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Abstract

Traditional sentence embedding models encode
sentences into vector representations to capture
useful properties such as the semantic similar-
ity between sentences. However, in addition
to similarity, sentence semantics can also be
interpreted via compositional operations such
as sentence fusion or difference. It is unclear
whether the compositional semantics of sen-
tences can be directly reflected as composi-
tional operations in the embedding space. To
more effectively bridge the continuous embed-
ding and discrete text spaces, we explore the
plausibility of incorporating various composi-
tional properties into the sentence embedding
space that allows us to interpret embedding
transformations as compositional sentence op-
erations. We propose INTERSENT, an end-to-
end framework for learning interpretable sen-
tence embeddings that supports compositional
sentence operations in the embedding space.
Our method optimizes operator networks and a
bottleneck encoder-decoder model to produce
meaningful and interpretable sentence embed-
dings. Experimental results demonstrate that
our method significantly improves the inter-
pretability of sentence embeddings on four tex-
tual generation tasks over existing approaches
while maintaining strong performance on tradi-
tional semantic similarity tasks.1.

1 Introduction

Learning universal sentence embeddings is crucial
to a wide range of NLP problems, as they can
provide an out-of-the-box solution for various im-
portant tasks, such as semantic retrieval (Gillick
et al., 2018), clustering (Hadifar et al., 2019), and
question answering (Nakov et al., 2016). Recently,
contrastive learning has been shown to be an ef-
fective training paradigm for learning sentence em-
beddings (Giorgi et al., 2021; Yan et al., 2021; Gao
et al., 2021; Chuang et al., 2022). These methods

1Code is available at https://github.com/jyhuang36/
InterSent

optimize the sentence representation space such
that the distance between embeddings reflects the
semantic similarity of sentences.

While the similarity structure of sentence em-
bedding models is an important aspect of the inter-
sentence relationship, contrastive learning meth-
ods do not provide a direct way of interpreting the
information encoded in the sentence embedding.
Despite the existence of probes for individual lin-
guistic properties (Conneau et al., 2018), it is still
unclear whether the embedding fully captures the
semantics of the original sentence necessary for
reconstruction. Moreover, sentence semantics not
only can be interpreted by their similarity but also
via sentence operations such as fusion, difference
and compression. While these operations of sen-
tence semantics have been previously studied indi-
vidually as sequence-to-sequence generation tasks
(Geva et al., 2019; Botha et al., 2018; Filippova and
Altun, 2013; Rush et al., 2015), it remains an open
research question whether these operations can be
directly captured as operations in the sentence em-
bedding space. We argue that the ability to interpret
and manipulate the encoded semantics is an impor-
tant aspect of interpretable sentence embeddings,
which can bridge the continuous embedding space
and the discrete text space. Particularly, this abil-
ity benefits concrete tasks such as multi-hop search
and reasoning (Khattab et al., 2021), instruction fol-
lowing (Andreas and Klein, 2015), compositional
generation (Qiu et al., 2022), and summarization
(Brook Weiss et al., 2022).

In this work, we propose INTERSENT, an end-
to-end framework for learning interpretable and ef-
fective sentence embeddings that supports compo-
sitional sentence operations. Our method combines
both generative and contrastive objectives to learn
a well-structured embedding space that satisfies
useful properties for both utility and interpretabil-
ity. Specifically, together with an encoder-decoder
model, we train several small operator networks on
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Figure 1: Overview of our proposed framework INTERSENT for learning interpretable sentence embeddings. Given
a pair of input sentences (or a single input sentence for compression and reconstruction), INTERSENT encodes
the input sentence(s) into sentence embedding (s), which are fed into an operator network to compute the output
embedding for decoding. During training, INTERSENT ensures alignment between the output and target in both the
embedding space and text space via contrastive and generative objectives respectively.

easily available weak supervision data to capture
different sentence operations. Sentence embed-
dings learned by our model not only preserve the
ability to express semantic similarity but also sup-
port various sentence operations (such as sentence
fusion, difference, and compression) for interpret-
ing compositional semantics.

Our contributions are three-fold. First, we pro-
pose INTERSENT, an interpretable sentence em-
bedding model that establishes a mapping between
the continuous embedding space and the discrete
text space by connecting transformations on em-
beddings and compositional operations on texts.
Second, our method significantly improves the in-
terpretability of sentence embeddings on four tex-
tual generation tasks. Third, we demonstrate that
interpretable sentence embeddings learned by our
method still maintain strong performance on tradi-
tional semantic similarity and text retrieval tasks.

2 Method

Fig. 1 illustrates the overall architecture of
INTERSENT. Our method, INTERSENT, optimizes
both a contrastive objective (in the continuous
space) and a generative objective (in the discrete
text space) jointly during training. In this section,
we define the notion of interpretability for a sen-

tence embedding space and provide a detailed de-
scription of our proposed framework INTERSENT.

2.1 Problem Definition

Our notion of interpretable sentence representa-
tions centers around the ability to interpret em-
bedding vectors and simple transformations de-
fined over them in the embedding space, as human-
comprehensible sentences and sentence operations
in the text space. In other words, our goal is to
establish

• a mapping between embedding vectors and sen-
tences, which allows us to both encode sentences
into vectors and decode vectors into sentences;

• a mapping between certain simple transforma-
tions over vectors and certain sentence opera-
tions, which allows us to manipulate sentence
semantics in the embedding space.

In this work, we explore the plausibility of sup-
porting several common sentence operations that
are previously studied as individual sequence-to-
sequence generation tasks (Geva et al., 2019; Botha
et al., 2018; Filippova and Altun, 2013; Rush et al.,
2015). These include the following compositional
operations:
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• Sentence Fusion: Given the embeddings of two
sentences, an embedding of their fusion, which
contains information from both sentences, can be
inferred.

• Sentence Difference: The embedding of the dif-
ference between two sentences can be inferred
from their individual embeddings. To avoid am-
biguity, we restrict this definition to only cases
where the first sentence contains the whole infor-
mation of the second sentence. In other words,
sentence difference is essentially defined as an
inverse operation of sentence fusion.

In addition, we consider the following compres-
sion operation, as well as sentence reconstruction
that help interpret the meaning of any sentence
embedding vector.

• Sentence Compression: Given the embedding of
a sentence, we seek to infer the embedding of the
compression or summarization of this sentence.

• Sentence Reconstruction: The content of the orig-
inal sentence can be recovered from its sentence
embedding. This property serves as the founda-
tion for interpretability, as it allows us to under-
stand the semantics of any sentence embedding
vector, including those computed by applying
the sentence operations (in the form of vector
transformations) in the embedding space.

In other words, we aim to learn a sentence en-
coder Enc, a sentence decoder Dec, and sentence
operator functions ffus, fdiff, fcomp that satisfies the
following properties:

• Enc(s1 ⊕ s2) ≈ ffus(Enc(s1), Enc(s2)) where
sentence s1 ⊕ s2 is the fusion of sentence s1 and
s2.

• Enc(s1⊖s2) ≈ fdiff(Enc(s1), Enc(s2)) where
sentence s1 ⊖ s2 is the difference of sentence s1
and s2.

• Enc(s) ≈ fcomp(Enc(s)) where sentence s̄ is a
compression of sentence s.

• s′ ≈ Dec(Enc(s)) where s′ and s are a pair of
sentences expressing the same semantics.

2.2 Sentence Operator
We use two-layer MLPs to fit operator functions
over embeddings, which can be trained together
with the rest of the model components in an end-
to-end manner. Some compositional sentence op-
erations may be alternatively approximated with

simple arithmetic operations, such as addition and
subtraction of embedding vectors. We empirically
show that defining sentence operations with sim-
ple arithmetics leads to inferior performance on
downstream tasks (see §4.2 for more details). In
comparison, MLP transformations achieve a good
balance between simplicity and flexibility to fit dif-
ferent sentence operations. All operator networks
take a sentence embedding (for compression), or a
concatenated pair of sentence embeddings (for fu-
sion and difference), and compute a new sentence
embedding as the target. For the compression op-
erator, we use a small intermediate dimension size
to limit the information flow and encourage the
model only to preserve essential information in the
compressed embeddings.

2.3 Bottleneck Model
Our model uses Transformer-based language mod-
els as encoders and decoders for sentence embed-
dings. Unlike in the typical encoder-decoder archi-
tecture for sequence generation, where the decoder
has access to the contextualized representations of
all tokens, the encoder in INTERSENT only outputs
a single vector as the representation for each in-
put sentence. Following previous work (Gao et al.,
2021; Chuang et al., 2022), we take the represen-
tation of the [CLS] token from the encoder as the
sentence embedding. This information bottleneck
forces the model to produce meaningful sentence
embeddings such that the decoder can reconstruct
the semantics given the embedding vectors alone.
It is worth noting that the encoder and decoder
are shared across all sentence operations, which
forces the model to capture the operations in the
embedding space, rather than learning task-specific
encoders and decoders for each operation.

2.4 Training Objective
INTERSENT combines contrastive and genera-
tive objectives to learn interpretable sentence em-
beddings that captures both semantic similarity
and sentence operations. Specifically, we train
INTERSENT to maximize alignment between out-
puts and targets in both the embedding space and
text space. This means that the output embedding
computed by an operator function should be close
to the target embedding, and the target sentence can
be decoded from the output embedding. The first
objective is realized by optimizing a contrastive
loss with in-batch negatives. For the i-th training
instance, let vi and v+

i denote the output embed-
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ding (computed by the encoder fenc and an oper-
ator function from the input sentence(s)) and the
target embedding (computed by encoding the tar-
get sentence directly). The contrastive objective for
(vi,v

+
i ) is given by

Li,con = − log
esim(vi,v

+
i )/τ

∑N
j=1 e

sim(vi,v
+
j )/τ

, (1)

where N is the mini-batch size, and τ is the softmax
temperature. To ensure the target sentence can
be decoded from the output embedding, we also
optimize the following conditional generative loss:

Li,gen = − 1

|Ti|

|Ti|∑

k=1

log p(ti,k|Ti,<k,vi). (2)

where Ti denotes the target sequence for the i-th
training instance in the batch. Both losses are com-
bined with a balancing factor α:

Li = Li,con + αLi,gen. (3)

3 Experiments

In this section, we evaluate the interpretability of
INTERSENT and recent sentence embedding mod-
els on four generative sentence operation tasks.
Then, we conduct experiments on traditional zero-
shot semantic textual similarity benchmarks. Fi-
nally, we compare our model with previous meth-
ods on zero-shot sentence retrieval tasks.

3.1 Data
To learn the sentence operations we described pre-
viously, INTERSENT is trained on the combination
of five weak supervision datasets for sentence fu-
sion, difference, compression, and reconstruction.
DiscoFuse (Geva et al., 2019) is a sentence fusion
dataset constructed with heuristic rules that com-
bines two sentences into one. WikiSplit (Botha
et al., 2018) is a split-and-rephrase dataset extracted
from Wikipedia edits, which we use for the sen-
tence difference task. For compression, we use
the Google (Filippova and Altun, 2013) and Giga-
word (Napoles et al., 2012) sentence compression
datasets. Both of these datasets are collected by
pairing the news headline with the first sentence
of the article. Finally, we use ParaNMT (Wiet-
ing and Gimpel, 2018) for sentence reconstruction,
which contains paraphrase pairs generated from
back-translation. It is worth noting that all of these
datasets are constructed automatically. More de-
tails of the datasets can be found in Appx. §A.

3.2 Implementation

We train the encoder and decoder with weights
initialized from RoBERTa2 (Liu et al., 2019) and
BART (Lewis et al., 2020), respectively. This hy-
brid setting allows us to utilize the high-quality
sentence-level representations from RoBERTa
while taking advantage of the generative capability
of BART. In experiments, we also adopt another
two encoder-decoder model backbones (i.e., T5
(Raffel et al., 2020) and BERT+BERT), but they
perform slightly worse than RoBERTa+BART (see
Appx. §C for more details). The loss balancing fac-
tor is set to 0.01, as the contrastive loss converges
much faster than the generative loss. We train the
model on the combination of the five datasets for
five epochs. More details about hyperparameters
can be found in Appx. §B.

3.3 Baseline

We compare our model with previous sentence
embedding models, as well as unsupervised
and contrastive baselines trained on the same
datasets as INTERSENT. All models, including
INTERSENT, use RoBERTa-base as the sentence
encoder. RoBERTa-cls and RoBERTa-avg are
sentence embeddings directly extracted via the
[CLS] token and average pooling from an un-
finetuned RoBERTa model. SRoBERTa (Reimers
and Gurevych, 2019) trains a sentence embed-
ding model on supervised NLI pairs by optimizing
a cross-entropy loss to predict NLI labels. De-
CLUTR (Giorgi et al., 2021) is an unsupervised
contrastive sentence embedding model trained on
sampled positive and negative pairs from raw text.
SimCSE (Gao et al., 2021) instead uses different
dropout masks applied to the same sentence as data
augmentation. DiffCSE (Chuang et al., 2022) intro-
duces an additional replaced token detection objec-
tive such that the embeddings are sensitive to token
replacement. Since previous methods are trained
on different datasets, we additionally include unsu-
pervised and supervised contrastive models trained
on our data for direct comparison. The Unsuper-
vised Contrastive baseline is trained similarly to
SimCSE, by breaking down all sentence pairs and
triplets in our datasets into individual sentences.
For (weakly) Supervised Contrastive baseline, we
concatenate the two shorter sentences in the fusion
and difference datasets and then use all sentence

2We follow previous work and use RoBERTa-base model
(110M parameters) to make the results comparable.
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Model Fusion Difference Comp. (Google) Comp. (Gigaword) Avg.
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

RoBERTa-cls 42.8 16.9 35.1 30.9 10.4 27.0 27.7 10.6 25.8 30.4 11.5 27.7 32.9 12.4 28.9
RoBERTa-avg 68.7 43.1 58.5 54.4 29.0 46.3 43.6 23.8 41.2 37.4 16.4 34.1 51.0 28.1 45.0
SRoBERTa 49.0 21.9 39.0 39.1 16.2 33.2 37.8 19.1 35.5 36.0 15.5 32.7 40.5 18.2 35.1
DeCLUTR 73.4 46.7 61.6 56.1 30.1 47.3 50.3 30.1 47.9 39.6 17.9 36.1 54.9 31.2 48.2
SimCSE 53.2 24.3 42.0 36.1 13.6 30.8 38.4 18.2 35.9 35.0 14.2 31.5 40.7 17.6 35.1
DiffCSE 57.8 28.7 46.0 40.3 16.9 34.2 41.8 21.0 39.0 36.4 15.3 32.8 44.1 20.5 38.0

Encoders trained on our data

Unsup. Contr. 57.9 28.6 45.8 38.9 15.7 33.1 41.4 20.7 38.7 35.9 15.0 32.4 43.5 20.0 37.5
Sup. Contr. 57.7 29.4 46.9 36.9 14.4 31.7 50.3 28.7 47.5 41.6 19.2 37.9 46.6 22.9 41.0
InterSent 88.7 71.9 82.2 73.0 48.4 64.3 69.6 50.9 66.3 48.0 24.7 43.8 69.8 51.5 64.2

Table 1: Model performance on four textual generation tasks for interpretability evaluation. Unsup. Contr. and Sup.
Contr. represents Unsupervised and Supervised Contrastive baselines respectively. We report ROUGE-1/2/L scores.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

RoBERTa-cls 16.67 45.57 30.36 55.08 56.99 38.82 61.90 43.63
RoBERTa-avg 32.11 56.33 45.22 61.35 61.98 55.49 62.03 53.49
SRoBERTa† 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
DeCLUTR‡ 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE‡ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE3 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21

Encoders trained on our data

Unsupervised Contrastive 69.11 82.05 74.99 82.65 81.00 81.20 69.56 77.22
Supervised Contrastive 72.46 81.42 77.18 84.08 79.68 82.95 74.82 78.94
InterSent 70.97 81.03 75.30 83.18 79.60 80.60 69.45 77.16

Table 2: Model performance on Semantic Textual Similarity (STS) tasks. We report Spearman’s correlation on all
tasks. †: results taken from (Reimers and Gurevych, 2019). ‡: results taken from (Gao et al., 2021). 3: results taken
from (Chuang et al., 2022).

Model MRR@10 recall@10

RoBERTa-cls 56.53 65.43
RoBERTa-avg 54.87 64.89
SRoBERTa 71.13 79.81
DeCLUTR 75.84 87.02
SimCSE 79.78 89.32
DiffCSE 79.49 89.53

Encoders trained on our data

Unsupervised Contrastive 79.34 89.11
Supervised Contrastive 79.67 89.71
InterSent 80.30 89.94

Table 3: Model performance on the zero-shot QQP
sentence retrieval task. We report both Mean Reciprocal
Rank@10 (MRR@10) and recall@10.

pairs as weak supervision pairs.

3.4 Interpretability

Setup. We first compare the interpretability of
sentence embedding space on generative sentence
operation tasks including fusion, difference and
compression. Since none of the baseline models
include a decoder for sentence generation, we stack

operator networks and decoders on top of their
trained encoders, making the model architecture
identical across all models. For all baseline models,
we take the sentence embeddings encoded by these
sentence encoders, and optimize the added operator
networks and decoder during training. This setting
allows us to examine if existing sentence embed-
dings already support sentence operations and con-
tain sufficient information for reconstruction. By
comparing contrastive baselines with our method
trained on the same data, we can also have a better
understanding of how much fine-tuning sentence
encoders (along with the rest of the model) on both
generative and contrastive objectives can benefit
the interpretability of the learned embedding space.
We report ROUGE-1/2/L scores (Lin, 2004).

Results. As shown in Tab. 1, our method signif-
icantly outperforms all baselines across four sen-
tence operation tasks. Without fine-tuning, average
pooling, which aggregates all token representations,
unsurprisingly outperforms CLS pooling by a large
margin. Among previous sentence embedding mod-
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els, DeCLUTR, which incorporates a masked lan-
guage modeling objective, has the best overall inter-
pretability performance. While contrastive learning
on our data indeed helps the model adapt to our
datasets, there still exists a large gap between the su-
pervised contrastive baseline and our INTERSENT.
This demonstrates that simply training sentence en-
coders with contrastive objective, as in previous
sentence embedding models, is not sufficient to
create an interpretable sentence embedding space.
Jointly optimizing both contrastive and generative
objectives encourages sentence encoders to pre-
serve sufficient token-level information to better
support sentence operations and reconstruction.

3.5 Semantic Textual Similarity

Setup. In addition to interpretability, we also in-
vestigate if INTERSENT preserves the ability to
capture semantic similarity. Following previous
work, we evaluate our model on the semantic tex-
tual similarity (STS) tasks, including STS 2012-
2016 (Agirre et al., 2016), STS Benchmark (Cer
et al., 2017), and SICK-Relatedness (Marelli et al.,
2014). The goal of these tasks is to estimate the
semantic similarity between two sentences by com-
puting the cosine similarity of their sentence em-
beddings. All models are evaluated under the zero-
shot setting without training on any STS data. We
report Spearman’s correlation for all tasks.

Results. As shown in Tab. 2, incorporating addi-
tional properties that support sentence generation
leads to a slight performance decrease on the STS
tasks compared to the supervised contrastive base-
line. We also observe that the gap between unsuper-
vised and supervised contrastive baselines trained
on our data is relatively small, as the weak super-
vision data we use inherently contain some noise.
Nevertheless, INTERSENT’s performance on STS
is still strong enough to match the unsupervised
contrastive baseline trained on the same data.

3.6 Sentence Retrieval

Setup. One important application of sentence em-
beddings is sentence retrieval, where the goal is
to retrieve the most semantically relevant sentence
given the query sentence. We conduct sentence
retrieval experiments on the QQP dataset, which
is originally designed for paraphrase identification.
We follow the data splits used in BEIR (Thakur
et al., 2021) and report zero-shot performance on
the test set that contains 10,000 queries. We use

both Mean Reciprocal Rank@10 (MRR@10) and
recall@10 as metrics.

Results. As shown in Tab. 3, INTERSENT achieves
the best performance on the sentence retrieval
task. Notably, INTERSENT outperforms the super-
vised contrastive baseline trained on the same data,
which shows that adding interpretability properties
can benefit modeling semantic similarity. Com-
bined with the significant improvement in embed-
ding interpretability and strong STS performance,
we demonstrate that INTERSENT learns an inter-
pretable sentence representation space that supports
various sentence operations while preserving the
ability to capture semantic similarity.

4 Analysis

To provide a better understanding of INTERSENT,
we investigate how INTERSENT handles longer
text, and present an ablation study on the effect
of individual loss functions, and choice of pre-
trained language models for encoders and decoders.
Then, we analyze the operator functions learned by
INTERSENT through a detailed case study.

4.1 Passage Retrieval

The goal of passage retrieval is to retrieve the most
semantically relevant passage given the query sen-
tence, whereof the query and passages are of dif-
ferent granularities. Sentence embedding models
generally do not perform well on passage retrieval
tasks due to their asymmetric nature. Addition-
ally, passages are generally much longer than the
query and contain multiple sentences, making it
challenging for a sentence embedding model to
capture their semantics in the same way as it does
for single sentences (Muennighoff et al., 2022). To
investigate how well sentence embedding models
handle longer text, we evaluate passage retrieval
performance on NaturalQuestions (Kwiatkowski
et al., 2019) and MSMARCO (Nguyen et al., 2016)
datasets, under the zero-shot setting without train-
ing on any passage retrieval data.

As shown in Tab. 4, INTERSENT achieves the
best performance on both passage retrieval tasks.
We can also see a clear performance gap between
INTERSENT and baselines trained on the same data.
This demonstrates that modeling compositional se-
mantics between sentences helps the model better
capture the semantics of longer text, and preserves
necessary information for retrieval.
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Model NQ MSMARCO

SimCSE 41.58 35.55
DiffCSE 40.52 30.64

Encoders trained on our data

Unsupervised Contrastive 43.10 35.13
Supervised Contrastive 42.90 32.56
InterSent 49.64 37.87

Table 4: Model performance on zero-shot passage re-
trieval tasks. We report recall@100 on both Natu-
ralQuestions and MSMARCO datasets.

Model Interpret. STS

INTERSENT 64.18 77.16
- Generative-only 65.64 64.11
- Contrastive-only - 78.29

Table 5: Model performance on the interpretability and
STS tasks trained with different training objectives. We
report the average ROUGE-L score on interpretability
tasks and the average Spearman’s correlation on STS
tasks.

4.2 Ablation Study

Effect of Training Objectives. We conduct an
ablation study on the role of contrastive and gen-
erative objectives by comparing the model perfor-
mance of INTERSENT with generative-only and
contrastive-only baselines. Both of these two base-
lines are optimized using only one of the training
objectives. For the contrastive-only baseline, we
only report the STS performance since the decoder
is not aligned to produce any meaningful output
given the sentence embedding.

As shown in Tab. 5, the combination of con-
trastive and generative objectives is crucial to sup-
porting sentence operations while maintaining the
ability to capture semantic similarity. Without a
generative objective, it is impossible to examine the
content being encoded in the sentence embeddings.
On the other hand, the generative-only baseline
only improves slightly on generative tasks at the
cost of a significant performance drop on STS tasks.
INTERSENT achieves a desirable balance between
interpretability and semantic similarity.

Choice of Operators. We investigate the effect of
using simple arithmetics instead of MLPs as oper-
ators by simply computing addition and subtrac-
tion for sentence fusion and difference respectively.
The compression operator remains to be trainable
MLPs for both models. As shown in Tab. 6, both
models have similar STS performance, but defining

Operator Fusion Difference STS

Arithmetic 59.02 62.28 77.46
MLP 82.19 64.34 77.16

Table 6: Model performance on sentence fusion, differ-
ence and STS trained with different choice of operators.
We report ROUGE-L score on interpretability tasks and
the average Spearman’s correlation on STS tasks.

operators with simple arithmetics leads to a signifi-
cant decrease in generation performance, especially
on sentence fusion. This demonstrates that, while
simple arithmetics themselves are easier to under-
stand, they do not accurately capture the nature of
sentence operations in the embedding space.

4.3 Case Study
To better understand the characteristics of oper-
ator functions learned by INTERSENT, and how
they interact with each other, we conduct a case
study on multi-step sentence operations enabled by
INTERSENT. We present a few representative ex-
amples in Tab. 7, which covers basic operations of
our method (fusion, difference, and compression),
as well as compound ones that combine two basic
operations. All sentence operations we demon-
strate are carried out in the sentence embedding
space, and the output sentence is decoded from the
final embedding calculated by the operators.

As shown in Tab. 7, INTERSENT can generate
coherent output sentences that follow the individual
sentence operations we apply to the embeddings.
Moreover, we observe that the fusion and differ-
ence operators learned by our method indeed repre-
sent inverse operations on sentences, as shown by
the output of two compound operations: difference
after fusion and fusion after difference. Our model
does not directly enforce this property. Instead, it
emerges as a result of the joint training on sentence
fusion and difference tasks. Operators learned by
INTERSENT can also be combined in many other
ways, and we demonstrate two examples of com-
pound operations supported by INTERSENT: multi-
sentence fusion that fuses more than two sentences,
and compression after fusion, which compresses
the combined information from two sentences. As
shown in Tab. 7, INTERSENT generates reason-
able outputs for these compound operations even
though they are not directly optimized during train-
ing. This demonstrates the potential of our inter-
pretable sentence embedding space in which we
can represent more complex and diverse sentence
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Operation Sentence

(A) They wanted to do more than just straight news.
(B) They hired comedians who were talented vocalists.

Fusion (A ⊕ B) Wanting to do more than just straight news, they hired comedians who were talented
vocalists.

Difference after Fusion ((A ⊕ B) ⊖ A) They wanted to hire talented comedians who were more vocal.

(A) The first edition of the dictionary was printed in 1940, but soon became out of print in 1958.
(B) The first edition of the dictionary was printed in 1940.

Difference (A ⊖ B) However, it soon became out of print in 1958.
Fusion after Difference (B ⊕ (A ⊖ B)) The first edition of the dictionary was printed in 1940, but soon it became out of

print in 1958.

(A) Nearly one million people have been left without water in South Africa’s northern region
because of a disastrous drought, the regional Water Affairs acting director said Wednesday.

Compression (A) One million people left without water in drought-hit South Africa.

(A) Due to financial difficulties, the airline filed for bankruptcy.
(B) The airline suspended scheduled passenger services.
(C) The airline planned to lease its fleet to other airlines.

Multi-sentence Fusion ((A ⊕ B) ⊕ C) However, due to financial difficulties, the airline suspended scheduled flights for
bankruptcy, and the airline planned to lease its fleet to other airlines.

(A) The Commonwealth summit opened in Sri Lanka with heavy security on Friday.
(B) The summit was attended by heads of state or their representatives from 53 member nations.

Compression after Fusion (A ⊕ B) The high security summit was convened by leaders of the Commonwealth.

Table 7: Examples of sentence operations supported by INTERSENT. Following the notation we defined in §2.1, we
use ⊕, ⊖ and − to denote sentence fusion, difference and compression respectively.

operations by combining basic operators.

5 Related Work

Sentence Embedding. Following the distribu-
tional hypothesis of semantics (Harris, 1954), early
unsupervised sentence embedding methods (Kiros
et al., 2015; Hill et al., 2016; Logeswaran and Lee,
2018) extend the idea of word embedding models
(e.g., word2vec (Mikolov et al., 2013)) by predict-
ing surrounding sentences based on the given sen-
tence. Supervised methods (Conneau et al., 2017;
Cer et al., 2018; Reimers and Gurevych, 2019)
utilize human-annotated data, mostly premise-
hypothesis pairs from natural language inference,
to improve the quality of sentence embedding fur-
ther. Recently, contrastive learning has emerged
as a widely used learning paradigm for sentence
embeddings (Giorgi et al., 2021; Yan et al., 2021;
Gao et al., 2021; Chuang et al., 2022). These meth-
ods learn a well-structured representation space
by explicitly bringing sentences with similar se-
mantics (or augmented versions of the same sen-
tence) closer. Meanwhile, several works have also
explored generative modeling of sentence embed-
dings with denoising or masked language modeling
objectives (Giorgi et al., 2021; Wang et al., 2021;
Huang et al., 2021; Gao et al., 2021; Chuang et al.,
2022; Wu and Zhao, 2022). Unlike contrastive

learning, purely generative methods do not directly
optimize the similarity between embeddings, and
generally do not outperform contrastive methods
on semantic similarity tasks.

Representation Interpretability. Prior works
have studied the interpretability of text representa-
tions and their operations from various perspectives.
Early works on word embeddings (Mikolov et al.,
2013; Pennington et al., 2014; Arora et al., 2016;
Ethayarajh et al., 2019) have demonstrated compo-
sitional properties of word embedding spaces that
allow us to interpret simple arithmetic operations as
semantic analogies. Similar properties have been
studied in the context of sentence embeddings (Zhu
and de Melo, 2020). Previous works have also in-
vestigated the compositionality of word, and phrase
embeddings from pre-trained language models (Yu
and Ettinger, 2020; Hupkes et al., 2020; Dankers
et al., 2022; Liu and Neubig, 2022). Another impor-
tant aspect of interpretability is whether the original
information can be recovered from its embedding
alone. While this generative property has been used
as an auxiliary objective to improve sentence em-
bedding models (Wang et al., 2021; Huang et al.,
2021; Gao et al., 2021; Chuang et al., 2022; Wu
and Zhao, 2022), the quality of the generated text
is rarely in the interest of these methods.
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6 Conclusion

In this work, we present INTERSENT, an end-
to-end framework for learning interpretable sen-
tence embeddings that support sentence opera-
tions, including fusion, difference, compression,
and reconstruction. INTERSENT combines both
contrastive and generative objectives to optimize
operator networks together with a bottleneck
encoder-decoder model. Experimental results show
that INTERSENT significantly improves the inter-
pretability of sentence embeddings on four textual
generation tasks. Moreover, we demonstrate that
our interpretable sentence embedding space pre-
serves the ability to capture semantic similarity,
and even improves performance on retrieval tasks.
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Limitations

First, as sentences can be transformed and com-
bined in much more diverse and complex ways
such as multi-sentence intersection (Brook Weiss
et al., 2022), the list of sentence operations we
study in this work is not exhaustive. Additional con-
straints, such as the inverse relationship between
fusion and difference, may also be introduced to
directly enforce the consistency of operators. Sec-
ond, all training datasets we use are generated au-
tomatically thus, they inevitably contain noise. In
this regard, our method shares the same limitations
as the broad class of weakly supervised methods
where training data are automatically generated.
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A Dataset

All training datasets we use in this work are pub-
licly available except Gigaword which is licensed
under LDC. We use them in accordance with their
license and intended use.

We use the balanced Wikipedia por-
tion of Discofuse dataset, which consists
of 4,490,803/45,957/44,589 instances for
train/dev/test respectively. WikiSplit dataset
consists of 989,944/5,000/5,000 for train/dev/test
respectively. Google dataset consists of
200,000/10,000 for train/test respectively. For
Gigaword, we filter out headline-sentence pairs
with fewer than four overlapping tokens after
removing stopwords. The resulting dataset consists
of 3,535,011/190,034/178,929 for train/dev/test
respectively. ParaNMT dataset consists of
5,370,128 paraphrase pairs and we use the entire
dataset for training.

B Hyperparameter

All experiments are conducted on NVIDIA V100
GPUs. Model training takes roughly 15 hours to
complete on an 8-GPU machine. INTERSENT uses
RoBERTa-base and BART-base as the encoder and
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decoder respectively, which has roughly 200 mil-
lion parameters in total. During training, we apply
a linear learning rate schedule with a linear warmup
on the first 5% of the data. All inputs are truncated
to a maximum of 64 tokens. We finetune the en-
coder and decoder with a learning rate of 5e-6 and
1e-4 respectively. All operator networks use ReLU
as the activation function. The intermediate dimen-
sion size of the compression operator is set to 384.
We tune all hyperparameters on the STS-B and
sentence generation dev sets.

C Choice of Pretrained Language Models

We compare the dev set performance of different
combinations of pretrained language models as en-
coders and decodes for INTERSENT in Tab. 8. We
observe that the pair of RoBERTa and BART as
the encoder and decoder achieves a good balance
between generation and semantic similarity tasks.

Model Interpret. STS-B

BERT + BERT 36.18 78.75
T5 60.02 79.37
RoBERTa + BART 55.18 81.22

Table 8: Model performance on the dev set of inter-
pretability tasks and STS-B. We report the average
ROUGE-1 score on interpretability tasks and the av-
erage Spearman’s correlation on STS-B.
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