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Abstract

Pre-trained language models (PLMs) have re-
cently shown great success in text representa-
tion field. However, the high computational
cost and high-dimensional representation of
PLMs pose significant challenges for practi-
cal applications. To make models more ac-
cessible, an effective method is to distill large
models into smaller representation models. In
order to relieve the issue of performance degra-
dation after distillation, we propose a novel
Knowledge Distillation method called IBKD.
This approach is motivated by the Information
Bottleneck principle and aims to maximize the
mutual information between the final represen-
tation of the teacher and student model, while
simultaneously reducing the mutual informa-
tion between the student model’s representation
and the input data. This enables the student
model to preserve important learned informa-
tion while avoiding unnecessary information,
thus reducing the risk of over-fitting. Empirical
studies on two main downstream applications
of text representation (Semantic Textual Simi-
larity and Dense Retrieval tasks) demonstrate
the effectiveness of our proposed approach’.

1 Introduction

Text representation is a crucial task in natural lan-
guage processing (NLP) field that aims to map a
sentence into a single continuous vector. These rep-
resentations can be applied to various downstream
tasks, such as semantic textual similarity (Agirre
et al., 2016; Reimers and Gurevych, 2019), infor-
mation retrieval (Karpukhin et al., 2020; Long et al.,
2022a), text classification (Garg et al., 2020), etc.
Pre-trained language models (PLMs) have recently
become the dominant approach for text represen-
tation. However, text representation models devel-
oped on large PLMs typically require enormous
computational resources and storage that prevent

!The source code is publicly available at https: //github.
com/Alibaba-NLP/IBKD.
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Figure 1: Information diagram of teacher embeddings
(original circle), student embeddings (dashed red circle)
and original input X (green circle). The left side rep-
resents the final optimization object of the traditional
method, while the right side depicts the object of the
IBKD method.

widespread deployment. Further, direct training on
small-scale PLMs will lead to a significant decrease
in model performance (Zhao et al., 2022).

Knowledge distillation (KD) is a commonly used
approach to reduce the performance gap between
large and small models (Hinton et al., 2015). This
method entails training a large-scale model, re-
ferred to as the “teacher” model, followed by trans-
ferring its knowledge to a smaller “student” model.
The conventional distillation methods mainly con-
centrate on classification tasks, endeavoring to
make the probability distribution of the student
model’s output as similar as possible to that of the
teacher model. Recently, various distillation meth-
ods have been proposed for representation mod-
els (Tian et al., 2019; Wu et al., 2021; Zhao et al.,
2022). The primary objective of these methods is
to ensure that the student model’s representation
closely resembles that of the teacher model. This
is typically achieved through the use of a learning
objective such as mean squared error (MSE) or
contrastive learning loss.

For an input text X, the final representations of
the teacher model and student model are denoted
as T" and S, respectively. From an information
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theory perspective, the conventional distillation
learning process of continuously approximating
T and S through optimization objectives such as
MSE or contrastive learning can be regarded as
maximizing the mutual information (MI) between
T and S, which is denoted as I(7T',S). However,
according to the Information Bottleneck (IB) prin-
ciple (Tishby and Zaslavsky, 2015), simply maxi-
mizing I (7T, S) is prone to over-fitting. According
to the IB principle, when given an input X and its
corresponding label Y, our goal is to learn a low-
dimensional representation Z that is informative
for predicting Y while minimizing the presence of
irrelevant information. The IB method represents
this information compressing process as maximiz-
ing the mutual information between Z and Y while
minimizing the mutual information between Z and
X. This approach ensures that the most useful
information is preserved, while redundant informa-
tion is discarded. In text representation distillation,
the representations of the teacher and student mod-
els, T" and S, can be equivalently considered as the
label Y and the compressed representation Z.

Therefore, we propose a new text representa-
tion distillation method based on the IB principle,
called IBKD. It aims to maximize the mutual in-
formation between S and 7" while minimizing the
mutual information between S and X. As shown
in Figure 1, compared to the conventional distil-
lation methods (left), IBKD can effectively filters
out task-irrelevant information and retains only the
task-relevant information (right), thus improving
the generalization of the student model’s represen-
tation. Further, to address the issue of excessive
computational effort in directly calculating mutual
information (Alemi et al., 2017a), we introduce
different methods to approximate the upper and
lower bounds of mutual information. Specifically,
we use contrastive learning loss (Sordoni et al.,
2021) to estimate the lower bound of mutual in-
formation and the Hilbert-Schmidt independence
criterion (HSIC) (Gretton et al., 2005) is used to
estimate the upper bound.

Moreover, we found that two-stage distillation
can significantly improve the performance of the
student model. Concretely, the first stage distilla-
tion based on large-scale unsupervised data allows
the student model to acquire basic text represen-
tation characteristics, while the second stage of
distillation based on supervised data can further
strengthen the representation ability of the student

model. Importantly, both two stages of distilla-
tion can be efficiently performed within the same
framework. To demonstrate the effectiveness of
our proposed method, we conduct experiments on
two main downstream tasks of text representation:
the semantic textual similarity (STS) task and the
dense retrieval (DR) task. Our experimental re-
sults have shown that our approach significantly
outperforms other methods.

Briefly, our main contributions are as follows:
1) Drawing on the IB principle, we propose a new
IBKD method for text representation distillation.
2) We introduce the Contrastive learning loss and
HSIC method to reduce the computational cost of
mutual information. 3) We verify the effectiveness
of IBKD on multiple benchmark datasets for two
different down-streaming tasks.

2 Related Work

Knowledge Distillation for text representation
Pretrained Language Models (PLMs) have demon-
strated remarkable success in the field of text repre-
sentation (Reimers and Gurevych, 2019; Karpukhin
et al., 2020). Recent research has been devoted to
enhancing the performance of PLM-based models
through specific pretraining tasks (Gao and Callan,
2022; Wu et al., 2022; Long et al., 2022b; Shen
et al., 2022), contrastive learning (Gao et al., 2021;
Karpukhin et al., 2020), and hard negative min-
ing (Xiong et al., 2021; Tabassum et al., 2022).
However, these methods are primarily designed
for large-scale PLMs, and their direct application
to small-scale models often leads to a significant
performance decline (Zhao et al., 2022).

Knowledge distillation, initially introduced
by Hinton et al. (2015), is a technique employed to
convert large, intricate models into smaller, more
efficient models while preserving a high level of
generalization power. Traditional knowledge dis-
tillation methods typically utilize a KL divergence-
based loss to align the output logits of the “teacher”
model and the “student” model (Zagoruyko and
Komodakis, 2017; Sun et al., 2020).

Recently, new approaches have been developed
specifically for representation-based models. For
instance, the Contrastive Representation Distilla-
tion (CRD) method proposed by Tian et al. (2019)
adopts a contrastive objective to match the repre-
sentations of the teacher and student models. The
HPD method (Zhao et al., 2022) aims to make the
student model’s representation similar to a com-
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pressed representation of the teacher model, thus
reducing both the model size and the dimensional-
ity of the final output. The DistilCSE method (Wu
et al., 2021) is a two-stage framework that first dis-
tills the student model using the teacher model on
a large dataset of unlabeled data and subsequently
fine-tunes the student model on labeled data.

Information Bottleneck Principle The infor-
mation bottleneck (IB) principle (Tishby and Za-
slavsky, 2015) refers to the tradeoff that exists in
the hidden representation between the necessary
information required for predicting the output and
the information that is retained about the input. It
has been applied in the study of deep learning dy-
namics (Saxe et al., 2018; Goldfeld et al., 2019),
resulting in the creation of more interpretable and
disentangled representations of data (Bao, 2021;
Jeon et al., 2021). In addition, it has served as a
training objective in recent works (Belghazi et al.,
2018; Paranjape et al., 2020).

However, a significant challenge in the context
of Information Bottleneck (IB) is the estimation of
the joint distribution of two random variables and
the calculation of the entropy of a random variable.
In response to this challenge, the Variational In-
formation Bottleneck (VIB) (Alemi et al., 2017b)
method employs a variation approximation of the
original 1B, while the HSIC-Bottleneck (Ma et al.,
2020) method replaces mutual information terms
with the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2005) to assess the indepen-
dence of two random variables. To the best of our
knowledge, our research represents the first applica-
tion of IB as a training objective in the knowledge
distillation area.

3 Method

The objective of distillation is to transfer knowl-
edge from a well-trained teacher model (f?) to a
student model (f®). For input X, the representa-
tions of teacher and student are denoted as 7" and S
respectively. Referring to the IB principle, we aims
to maximize the mutual information between .S and
T and minimize the mutual information between
S and the original input X. Formally, the learning
objective can be formulated as:

Likgp = —I(S,T)+ B x I(X,5) (1)

where I(-,-) denotes the mutual information be-
tween two random variables and 5 > 0 is a hyper-
parameter controls the tradeoff between two parts.

However, directly optimizing Likpp is in-
tractable, especially when X, S, T are high
dimensional random variables with infinite sup-
port (Alemi et al., 2017a). Consequently, we resort
to estimating a lower bound of (.S, T") and an ap-
proximation of (.S, X) instead.

In the following subsections, we will first discuss
the application of the contrastive learning loss and
HSIC method in approximating the Information
Bottleneck. Subsequently, we will explain how we
apply them in our two-stage distillation process.

3.1 Lower Bound of I(S, T)

To maximize the mutual information I(S,T), we
utilize the InfoNCE loss (Liu et al., 2022) as it has
been demonstrated to be a lower bound for mutual
information (Sordoni et al., 2021). The InfoNCE
loss is defined as:

nee =98 (S T) + EgP(S, T)

= log <1 . MP(S)P(T)>

P(S,T)
< —log(M +1) + log

(@)

P(S,T)
P(S)P(T)
:—log(M—i—l)—i-I(S,T), 3)

where P (.S, T') represents the joint distribution of .S
and T, and P(S) and P(T) represent the marginal
distributions of S and 71" respectively. M denotes
the number of negative samples. Based on the
above equation, it can be inferred that:

I(S7 T) > Lpce + log(M + 1) €))

Thus, L, can be treated as a lower bound for
I(S,T), and its tightness increases as M grows.
In practice, we establish a connection between
P(si,t;) and sim(s;, t;) = exp(@), where 7
represents the temperature, W is a learnable matrix
used to align the dimensions of S and 7', and s; and
t; are instances of S and 7', respectively. Hence,

we have:

P(S,T)
P(S,T)+EgP(S,T)
sim(s;, t;)
sim(si,t;) + 37 sim(si, t;)

&)
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where n denotes the batch size, and we employ
other samples within the same batch as negative
samples. In this particular setting, the number of
negative samples M is equal to n.

3.2 Approximation of I(X, S)

To minimize the mutual information between X
and S. We introduce Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton et al., 2005) here
as its approximation. HSIC is a statistical method
used to measure the independence between two
random variables:

HSIC(X,S) = [|Cxsl|2.

where || - ||?, denotes the Hilbert-Schmidt
norm (Gretton et al., 2005), and C'x g is the cross-
covariance operators between the Reproducing Ker-
nel Hilbert Spaces (RKHSs) (Berlinet and Thomas-
Agnan, 2004) of X and S.

Previous studies (Ma et al., 2020) have proven
that alower HSIC(X, S) indicates that P(X) and
P(S) are more independent, and HSIC (X, S) =
0 if and only if I(X,S) = 0. So minimizing
HSIC(X,S) is equivalent to minimizing (X, S).
Let D = {(z1, 1), (w2, s2), ..., (27, s;) } contains
[ samples i.i.d drawn from P (.S, X), Gretton et al.
(2005) proposed an empirical estimation of HSIC
based on D:

o —

1
HSIC(X, 8) := pur(KxHEsH),  (6)

the centering matrix is denoted as H = [ — %llT,
where tr represents the trace of a matrix. Kx and
K are kernel Gram matrices (Ham et al., 2004)
of X and S respectively, where Kx,, = k(x;, ;)
and k(-, -) denotes a kernel function. In this paper,
we use the commonly used radial basis function
(RBF) kernel (Vert et al., 2004) by experiments

K (x4, 25) = exp(v||x; — zj]|), (7

where v is a hyperparameter. It is worth high-
lighting that the above equation relies solely on
positively paired samples to construct the kernel
matrices K x and Ky, which means that the calcu-
lation process is notably more efficient than directly
estimating mutual information.

Although it is feasible to replace the InfoNCE
loss with HSIC to maximize I(.S,T), previous re-
search (Tschannen et al., 2020) has demonstrated
that using the InfoNCE loss often leads to better

Input «------- hsic > Output

(a) Distillation Stage

(b) Fine-tuning stage

Figure 2: An illustration of the IBKD training process,
with the left depicting the distillation stage and the right
depicting the fine-tuning stage, respectively.

performance than directly maximizing mutual in-
formation. In our own experiments, we have also
observed that the InfoNCE method tends to pro-
duce superior results in practice.

3.3 Two Stage Training

To fully utilize both unsupervised and supervised
data, the training process of the student model con-
sists of two stages, as outlined in prior research (Wu
et al., 2021). In the first stage, referred to as the
distillation stage, we utilize a substantial amount
of unlabeled data to train the student model with
the following loss function:

o —

Lip = —(Lnee(S,T) — BLHSIC(X, S)). (8)

during this stage of training, the student model can
acquire the text representation characteristics of the
teacher model, effectively imbuing the former with
the latter’s features.

In the second stage, known as the fine-tuning
stage, we subject the student model to further fine-
tuning using labeled data. This process helps to
mitigate any potential bias introduced by the use of
unlabeled data in the previous stage. Importantly,
the labeled data used in this stage can be identical
to that which was used to train the teacher model.

Considering a labeled dataset consisting of mul-
tiple instances, where each instance contains an
anchor sample z;, a positive sample mj, and a set
of K negative samples: {x;;, 25, ..., }. Inthe
fine-tuning stage, we continue to utilize a combi-
nation of the HSIC method and contrastive loss to
prevent over-fitting:

—

Ly = (L3 — BHSIC(X,S)).  (9)

nce
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where L2 is a supervised InfoNCE loss:
l sT st
1 erp(==+)
7 Zlog — T .
P j

O R 5
> exp(=75) + 22y exp(=-*)
(10)

An overview of the whole training process of
IBKD is shown in Figure 2. After the fine-tuning
stage, the final student model is obtained and can
be utilized for downstream tasks.

3.4 Dimension Reduction

In many downstream applications of text represen-
tation models, such as information retrieval, the
dimension of the text representation model has a di-
rect impact on storage costs and search latency. To
reduce the final dimension of the student model’s
representation, during the fine-tuning stage, we add
a projection layer after getting S

S = Wi, (11)
where W,o; € RdXd/, d and d’ represent the di-
mensions of the original student model and the final
dimension, respectively. During inference, we will
utilize S’ as the final representation.

4 Experiment

4.1 Experiment Setup

We conduct experiments on two tasks: semantic
textual similarity (STS) and dense retrieval (DR).
The STS task aims to measure the semantic simi-
larity between two sentences, for this task, we eval-
uate seven standard datasets: STS12-16 (Agirre
etal., 2012, 2013, 2014, 2015, 2016), STS-B (Cer
et al., 2017) and SICK-R (Marelli et al., 2014).
Following previous work, we use the SentEval
toolkit (Conneau and Kiela, 2018) to do the eval-
uation and use Spearman’s rank correlation as the
performance metric.

The DR task aims to retrieval relevant pas-
sages of the given query, for this task we do ex-
periments on the MS MARCO Passage Ranking
Dataset (Nguyen et al., 2016). We use MRR@10
and Recall@1000 as the evaluation metrics.

4.2 Baseline Models

We select two pretrained models of varying sizes,
namely TinyBERT-L4 (Jiao et al., 2020) 2 and

2https://huggingface.co/nreimers/TinyBERT_L-4_
H-312_v2

MiniLM-L6 (Wang et al., 2020) 3, as student mod-
els following previous works (Wu et al., 2021; Zhao
et al., 2022). For the STS task, we employed the
state-of-the-art model SimCSE-RoBERTa, ;.4 * as
the teacher model, while for the DR task, we uti-
lized CoCondenser > as the teacher model. Unless
explicitly stated, in the following, the term "Model-
IBKD" represents a model that has undergone the
distillation training stage, while "Model-IBKD f;"
refers to the model after the fine-tuning stage’s
training.

Our baseline models include two types: the first
involves directly training different-sized pretrained
models on the supervised dataset, and the sec-
ond involves using previous state-of-the-art knowl-
edge distillation methods for representation models,
such as the traditional MSE loss based represen-
tation distillation method (Kim and Rush, 2016),
the HPD (Zhao et al., 2022) method and the CRD
method (Tian et al., 2019). In addition, we also
fine-tune the HPD model (HPD f;) using the train-
ing data and contrastive learning loss for each task
based on their public model © as a baseline model
to estimate the impact of the fine-tuning stage.

STS STSix DR DRy

learning rate | le-4 3e-5 le-4 le-5

batch size | 256 256 128 128
epoch 10 3 3 3

T 0.1 005 01 0.05

Table 1: Hyparameters for STS and DR tasks in different
stages. The subscript “ft” indicates the fine-tuning stage.
We use the same hyparameters for both TinyBERT-L4
and MiniLM-L6 models.

4.3 Implementation Details

Training Data For the STS task, we utilized the
same dataset as described in Zhao et al. (2022) for
the first stage training. This dataset comprises the
original Natural Language Inference (NLI) dataset
along with additional data generated by applying
WordNet substitution and back translation to each
instance of the NLI dataset. In the fine-tuning stage,
we used the “entailment” pairs from the original

3https://huggingface.co/nreimers/
MiniLM-L6-H384-uncased
*https://huggingface.co/princeton-nlp/
sup-simcse-roberta-large
5https://huggingface.co/Luyu/
co-condenser-marco-retriever
6https://huggingface.co/Xuandong
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R  Avg Params Dimension
SimCSE-RoBERTayq¢ 76.53 8521 8095 86.03 8257 85.83 80.50 8252 110M 768
SimCSE-RoBERTa;,.g.# 77.46 8727 8236 86.66 8393 86.70 8195 8376 330M 1024
SimCSE-TinyBERT 73.02 80.71 76.89 83.01 7857 81.10 78.19 7878 14M 312
TinyBERT-MSE 73.07 81.83 7792 8449 8035 81.69 79.10  79.78  14M 312
TinyBERT-HPD 7429  83.05 78.80 84.62 81.17 84.36 80.83 81.02 14M 128
TinyBERT-HPD ¢, 75.17  84.10 7997 8544 8217 85.52 80.65 81.60 14M 128
TinyBERT-CRD 7456 8326 7871 84.86 80.72 82.11 79.55 80.54 14M 312
TinyBERT-IBKD 7473  83.56 7897 8497 81.68 84.37 80.52 81.69 14M 312
TinyBERT-IBKD f, 76.14 8445 80.19 8554 82,51 85.09 80.18  82.01 14M 312
TinyBERT-IBKD-128 74.10 8359 7938 85.65 8153 83.87 79.73  81.12 14M 128
SimCSE-MiniLM 7034 7859 75.08 81.10 77.74 79.39 7185 71.16 23M 384
MiniLM-MSE 7375 8142 77772 8358 7899  81.19 7848 7930 23M 384
MiniLM-HPD 7494 8452 8025 8487 8190 84.98 81.15 81.80 23M 128
MiniLM-HPD 76.03 84.71 8045 8553 82.07 85.33 80.01  82.05 23M 128
MiniLM-CRD 7479 84.19 7898 8470  80.65 82.71 7991 8130 23M 384
MiniLM-IBKD 7557 8541 8027 8499 8246 84.78 8048 82.01 23M 384
MiniLM-IBKD ; 76.77 86.13 81.03 85.66 82.81 86.14 81.25 82.69 23M 384
MiniLM-IBKD-128 76.34 8538 8132 8534 81.87 85.14 80.67 82.29 23M 128

Table 2: Results on the STS datasets. The teacher model is marked with #. Dimension denotes the output’s
dimension of the text representation. We bold the best performance of each student’s backbone. The results for
SimCSE and HPD methods are taken from their respective original papers, while all other results were reproduced
by us. TinyBERT-IBKD-128 and MiniLM-IBKD-128 denote the IBKD models fine-tuned with the dimension
reduction method, and the final dimension set to 128. The results of IBKD models are statistically significant

difference (p < 0.01) compared to other models.

>

NLI dataset as positive pairs and the “contradiction’
pairs as negative pairs.

For the DR task, we utilized all passages and
training queries provided by the MS MARCO Pas-
sage Dataset during the initial training stage. We
then conducted fine-tuning using the labeled data
from the same dataset. In this task, the nega-
tives were acquired by leveraging the CoCondenser
model. More details are reported in the Appendix.

Optimizing Setup The values of hyperparame-
ters are listed in Table 1. We kept the value of
~ at 0.5, 81 at 1.0, and B2 at 0.5 for all experi-
ments. All hyperparameters are selected through
grid search. The search range for each hyperparam-
eters are listed in the Appendix. For the fine-tuning
stage, we select 8 hard negatives for each query. We
used Adam for optimization. Our code was imple-
mented in Python 3.7, using Pytorch 1.8 and Trans-
formers 2.10. All experiments were run on a single
32G NVIDIA V100 GPU. For the DR task, we
constructed the index and performed ANN search
using the FAISS toolkit (Johnson et al., 2021).

4.4 Experiment Results on STS

From the STS results in Table 2, we observe
that: 1) Our method outperforms previous meth-
ods using the same student model. For instance,

the MiniLM-IBKD model delivered a Spearman’s
rank correlation performance of 98.72% while em-
ploying just 6.9% of the parameters utilized by
SimCSE-RoBERTa,,,4.. Remarkably, it outper-
forms SimCSE-RoBERTay,, ., which has 4.7 times
more parameters. 2) After the distillation training
stage, IBKD has already outperformed previous dis-
tillation methods, and the subsequent fine-tuning
stage yields additional performance gains. For in-
stance, fine-tuning led to a 0.40% improvement for
the TinyBERT model and a 0.68% improvement
for the MiniLM student model. 3) Although ap-
plying the dimension reduction method reduces
performance, it remains competitive performance
with previous state-of-the-art results.

4.5 Experiment Results on DR

Table 3 shows the results on the DR task. We can
find that: 1) IBKD effectively reduces the disparity
between the student and teacher models compared
to previous methods. For example, the MiniLM-
IBKD model attains a 97.9% MRR@10 perfor-
mance with only 4.2% of parameters compared to
the teacher model CoCondenser. The smaller pa-
rameters make it 4.6 times faster than the teacher
model and require only 50% of memory to store
the embeddings. 2) The fine-tuning stage has a
more significant impact on performance in the DR
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Model MRR@10 Recall@1000 Dimension Params Speed Memory
CoCondenser & 38.21 98.40 768 110M 500 26G
TinyBERT-sup 28.64 89.97 312 14M 3000 11G
TinyBERT-MSE 25.98 90.11 312 14M 3000 11G
TinyBERT-CRD 27.40 92.54 312 14M 3000 11G
TinyBERT-HPD 27.77 92.99 128 14M 3000 4.4G
TinyBERT-HPD ¢, 34.93 96.04 128 14M 3000 4.4G
TinyBERT-IBKD 28.88 90.02 312 14M 3000 11G
TinyBERT-IBKD ¢, 37.32 97.46 312 14M 3000 11G
TinyBERT-IBKD-128 35.57 96.70 128 14M 3000 4.4G
MiniLM-sup 30.51 94.32 384 23M 2300 13G
MiniLM-MSE 28.12 93.01 384 23M 2300 13G
MiniLM-CRD 28.79 93.12 384 23M 2300 13G
MiniLM-HPD 29.79 93.98 128 23M 2300 4.4G
MiniLM-HPD, 36.53 96.70 128 23M 2300 4.4G
MiniLM-IBKD 30.31 93.66 384 23M 2300 13G
MiniLM-IBKD ¢, 37.49 97.81 384 23M 2300 13G
MiniLM-IBKD-128 36.32 97.01 128 23M 2300 4.4G

Table 3: Performance of different models on the MS MARCO Passage Ranking Dataset. The teacher model is
marked with #. The results of IBKD are statistically significant difference (p < 0.01) compared to other models.
We bold the best performance of each student backbone. All results, except for CoCondenser, are from our
implementation. The speed denotes the number of sentences encoded by the model per second using one V100.

task. Specifically, when using the MiniLM-L6-
HPD model and the MiniLM-IBKD model, the
fine-tuning stage resulted in a 5.74% increase and
7.0% increase in MRR @ 10, respectively. This can
be attributed to the fact that the DR task is an asym-
metric matching task, and labeled data plays a cru-
cial role in guiding the model to accurately derive
the semantic association between the query and
the document. 3) Applying the dimension reduc-
tion method has been observed to decrease model
performance by approximately 1%. However, this
tradeoff is offset by the significant advantage of
saving up to 60%-70% of memory costs.

To ensure our method is robust across teacher
models, we conducted experiments for each task
using an alternative teacher model. The correspond-
ing results are reported in the Appendix.

4.6 Ablation Study

Impact of the HSIC loss and Kernel Methods
In this study, we aim to evaluate the impact of the
HSIC loss and various Gram Kernel methods on
HSIC. Specifically, we compare the original IBKD
model’s performance with a distillation-based ap-
proach that only employs the contrastive learning
loss in the distillation and fine-tuning stages (re-
ferred to as CKD here). Moreover, we examine the

Model | STS DR
TinyBERT-L4-IBKDy; | 82.01 37.32
TinyBERT-L4-CKD | 81.37 35.73
w IMQ kernel 81.94 36.83
w linear kernel 81.26 36.17

Table 4: Experiment results on the STS and DR task
with different kernel method. We report the Average
Spearman’s rank correlation coefficient of the seven
datasets as the performance metric for the STS task and
MRR @10 for the DR task respectively.

effectiveness of three types of Gram Kernel meth-
ods, namely linear, RBF, and inverse multiquadric
(IMQ) (Javaran and Khaji, 2012). Our results, pre-
sented in Table 4, reveal that the implementation
of HSIC loss can significantly enhance the perfor-
mance of both STS and DR tasks. Additionally,
we observe that the linear kernel leads to decreased
performance, while the non-linear kernels (RBF
and IMQ) exhibit comparable performance levels.

Impact of the 3 value We conducted an analysis
to assess the impact of 8 on the performance of
IBKD. The results of the STS task are presented
in Figure 3, depicting both the distillation stage (in
blue) and the fine-tuning stage (in orange).

In the distillation stage, we observed a notable
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Figure 3: STS results with different 5 for IBKD in the
distillation (blue) and fine-tuning (orange) stages.
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(a) CKD

0 2 4 6 8 10 12 14

(b) IBKD

Figure 4: The covariance matrix of the student model’s
representation. The darker color denotes a large correla-
tion value. Due to space limitation, we only report the
results for the first 16 dimensions.

improvement in the performance as (8 increased.
However, beyond a certain threshold, the perfor-
mance began to decline. Our findings indicate that
achieving an optimal balance between maximizing
I(S,T) and minimizing I(S, X) can significantly
enhance the student model’s ability for downstream
tasks. Regarding the fine-tuning stage, we noticed
that the model’s performance remained relatively
consistent across different values of 3. This obser-
vation can likely be attributed to the fact that the
model’s representations have already undergone
training to exhibit low mutual information with the
input during the preceding distillation stage.

4.7 Analysis

In this section, we aim to examine the effect of
minimizing mutual information between the stu-
dent model and its input. Therefore, we conduct
several experiments using the TinyBERT-L4 model
as the student model while maintaining consistent
hyperparameters with the primary experiment.

Feature correlation To analyze the feature cor-
relation of the CKD and IBKD models, we ran-
domly select 10,000 sentences from the Natural
Language Inference (NLI) dataset and calculate
the covariance matrix for each dimension. As de-
picted in Figure 4 , the representations generated
by the IBKD model exhibit low covariance across
all dimensions, indicating that IBKD facilitates the
learning of a more disentangled representation.

1.0 HPD(81.02)
L]

CRD(80.54)
0.8/ CKD(81.2) °
L[]

IBKDf(82.01) Simcse(78.78)
.

0.4 MSE(79.78)

=17 -16 -15 -14 -13 -12 -11 -1.0
!

uniform

Figure 5: Alignment and Uniform metric of different
Knowledge Distillation method. The darker color de-
notes a better performance.

Alignment and Uniform We evaluate the qual-
ity of embedding of different distillation methods
through two widely used metrics: alignment and
uniformity Wang and Isola (2020). Alignment mea-
sures the expected distance between positive pairs:

Lajign == IE(gn,y) Ppos(r,y)mf(x) - f(y)”%] (12)

On the other hand, uniformity measures the ex-
pected distances between embeddings of two ran-
dom examples:

[e=2IF@—fWIE),

(13)
We plot the distribution of the “uniformity-
alignment” map for different representation models
across different distillation methods in Figure 5.
The uniformity and alignment are calculated on
the STS-B dataset. For both uniformity and align-
ment, lower values represent better performance.
We observe that our IBKD method achieves a better
trade-off between uniformity and alignment com-
pared with other distilled models.

Luniform := log IE(z’,y) Pyata(z,y)

5 Conclusion

In this paper, we present a new approach for distill-
ing knowledge in text representation called IBKD.
Our technique is created to address the performance
gap between large-scale pre-trained models and
smaller ones. Drawing inspiration from the In-
formation Bottleneck principle, IBKD selectively
retains crucial information for the student model
while discarding irrelevant information. This as-
sists the student model in avoiding over-fitting
and achieving a more disentangled representation.
Through empirical experiments conducted on two
text representation tasks, we demonstrate the ef-
fectiveness of IBKD in terms of accuracy and effi-
ciency. These results establish IBKD as a promis-
ing technique for real-world applications.
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6 Limitation and Risk

The IBKD method has two primary limitations.
Firstly, it requires that the teacher model be a rep-
resentation model, which limits the use of other
architectures, such as cross-encoder models that
take a pair of texts as input and output their se-
mantic similarity score. Secondly, the fine-tuning
stage need labeled data which may not be avalia-
bel in certain situation, even though these data can
be the same data as that used to train the teacher
model. Additionally, our model may perpetuate
biases, lack transparency, pose security and privacy
risks, similar to other pre-trained models.
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A Appendix-A

A.1 Statistics of the Dataset

The NLI dataset consists of 1 million pairs and
1,196,755 sentences. After data augmentation, the
dataset includes 3,590,265 sentences. The MS
MARCO dataset includes 502,939 training queries,
8,841,823 documents, and 6,980 test queries.

A.2 Hyparameter search range

Table 5 list the range of each hyparameter we used.

We select the final hyparameter on the STS-B dev
set and MS MARCO dev set for the STS task and
DR task respectively.

Table 5: Hyparameters search range.

Hyparameter range
learning rate le-5, 3e-5, le-4, 1le-4
batch size 64, 128, 256
epoch 3,5,10
T 0.01, 0.05,0.1,0.2,0.5
v 0.01,0.1,0.5,1.0
051 0.1,0.5,1.0,2.0
Bo 0.1,0.5,1.0,2.0

A.3 Experiment results with additional
teacher model

In this section, we present experimental results
utilizing additional teacher models for the STS and
DR tasks. For the STS task, we selected SImCSE-
BERT;¢4e (Gao et al., 2021) as our teacher model,
while for the DR task, we chose RetroMAE (Xiao
et al., 2022). As a baseline, we employed the HPD
method. The corresponding results are provided in
Table 6 for the STS task and Table 7 for the DR
task.

Model Avg Params Dimension
SimCSE-BERT}4,4. 82.21  330M 1024
TinyBERT-HPD 80.24 14M 128
TinyBERT-HPD ft  80.88  14M 128
TinyBERT-IBKD  81.02  14M 312
TinyBERT-IBKD ft 8143  14M 312

Table 6: Experiment resulst for the STS task with
SimCSE-BERT-large as the teacher model.

The additional experiments above indicate that
different teacher models of IBKD consistently
demonstrate performance, effectively enabling the

Model MRR@10 Recall@1000 Params Dimension
RetroMAE 41.6 98.8 110M 768
TinyBERT-HPD 25.38 92.55 14M 128
TinyBERT-HPD 36.93 98.04 14M 128
TinyBERT-IBKD 30.12 92.04 14M 312
TinyBERT-IBKD 38.21 98.20 14M 128

Table 7: Results of the DR task with Retromae as the
teacher model.

student model to closely resemble the teacher
model in comparison to other methods. This
also confirms the generalizability of the IBKD ap-
proach.
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