstrating that most sys-
tems achieve poor performance on the task.
Motivated by classical causal principles, we
also analyze the causal structures of groups of
events in CRAB, and find that models perform
worse on causal reasoning when events are de-
rived from complex causal structures compared
to simple linear causal chains. We make our
dataset and code available to the research com-
munity.1

1 Introduction

Understanding narratives requires understanding
the cause-and-effect relationships between inter-
connected sub-events of those narratives. When
reading text, humans immediately induce potential
causal links between the events presented as part
of a larger scenario (Grunbaum, 1952; Pearl and
Mackenzie, 2018). For example, in Figure 1, when
reading an article about the acquisition of Twitter in
2022, a reader would implicitly assign causal links
between events such as E2: “Elon Musk closes 44
billion dollar deal to buy Twitter” and E3: “Twitter
delists from the NYSE”.

*Equal contribution
1https://github.com/epfl-nlp/CRAB

Figure 1: Events from CRAB that lead to event E6, form-
ing causal sub-structures with links of various causal
strength.

However, building accurate causal mental mod-
els of the situations depicted in narratives poses
several complex challenges. First, human causality
judgments are rarely binary. Instead, they fall on a
spectrum depending on human perception of other
mediating or confounding events (Pearl, 2009). For
example, in Figure 1, E2 is a mediator event for the
causal relationship of E1 and E3, likely affecting
the human perception of the causal relationship be-
tween E1 and E3. Second, causality judgments de-
pend on the context depicting the events in question
— a context that can affect perceptions of causality.
For example, a high causal judgment might be as-
signed between E4 and E6 in Figure 1. However,
the introduction of new information about E5, an-
other potential cause of E6, might downgrade the
perceived intensity of a causal link between E4 and
E6. Finally, because context is critically important
to judging causal relationships about events, and
most narratives offer an incomplete (and sometimes
biased) reporting of particular scenarios, multiple
sources may be required to paint an accurate pic-
ture of the causal relationships between multiple
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interconnected events.
Addressing these challenges, we introduce

CRAB, a new Causal Reasoning Assessment
Benchmark that contains fine-grained, contextual
causality annotations of real-world events that hap-
pened in the past ten years and received extensive
media coverage. To collect the proposed bench-
mark, we design a crowdsourcing framework mo-
tivated by standard causal principles from cogni-
tive science (Cao et al., 2022) and actual causality
(Halpern, 2016) that study how humans perceive
and express causality and responsibility among
events. Using this knowledge frame, we automat-
ically extract the events of newsworthy stories by
integrating large pre-trained LMs into the dataset
creation loop. We then construct causal graphs —
combinations of inter-connected events forming
different causal chains and frames, as presented in
Figure 2 — from the extracted events and assess the
strength of the causal relationships between these
events using human annotators.

Our resulting benchmark, CRAB, contains
∼2.7K high-quality event pairs, their causal score,
and the respective documents in which the events
appeared. All the events are grouped into 1.8K
causal frames and 352 causal chains. We use this
benchmark to assess the abilities of state-of-the-art
(SoTA) models to understand and reason over the
causal relationships of real-world events present in
a set of contexts (i.e., online news articles). Our
analysis reveals that LLMs can capture explicit
causal statements through pre-training, but they
face difficulty applying causal reasoning to new
scenarios, limiting their generalization and accu-
racy in offering predictions and explanations. We
further stratify our results based on the structures of
causal frames and chains, showing that they strug-
gle with assessing the causality between events de-
rived from complex causal structures compared to
simple linear causal chains, especially when these
events are extracted from different documents.

2 Preliminaries on Causality

In this section, we define the main causality con-
cepts that we use to create and analyze CRAB.

Actual Causality Actual causality refers to the
causal relationship between specific events and
their causes in the real world (Halpern, 2016) and
seeks to understand the precise mechanisms by
which one event leads to another, going beyond
mere correlation. Understanding actual causality is

crucial for humans to comprehend the underlying
factors driving specific events, helping them make
sense of the world, predict outcomes, and take prac-
tical actions toward those outcomes. Research in
causal inference has attempted to formalize actual
causality using causal models that map how hu-
mans perceive and attribute cause and responsibil-
ity to events and their outcomes. However, human
perception of causality usually depends on back-
ground context, implicit biases, epistemic state,
and lack of information, making the task of ac-
tual causality attribution challenging to formalize
(Matute et al., 2015; Henne et al., 2021). Addi-
tionally, in cases where the responsibility of an
event can be attributed to more than one preceding
event, observers tend to assign different attribu-
tion to the contributing causes (Wolff and Shepard,
2013). Therefore, when events are described with
natural language, the causal judgments are not bi-
nary but relative, enabling comparisons between
causal events (Icard et al., 2017).

Causal Frame Humans tend to attribute different
degrees of causality between contributory events,
relying primarily on domain and commonsense
knowledge (Kıcıman et al., 2023). Causality re-
search refers to this set of candidate events that are
relevant to a particular outcome event as a Causal
Frame (Halpern, 2016). An example of this can be
seen in Figure 1, where the causal frame of event
E6 comprises events E2, E4 and E5. We construct
CRAB to collect causal frame subgraphs, where
each event is associated with its potential causes,
along with a causal score labeled by humans. In
that way, a subset of events can be directly com-
pared using their scores, a proxy for their likelihood
to be the cause of a target event. Later in this paper,
we explore the different types of Causal Frames ex-
tracted from CRAB as presented in Figure 2 (left)
and we stratify our analysis on LLM assessment
based on these structures.

Causal Chain Another perspective for assessing
the degree of causality between two events is to
explore the chain of events that happened through
time and led to an outcome event E (Pearl, 2009).
We define the causal chain of an outcome event as
the set of paths ending at E in the event’s causal
graph (see Section 3.1). In the example in Figure
1, the following causal chain can be considered:
event E1 led to event E2, which led to event E3.
In contrast with causal frames, the concept of the
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Figure 2: Different structures of causal frames (left; Halpern, 2016) and causal chains (right; Pearl, 2009) present in
CRAB. The patterns in structures are formulated based on the different causal judgment scores among events. The
colors of cause-nodes represent the causality strength they have towards the event-node E.

causal chain is heavily related to temporality since
the events present in the chain are ordered not only
based on causality but also by the time they took
place. CRAB leverages both concepts of causal
chains and temporality, providing a testbed for lan-
guage models to assess their ability to perform
causal reasoning in different causal chain structures
as depicted in Figure 2 (right).

3 Dataset Construction

In this section, we give an overview of causal event
linking and its associated challenges, and describe
our approach for building our CRAB benchmark
centered around these challenges. We create a cor-
pus of documents from which we automatically
extract events, build a timeline, and collect causal-
ity judgments between event pairs. The full data
creation pipeline is described in Figure 3.

3.1 Overview

We consider a set of documents covering a news
story. Each document reports several events associ-
ated with that story. The time-ordered list of these
extracted events defines a timeline associated with
the story. From a timeline and its set of documents,
we can build a causal event graph. Our goal is
to identify the causal relations between the events
in the graph using the documents in which these
events are mentioned.

Challenges Real-world causality identification
and assessment poses several challenges:

Subjectivity: Causal judgments may be affected
by the implicit knowledge and bias of the reader,
rather than the content of the document. Readers
may feel a strong impression of causation about an
event, even when the real causal relation is unclear
based on the context (Wolff and Shepard, 2013).

Contextualization: Limited or subjective coverage
of stories by the documents makes the automated
creation of the story timelines and the respective
causal graphs subject to incompleteness.

Temporality: Extracting events from a single docu-
ment and ordering them based on their occurrence
in time is a relatively straightforward task. How-
ever, this task is more complex in a multi-document
setting as extracted events are grounded in different
documents, which may be published on different
dates. Consequently, their respective timelines may
be interleaved.

While methods have been proposed for causal link
identification and assessment, they mostly focus
on binary commonsense causality detection across
short, single-document text (Zhang et al., 2023),
which does not adequately address the unique chal-
lenges of real-world causality judgment. In the fol-
lowing sections, we present our approach for build-
ing CRAB that addresses the above challenges.
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Figure 3: CRAB data pipeline overview: We collect documents covering newsworthy stories, create a timeline with
the main events extracted from the documents for each story, and crowdsource human annotations on the causal
judgments between the events (score 0 to 100). Based on these scores, we generate a causal graph for each story
that can be filtered on different causal score thresholds. CRAB can also be viewed from the perspective of causal
frames and causal chains as presented in Section 2. Same-color events originate from the same document.

3.2 Document Selection
We first select 20 stories about major events that
happened around the world during the past 10 years,
covering geopolitical, social, and environmental
themes. We scrape the top 20 news articles per
story from Google News API,2 filter the invalid
ones and clip them to 250 words.3 Our final corpus
contains 173 documents, which we use for event
extraction (see descriptive statistics and selection
process details in Appendix A.1 and Table 17).

3.3 Event Extraction
We extract the main events mentioned in each docu-
ment. In contrast to prior work (Shi and Lin, 2019),
we use a generative approach to extract the main
events given a news piece. Specifically, we prompt
GPT-3 (text-davinci-003, Ouyang et al., 2022)
to extract the main events from a given document
(similar to Veyseh et al., 2021, see Appendix Table
12 for exact prompts). Extensive experimental anal-
ysis (see Table 10) confirms that this generative
approach for event extraction leads to higher ex-
traction precision and semantic granularity suited
for our task.

Extraction Verification Because generative
methods come with the limitation of hallucinations
and wrong outputs, we filter extracted events to
keep only the valid generations. We first automat-
ically filter events that contain less than 3 tokens,

2https://serpapi.com/
3When clipping articles, we avoid dividing sentences.

and remove generations that represent claims or be-
liefs by filtering the utterances with conversational
verbs followed by quotes (e.g. “said” + “«”). Then,
two experts manually evaluate the validity of all
the remaining generated events. After filtering, our
dataset contains 384 unique events.

Timeline Construction & Event Disambiguation
As causality is conditioned on temporality, we man-
ually create a timeline of the extracted events for
each of the 20 stories, by considering all documents
associated with the story. While building these
timelines, we disambiguate the events mentioned in
different documents by merging differently phrased
instances of the same event. Post-annotation, we
refer to the merged instances as one single node
in the causal graph while keeping all the textual
versions of it in the dataset.

3.4 Event Causality Linking

In the final stage of our pipeline, we collect causal-
ity judgments about all event pairs extracted from
the documents related to a specific story (2730
pairs). We distinguish two settings: when both
events in the pair are originally from the same doc-
ument (in-document setting, 360 pairs) and when
they originate from different documents (cross-
document setting, 2370 pairs). Motivated by the
way cognitive studies capture judgments about ac-
tual causality (Gerstenberg et al., 2021), we define
the causality between real-world events not as a
single binary score but as a continuous value from
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0 to 100, enabling finer analysis and predictions
of causal judgment. We qualify 44 Amazon Me-
chanical Turk workers, and for each pair of events,
task 7 workers with providing a judgment for the
causal link between the events (see Appendix A.3
for details).

3.5 Causality Strength Validation

We divide the causality score into 4 classes (0-20,
20-50, 50-80, 80-100) to compute Krippendorff’s
α4 between our 44 annotators (see Appendix A.4).
Krippendorff’s α for all classes is 0.28, and 0.38
when considering only the furthest classes (0-20
and 80-100).5 We average all annotators’ causality
scores for each event pair to obtain a unique scalar
causal judgment and classify this event pair score
into the 4 causal classes (high, medium, low, and
no causality). Given the low agreement, we select
pairs where the average score falls on the boundary
of the 4 classes and the variance between annotators
is high, to be validated by experts. This subset con-
sists of 26.7% of the benchmark. This step is done
by asking three expert annotators (NLP researchers
who are familiar with the task of causal inference)
to further annotate event pairs’ causal scores and
classes. The experts, given the average causal score,
were asked to choose which of the neighboring
classes was a better class for the event pair, up-
dating the score accordingly. The inter-rater agree-
ment, using Krippendorph’s alpha, between experts
is 0.70. These expert-validated causal scores along
with the remaining low-variance samples are used
for CRAB.

4 Dataset Analysis

4.1 Descriptive statistics

CRAB consists of a set of 173 documents regarding
20 different stories discussing newsworthy real-
world events. It contains 384 extracted unique
event instances and 2730 event pairwise causality
scores (see Table 5 in Appendix for additional de-
scriptive statistics). The experiments presented in

4With https://pypi.org/project/krippendorff/, us-
ing interval metric to calculate the pairwise distance.

5We note that the high number of annotators per sample
makes the raw number of disagreements higher, lowering α.
Moreover, contrary to classical annotation situations where
a small number of annotators label each sample, annotation
using Amazon Mechanical Turk involves many annotators
participating in a task, thus each sample being annotated by
different workers, augmenting the variance and decreasing the
agreement rate.

Type of pairs Pairwise Event Causality Score
Below 20 20-50 50-80 Above 80

In-doc 3.9% 25% 26.6% 44.4%
Cross-doc 13.1% 37.6% 25.3% 24%

All pairs 11.9% 35.9% 25.5% 26.7%

Table 1: Percentage of pairs present in the CRAB, per
causality score class.

the following section, are based on these 4 classes
reported in Table 1.

4.2 Causal Structures

As discussed in Section 2 and based on expert an-
notations of the pairwise causality between events,
we view CRAB from the perspective of causal
frame subgraphs. We stratify the dataset and get
the causal frame of each event. We categorize
these subgraphs based on the causal links present
in them. We observe different categories based
on the strength of causal scores between the effect
event and the potential causes (in-degree edges of
the causal frame graph). Figure 2 (left) depicts
the different types of causal frames present in the
dataset, and Table 6 provides statistics relative to
the number of chains and events for each one of
the structure types.

Similarly to causal frames, we extract causal
chains from CRAB based on the three causal
structures; Mediation, Confounding, and Collision
(Pearl, 2009), depicted in Figure 2 (right). Descrip-
tive statistics of the extracted causal chains that fit
into these three cases are reported in Table 7.

5 Experimental Setup

To evaluate how language models reason about
causality, we define different experimental frame-
works covering various causality assessment sce-
narios, similar to Kıcıman et al. (2023). We investi-
gate three tasks in ascending order of complexity in
terms of causal structure: pairwise causality infer-
ence, graded causality inference, and causal chain
inference. This section describes the experimental
setups associated with these tasks, and the models
evaluated on them.

5.1 Models

We use two decoder-only instruction-following
API-based models, GPT-3 (text-davinci-003,
175B size) and GPT-4, with the settings suggested
by OpenAI (2023): a temperature of 0.3 and a max-
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imum length of 256 tokens. We additionally test
CRAB using Flan-Alpaca-GPT4-XL (Chia et al.,
2023), an open-source 3B size encoder-decoder
model fine-tuned on instruction-following datasets:
Flan (Longpre et al., 2023) and GPT4-Alpaca.6

5.2 Experiments

Pairwise Causality Inference To evaluate Pair-
wise Causality Inference, we first prompt the model
to generate a scalar causality score between two
events given a context (the documents from which
the events were extracted), mimicking the bench-
mark human annotations. We compare it with the
average annotators’ score in CRAB. In initial ex-
periments, this setup led to very poor performance
as all the models failed to generate a scalar value
for quantifying causality. Therefore, we mapped
the causality intervals to descriptions of different
degrees of causality and augmented the prompt
instructions with score ranges and their explana-
tions. The 4 classes and definitions are as follows
(i) High causality: a link between events that are
definitely causally related to each other (causal
score above 80), (ii) Medium causality: a link be-
tween events that might be slightly causally related
to each other (causal score between 50 and 80), (iii)
Low causality: a link between events that have a
little causal connection (causal score between 20
and 50), and (iv) No causality: independent events
(causal score lower than 20). The full prompt can
be found in Table 16 in Appendix. We then evalu-
ate the model’s answer by mapping the generated
score to the four classes and computing the Macro-
F1 score (Pairwise Causality Score in Table 2).

We also experiment with binary and multi-class
classification tasks (Binary Pairwise Causality
and Multi-class Pairwise Causality in Table 2, re-
spectively), prompting the model to output a causal-
ity class instead of a raw score. For multi-class,
the generated output is a letter matching one of 4
classes. For the binary classification, we ask the
model whether an event caused another to happen
based on the provided contexts, the answer being
“yes” or “no”. The prompts for these tasks can be
found in Tables 13 and 14 in Appendix.

Graded Causality Inference As described in
Section 2, one of the main concepts in actual causal-
ity is graded causation or responsibility (Halpern,
2016), which is the relative degree to which an

6https://instruction-tuning-with-gpt-4.github.
io/

event causally contributes to an effect. For example,
following the example in Figure 1, multiple events
are responsible for causing E6: “Twitter has lost
many users permanently”, with different causality
scores. Thus, we go beyond pairwise causality and
design two methods to prompt models to rank the
events that contributed more to the effect. First,
we create a Multiple Choice Question (MCQ) An-
swering task that asks the model to provide the
most contributory to an effect cause among several
events. We construct the dataset for the experiment
by using the causal frames of each event and select-
ing 4 possible causes. We then ask the model to
select, based on these 4 choices, the cause with the
highest causality score (see the prompt in Table 15
in Appendix).

Second, we assess the responsibility of event
pairs by stratifying the results of the pairwise
causality experiment based on the type of events’
causal frames. For each event, we extract its causal
frame (i.e., all the potential causes of an event) and
predict the class of causality between that event
and all the potential causes in the causal frame. We
compute both the average F1-score and the Exact
Match (EM) between CRAB’s causal class anno-
tations (4 classes) and the causal class predictions
across all event pairs in the causal frame. We report
the scores in Table 3 and stratify them based on
the different causal frame structures strong direct
(SD), direct (D), strong contributory (SC), contrib-
utory (C), mixed (M) and no causality (N) (Figure
2 (left)).

Causal Chain Inference Pairwise causality pro-
vides a strong indication of the causal relationship
between two events. However, these events are usu-
ally part of a larger chain of events with complex
causal patterns. In this experiment, we consider
not only the relations between the causes and the
effect in causal frames but also how the causes are
related to one another. We stratify the results of the
pairwise causality experiment based on the three
causal chain structures we introduced in Sections 2
and 4; Mediation, Confounding, and Collider (Fig-
ure 2 (right)). Similarly to the previous experiment,
we extract causal chains that fit the three patterns
and compute the F1-score and the Exact Match
(EM) between CRAB’s causal class annotations (4
classes) and the causal class predictions for each
edge in the causal chains. We report each model’s
average scores in Table 4.
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Tasks Models All pairs In-doc Cross-doc Pre-Jan 2022 Post-Jan 2022

Pairwise Causality Score Flan-Alpaca 21.6 14.9 22.4 22.0 21.3
GPT-3 25.8 24.4 25.4 26.6 25.2
GPT-4 54.7 59.0 53.7 56.4 53.5

Multi-class Pairwise Causality Flan-Alpaca 11.0 12.2 10.8 11.2 10.7
GPT-3 35.0 27.4 34.9 35.0 34.5
GPT-4 45.6 46.1 45.0 43.1 46.7

Binary Pairwise Causality Flan-Alpaca 60.1 73.8 56.7 62.1 58.7
GPT-3 57.2 67.0 55.0 56.9 57.5
GPT-4 73.9 80.0 72.6 76.5 72.0

Graded Causality (MCQ) Flan-Alpaca 39.9 53.2 29.3 44.1 35.4
GPT-3 59.7 70.9 50.7 64.5 54.5
GPT-4 53.8 67.3 43.1 63.3 44.5

Table 2: Macro F1-scores on SoTA LLMs on all Pairwise Causality Inference tasks as presented in Section 5.2 and
the Graded Causality Inference MCQ task presented in Section 5.2. For the MCQ task, we stratify the results for
in-doc and cross-doc based on whether the effect & correct cause are extracted from the same document.

MODELS All Frames SD D SC C M N
F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Flan-Alpaca 10.2 0.8 5.0 0.1 19.8 11.1 3.7 0.0 8.0 0.1 13.0 0.7 6.4 3.0
GPT-3 28.8 3.3 29.1 4.1 30.5 16.6 31.9 3.3 31.0 4.1 29.0 0.0 19.3 9.1
GPT-4 38.9 6.1 45.2 16.7 39.8 11.1 40.6 6.7 38.3 3.1 36.8 1.3 39.4 24.2

Table 3: Macro F1 and EM scores on SoTA LLMs for Graded Causality Inference (Section 5.2) stratified for
different Causal Frame types. SD is for Strong Direct Causality; D is for Direct Causality; SC is for Strong
Contributory Causality; C is for Contributory Causality; N is for No Causality; M is for Mixed Causality. Green
colors depict the F1 and EM highest scores of the Causal Frame types for each LLM and orange colors depict the
lowest scores. Please refer to Figure 2 for detailed visualization of the different Causal Frame structures.

MODELS Mediation Confounding Collider
F1 EM F1 EM F1 EM

Flan-Alpaca 49.4 25.4 38.1 10.0 29.3 8.2
GPT-3 40.2 10.6 38.1 9.7 28.0 9.7
GPT-4 38.2 5.8 44.9 20.9 25.1 5.4

Table 4: Macro F1 and EM scores on SoTA LLMs
for the Causal Chain Inference stratified in different
Causal Chain structures as described in Section 5.2.
Green colors depict the F1 and EM highest scores

of the Causal Chain types for each LLM and orange
colors depict the lowest scores.

6 Experimental Results

In the previous section, we introduced several
lower-level tasks to investigate whether various
LLMs can accurately assess pairwise causality
judgments. Here, we describe the results from the
perspective of Causal Discovery, Causal Respon-
sibility Assessment, and Multi-document Causal
Reasoning. We perform an in-depth analysis of
LLM capabilities in different facets of causality,
grounded to principles and dimensions of actual
causality described in Section 2.

Causal Discovery Table 2 provides the pairwise
causality inference scores for the three pairwise
sub-tasks. All models perform poorly on CRAB,
with GPT-4 showing a higher performance in most
of the tasks compared to GPT-3 and Flan-Alpaca.
In the case of Binary Pairwise Causality inference,
we measure GPT-3 and GPT-4’s binary classifica-
tion Macro-F1 scores for different thresholds (see
Figure 5 in Appendix). Both models tend to predict
causation between events with a gold causal score
above 50. Interestingly, if we increase this gold
score threshold and consider only causal events
with a high causal connection, the performance in
all models drops. A possible interpretation behind
these results is that large language models are typ-
ically quite good at identifying the distributional
similarity between concepts. When it comes to
making causal judgments, they may identify multi-
ple related events as causally associated with an out-
come rather than a single consequential event. This
means that they may misclassify events weakly re-
lated to the event in question as causes. Ideally,
when asked about a binarized causal relationship,
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we would like models to provide only the main
causes (strong relation between two events).

Models also under-perform when assessing
Multi-class Pairwise Causality inference, espe-
cially when assessing medium and no causality
(Table 8). Further investigation of the results
shows that in these cases of misclassification, the
model tends to predict high causality instead of
medium causality, and medium causality instead
of no causality, demonstrating that models tend to
hallucinate stronger causal relationships than hu-
mans perceive. Misclassified cases can be found
in Figure 6. To assess the effect of fine-tuning on
models’ ability to learn the Causal Discovery task,
we additionally fine-tuned one encoder-only and
one decoder-only language model (DeBERTa-v3-
large (He et al., 2021) and Llama2-7B (Touvron
et al., 2023)). The experimental setup and analysis
in Appendix B show that CRAB also challenges
the current state-of-the-art fine-tuned methods.

Assessing Responsibility Going beyond pair-
wise causality and assessing whether LLMs can
assign responsibility among potential causes of a
specific event, we show that models fail to capture
complex causal structures. Table 3 shows that mod-
els perform better when assessing the causality of
graph structures that contain causal scores that are
well-separated from each other; high causal VS low
or no causal ones (Strong Direct and Direct Causal
Frames), compared to structures with scores of var-
ious degrees (Mixed Causal Frames). Additionally,
from Table 4, we notice a common struggle among
all models regarding the Collider case; a causal
diagram of two causes that contribute to an effect
but are not themselves related to each other.

Multi-document Causal Reasoning In Table 2,
we report results for causal score prediction for
both event pairs that are found in the same docu-
ment and event pairs found across documents. In all
experimental settings, we see better performance
for event pairs extracted from the same document
(in-doc pairs). Based on the in-doc high causal
score percentage reported in Table 1, models tend
to perform well in the causal discovery of in-doc
event pairs since documents usually express causal
relationships in an explicit way, likely because nar-
rators seek to draw explicit causal links between
events. Interestingly, in the MCQ setting, we find
that GPT-4 wrongly assigns the highest responsi-
bility to events that belong in the same document

33% of the time, indicating that models themselves
may be biased to prefer in-document causal links,
even when humans identify a different causal link
across multiple documents. This result suggests
that models are able to capture causality when it
is explicitly referred to in one context but struggle
when it is implicitly inferred across documents.

Memorization vs. Generalization Due to the
lack of transparency of closed-source GPT mod-
els, concerns arise regarding whether LLMs, pre-
trained on extensive internet data, were subjected to
the test set of benchmarks during their pre-training
phase (Jacovi et al., 2023). This presents a complex
challenge in assessing the degree to which LLM
performances change for events they might have
seen during the pre-training phase. We study how
the performance of GPT-3/4 varies when identify-
ing causality for real-world events occurring pre-
Jan 2022 and post-Jan 2022 (the official threshold
date for their training data source). Even though
we provide the context to these models, we still ob-
serve a substantial drop in performance for graded
causality and pairwise causality score, suggesting
that the performance of models can be affected by
knowledge of the events memorized during their
pretraining stage.

7 Related Work

Causal Reasoning Benchmarks There has been
extensive research on introducing challenging
causal benchmarks in recent years. They focus
on commonsense causal discovery and reasoning
(Mooij et al., 2016; Kalainathan and Goudet, 2019;
Bethard et al., 2008; Dalal et al., 2023), as well as
assessing causal reasoning from the perspective of
plausible alternatives and counterfactuals (Roem-
mele et al., 2011; Frohberg and Binder, 2021; Sri-
vastava et al., 2022; O’Neill et al., 2022). Similar
to our work, there have been attempts to create
benchmarks that incorporate the cross-document
setup (Welbl et al., 2018; Tu et al., 2019) and causal
structures (Jin et al., 2023a), but not on real-world
events. Finally, domain-specific datasets that per-
form causal reasoning in the medical (Nori et al.,
2023) and the legal (Zhong et al., 2023; Choi et al.,
2023) domains have been introduced. CRAB dif-
fers from prior work regarding the nature of its
events, real-world events, and the type of causal
reasoning that assesses LLMs, actual causality.
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Assessing Causal Reasoning Many existing
studies investigate whether NLP models under-
stand causality (Feder et al., 2022; Jin et al., 2023b;
Zhang et al., 2023), providing methods to quantify
the causal abilities of language models to discover
causal relationships in documents (Cao et al., 2022;
Yu et al., 2019; Dalal et al., 2023) and extracting
cause-effect pairs as a subtask of information ex-
traction from text (Hidey and McKeown, 2016;
Huang et al., 2021; Jin et al., 2023a; Nauta et al.,
2019). Another line of work studies the improve-
ment of causal reasoning generation using instruc-
tion prompting (Kıcıman et al., 2023), Chain-of-
Thought (CoT; Wei et al., 2022), and prompt aug-
mentation (Schick et al., 2023).

8 Conclusions

This work introduces CRAB, a new causal reason-
ing benchmark that contains fine-grained, contex-
tual causality annotations for ∼2.7K pairs of real-
world events that describe various newsworthy sto-
ries. Using CRAB, we explore how LLMs assess
the causal relationships between events when the
causal signal comes from different contexts. Addi-
tionally, we assess LLMs performance in identify-
ing and assessing complex causal structures. Our
findings suggest that state-of-the-art language mod-
els perform poorly in pairwise causal inference and
responsibility assignment when events are spread
across documents. Furthermore, this weak per-
formance is amplified when LLMs must identify
causal relationships in complex causal structures
rather than simple linear chains.

9 Limitations

As discussed in Section 3, actual causality poses a
great challenge when collecting human causal judg-
ments about real-world events. We tried to mitigate
these biases by introducing intermediate valida-
tion steps throughout the data collection pipeline,
keeping experts in the loop, and focusing on col-
lecting objective causal assessments about stories
grounded in the respective documents. However,
several epistemic biases might remain since the
news pieces that the causal judgments have been
grounded on might contain biases propagated by
the reporter of the story. We try to distribute this
variance by using documents collected from vari-
ous sources. An additional limitation of our study
is related to the nature of the events of CRAB. Since
we are collecting real-world stories that were cov-

ered by the media, it is nearly impossible to identify
all possible mediating events in the causal graph.
We are in a limited information situation, both from
the viewpoint of the document (the document’s au-
thor might be unaware of other mediating events)
and of the model (we can not evaluate the amount
of information stored in the weights of the model).
The experiment regarding memorization and gen-
eralization is a first step toward investigating this
limitation.
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A Dataset Construction Details

A.1 News Article Selection
Based on a selection of 20 distinctive stories, we
crawl the web and select the top 20 news articles
per story. When extracting articles related to a
story that happened many years before, we noticed
that the retrieved articles also covered recent events
that were loosely related to the story’s main events.
Therefore, we use a time window of 9 months when
extracting the articles for each story to keep only
articles that have been published around the time
that the respective story happened.

A.2 Event Extraction
Using a generative approach for event extraction
has two main benefits, confirmed through exten-
sive experimental analysis. First, when prompted
correctly, generative models successfully output
structured information at the requested semantic
abstraction, which leads to higher precision when
extracting events. Second, the semantic granularity
of the events we want to extract is between sen-
tence and document level, meaning that we aim
for the main events covered in the article and not
syntactic events as existing works use (Ebner et al.,
2020).

Similarly to Smeros et al. (2019) and Romanou
et al. (2020), we filter the top 20 news articles per
story. We remove the ones with less than 100 words
and those with paywalls or provide re-directions to
the original referred news article. Finally, we clip
the article to 250 words and round to the end of the
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Figure 4: Dataset construction pipeline. Once events are extracted from the documents (Section 3), we order them
on time and formulate story timelines. Conditioned on the temporal ordering, we create all combinations of events
in the document and pass the in-document pairs to annotators. We perform a similar process for the event pairs
extracted from different documents (cross-doc), including an extra step of merging document timelines into one
before taking the pair combinations.

sentence token. We end up using a total number of
384 news documents as the main test bed for event
extraction. Figure 17 reports statistics about CRAB
stories.

Documents 173
Events 384
Pairs 2730
In-document pairs 360
Cross-document pairs 2370

Stories 20
Avg Timeline length 19
Avg pairs per story 137

Table 5: General descriptive statistics of CRAB regard-
ing event and event pairs stratified for both the in-doc
and cross-doc cases along with statistics about the sto-
ries and story timelines.

A.3 Crowdsourcing Causality Scores

For the in-document annotations, we show the an-
notators the documents and ask them to assess 3
event pairs. For the cross-document ones, we give 2
documents at a time, along with 5 event pairs. Fig-
ure 4 depicts the pair creation process that served
as input for Amazon Mechanical Turk experiments.

To select native English speakers, we focus on
the group of workers whose locations are in the
USA. We also ran a 2-phase qualification where
we evaluated the quality of annotators on our task
and selected the ones with a higher than 80% score
on our qualification task. Finally, 44 out of 400
workers are selected as qualified. We pay each

worker $0.80 for doing every 3 annotations for
the in-document event pairs and $0.90 for doing 5
annotations for the cross-document pairs. Figures 7
shows the screenshots of our Acceptance & Privacy
Policy, and Figures 8, 9 and 10 depict the task
instructions used for crowdsourcing along with the
scripts for the in-doc and cross-doc tasks.

Causal frame # frames # pairs In-doc Cross-doc

SD 24 85 25 60
D 18 70 22 48

SC 30 254 26 228
C 98 789 103 686

NC 33 100 18 82
MC 149 1386 156 1230

Table 6: Number of frames for different types of causal
frames (see Figure 2) along with the number of event
pairs additionally stratified for the in- and cross-doc
cases. SD is for Strong Direct Causality; D is for Direct
Causality; SC is for Strong Contributory Causality; C
is for Contributory Causality; NC is for No Causality;
MC is for Mixed Causality.

Causal chain # Chains

Mediation 774
Confounding 924

Collider 115

Table 7: Number of chains for different types of causal
chains (see Figure 2).
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Causal Strength Precision Recall F1 Support

High 0.57 0.61 0.59 722
Mid 0.35 0.38 0.36 685
Low 0.55 0.45 0.49 968
No 0.34 0.43 0.38 324

Table 8: Performance scores of Pairwise Causality (4
classes) Inference task for each class for the GPT-4
model.

Causality classes Size α

[1, 2] 1310 0.04
[2, 3] 1295 0.08
[3, 4] 1429 0.12
[1, 4] 1444 0.38

[1, 2, 3, 4] 2730 0.28

Table 9: Krippendorff’s α for different groups of
classes.

A.4 Inter-rater agreement

We have a total of 44 workers scoring the causality
between 2730 pairs of events. All pairs are an-
notated by at least 7 annotators and, at most, 10
(around 21.3k annotations). We divide the causality
score into 4 equal classes and compute Krippen-
dorff’s α. We consider the ground truth as the
majority vote. Table 9 shows Krippendorff’s α for
different groups of classes. As expected, the agree-
ment to discriminate between the lowest causality
class and the highest one is the highest, while it
is harder for annotators to agree on discriminat-
ing between nearby classes. Krippendorff’s α for
all classes is 0.27, and 0.33 for the further classes.
We note that the high number of annotators per
sample increases the raw number of disagreements.
Moreover, contrary to classical annotation situa-
tions where a small number of annotators label
each sample, the Amazon Turk settings involve
many different annotators participating in a task.
Thus each sample is annotated by different work-
ers, augmenting the variance and decreasing the
agreement rate.

B Experimental Results with Fine-Tuned
LMs

We initially evaluated our proposed dataset on
decoder-only models because decoder-only models
(especially API-based ones such as GPT-3 / 3.5 / 4)
have become important pillars of AI products, mo-
tivating researchers to benchmark their capabilities
and identify their biases and limitations. However,

Figure 5: F1 score per threshold for the Binary Pairwise
Causality assessment described in Section 5.2. The
scores reported in Table 2 correspond to a causal score
threshold of 50.

it is important to additionally evaluate our causal
benchmark on different architectures and inference
techniques, providing additional insight into the
difficulty of the task. On that note, we fine-tuned
DeBERTa-v3-large (He et al., 2021) and Llama2-
7B (Touvron et al., 2023) models.

We fine-tune both models on the 3 different pair-
wise causality tasks presented in our paper. For
each task, we create 3 different train/test splits
(75%/25% ratio) to study the generalization ability
of the models after fine-tuning; Date: we select 5
out of the 20 most recent stories for the test set and
the rest for the train, Story: we randomly select 5
stories for the test set and the rest for the train, and
Random: we randomly split the event pairs dataset,
regardless of the story or the date.

The results in Table 11 show that fine-tuned
DeBERTa-large (encoder-only) models fail to per-
form well on CRAB, showing that our benchmark
challenges the current state-of-the-art fine-tuned
methods. Compared to decoder-only models in
a few-shots setting, DeBERTa-large tends to un-
derperform when splitting by story, except for the
easier binary pairwise causality prediction task. Ad-
ditionally, as expected, the experiments with the
random data split have higher scores, which vali-
date the information leakage of the context from
the train to test set and verify that models rely on
the context (articles) when assessing the causal re-
lationship of the two events. A subsequent study on
how fine-tuning improves pre-trained LLMs causal
reasoning abilities would be interesting, and we
hope that our paper provides a strong benchmark
for pursuing this research direction.
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Few-shot event extraction on Precision Recall F1

Extractive summaries with SBERT (Reimers and Gurevych, 2019) 45.8% 31.9% 37.6%
Extractive summaries with GPT-3 (Brown et al., 2020) 63.8% 59.1% 61.3%
Abstractive summaries with GPT-3 Brown et al. (2020) 74.2% 52.8% 61.7%
Original Document - 5 par 75.0% 65.3% 69.8%

Table 10: Zero-shot performance score for Event Extraction using the GPT-3 model. Results are based on a manually
constructed dataset of 88 articles. We use different context settings by prompting the model with both providing the
document in its original form as well as its summary. We found that prompting with the original text yields better
quantitative and qualitative results.

Causality Tasks Model Split by Date Split by Story Random split

Pairwise Causality Score DeBERTa-large 21.6 21.4 22.9
Llama2 7B 24.3 26.3 32.8

Multi-class Pairwise Causality DeBERTa-large 29.4 35.8 60.8
Llama2 7B 23.2 23.1 32.7

Binary Pairwise Causality DeBERTa-large 62.5 74.2 76.6
Llama2 7B 51.1 51.9 58.5

Table 11: Macro F1-scores on test set for fine-tuned models on all Pairwise Causality Inference tasks as presented
in Section 5.2. We stratify the results for Date, Story and Random splits as described in paragraph B. The best
performance for each causality task is bolded.

PROMPT: Event Extraction

You are a journalist who whats to extract
the main events from articles.
These events need to summarize the story
of the article.
These events need to be in a list format.

<DOCUMENT>

Table 12: GPT-3 prompt for extracting events from
documents.

PROMPT: Binary Pairwise Causality

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event 1: <EVENT 1>
Event 2: <EVENT 2>
Did Event 1 cause Event 2 to happen?
Please answer in a single word: yes or no.

Table 13: Prompt for the Binary Pairwise Inference
task.

PROMPT: Multi-class Pairwise Causality - 4 Classes

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event 1: <EVENT 1>
Event 2: <EVENT 2>
How much did event 1 cause event 2 to happen?
[A] High causality: Event 1 is definitely
responsible for Event 2.
[B] Medium causality: Event 1 might have
been responsible for Event 2.
[C] Low causality: The context gives a
little indication that there is a connection
between the two events, but background info
might suggest a low causal connection.
[D] No causality: Events are somehow related
but definitely NOT causally related.

Let’s work this out in a step-by-step way
to be sure that we have the right answer.
Then provide your final answer within the
tags, <Answer>A/B/C/D</Answer>.

Table 14: Prompt for the Multi-class Pairwise Inference
task.
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Figure 6: Failed predictions of GPT-4 regarding CRAB on high and no causal classes.

Figure 7: Acceptance and Privacy Policies script for the Amazon mTurk experiment.
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Figure 8: Amazon mTurk instructions script. Annotators need to perform the pairwise causality assessment task
based on these instructions.
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Figure 9: Amazon mTurk example script for annotating event pairs extracted from the same document. Based on
the instructions, annotators need to read the narrative and assess the causal relationship of at most 3 event pairs at a
time. Due to space limitations, the figure depicts only one pair.

Figure 10: Amazon mTurk example script for annotating event pairs extracted from different documents. Based on
the instructions, annotators need to read both narratives and assess the causal relationship of at most 5 event pairs at
a time. Due to space limitations, the figure depicts only one pair.
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PROMPT: Graded Pairwise Causality - MCQ

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event: <EFFECT>

What is the most likely cause of this event?
[A] <CAUSE 1>
[B] <CAUSE 2>
[C] <CAUSE 3>
[D] <CAUSE 4>

Let’s work this out in a step-by-step way
to be sure that we have the right answer.
Then provide your final answer within the
tags, <Answer>A/B/C/D</Answer>.

Table 15: Prompt for the Graded Pairwise Inference
task.

PROMPT: Pairwise Causality Score

You are a helpful assistant for causal
relationship understanding.
Think about the cause-and-effect relationships
related to context.

Context:
<DOCUMENTS>

Event 1: <EVENT 1>
Event 2: <EVENT 2>

What is the causality score between Event 1 and
Event 2 from 0 to 100?
Score above 80: Event 1 is definitely responsible
for Event 2.
Score between 50-80: Event 1 might have been
responsible for Event 2.
Score lower than 50 Events are somehow related
but definitely NOT causally related.

Let’s work this out in a step-by-step way
to be sure that we have the right answer.
Then provide your final answer within the
tags, <Answer>score</Answer>.

Table 16: Prompt for the Pairwise Causality Score In-
ference task.
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Story Number of pairs Category

Twitter Acquisition 216 Business
Collapse of Silicon Valley Bank 177 Business;Economy
Gwyneth Paltrow ski crash 174 Lifestyle;Legal
Renewable energy 66 Environment;Economy
Acquisition of Credit Suisse by UBS 147 Business;Economy
Second Pink Tide 108 Politics
Release of ChatGPT 130 Technology;Business
Roe v wade Overturned 153 Society;Politics
Energy crisis 148 Economy
Heat waves 150 Environment
Tech Financial crisis 119 Economy;Business
Twitter Acquisition 117 Business

European floods 135 Environment
Ethereum Price 119 Business
Black Lives Matter riots 133 Society;Politics
Amazon rain forest wildfires 142 Environment;Politics
Notre Dame Fire 163 Society
MeToo movement 216 Society;Politics
Equifax data breach 193 Politics;Business
Panama Papers 139 Politics

Table 17: Stories present in CRAB along with statistics about the number of pairs event each contains.
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