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Abstract

Program translation, i.e. transcompilation has
been attracting increasing attention from re-
searchers due to its enormous application value.
However, we observe that current program
translating models still make elementary syn-
tax errors, particularly when the source lan-
guage uses syntax elements not present in the
target language, which is exactly what devel-
opers are concerned about while may not be
well exposed by frequently used metrics such
as BLEU, CodeBLEU and Computation Accu-
racy. In this paper, we focus on evaluating the
model’s ability to address these basic syntax
errors and developed an novel active defects
probing suite, the Syntactic Unit Tests (SUT)
and highly interpretable evaluation harness in-
cluding Syntax Unit Test Accuracy (SUT Acc)
metric and Syntax Element Test Score (SETS),
to help diagnose and promote progress in this
area. Our Syntactic Unit Test fills the gap in
the community for a fine-grained evaluation
dataset for program translation. Experimental
analysis shows that our evaluation harness is
more accurate, reliable, and in line with human
judgments compared to previous metrics.

1 Introduction

Program translation or transcompilation aims to
automatically convert source code from one pro-
gramming language (e.g., C++) into another (e.g.,
Java), meanwhile the results should preserve the
program function and ideally follow the target
language conventions. The recent proposal of
transcompilation datasets such as CodexGLUE(Lu
et al., 2021) benchmark, GeeksforGeeks dataset for
computation accuracy(Roziere et al., 2020) and
XLCoST(Zhu et al., 2022) benchmark has pro-
pelled related research in the program translation
domain (Feng et al., 2020; Kanade et al., 2020; Ah-
mad et al., 2021a; Guo et al., 2021; Lachaux et al.,
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2021; Clement et al., 2020; Roziere et al., 2020,
2021). These innovations have resulted in impres-
sive improvements in neural transcompilation, but
most models still make elementary syntax errors,
especially when the source and target languages
have different sets of syntactic structures.

Existing datasets are often criticized for their
lack of granularity, which can mask deficiencies in
basic syntactic elements that humans care. Their
data are derived from randomly sampled code
stores or programming contest websites, and the
code they contain may not even be executable. As
a result, researchers have had to rely on sequence
similarity metrics like BLEU, ROUGE, or Code-
BLEU to evaluate the quality of code translation.
However, these metrics have been shown to be in-
adequate for objectively assessing the quality of
code translation.

In this paper, we propose Syntactic Unit
Tests(SUT), which leverage basic syntax struc-
tures of each language along with unit tests to
verify the correctness of the translations. Tablel
presents a comparative analysis of SUT against
other code translation evaluation datasets. Our ex-
periments show that SUT performance of state-of-
the-art transcompilers like ChatGPT has definite
room for improvement, demonstrating the value of
the metric for judging future model improvements.
Further, we propose the Syntax Unit Test Accuracy
(SUT Acc) and Syntax Element Test Score (SETS),
using statistical inference to analysis individual
syntax element performance, which is more in line
with translation quality that humans concern about.
In summary, we make the following contributions:

* We build SUT, a new set of unit tests for pro-
gramming languages C++, Java, Python, and
C#, interpretable syntactic categories for each,
and a test harness environment for compiling
and executing these unit tests given hypoth-
esis translations from any model, which fills
the gap in the field of a fine-grained evaluation

14024

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14024—-14034
December 6-10, 2023 ©2023 Association for Computational Linguistics



Table 1: Comparison against other code translation eval datasets (Py - Python, JS - JavaScript).

Datasets Support Languages Code Form  Avg. tokens Executable Limited by Parallel Data  Syntax Element Analysis
CodeXGLUE Java, C# methods 43.1 X v X
XLCoST C++, Java, Py, C#,JS, PHP, C  code snippets 22.83 X v X
AVATAR Java, Python programs 147.9 v v X
TransCoder GeeksforGeeks Java, Python, C++ programs 111.9 v ' X
SUT Java, Python, C++, C# unit tests 28.15 v X v

dataset for program translation.

* We propose a more accurate reliable, and in
line with human judgments evaluation harness,
including SUT Acc and SETS, which focus on
analysing model performance on fine-grained
elements.

* We evaluate a variety of the most advanced
program translation models in a unified man-
ner. Our experiments reveal syntactic element
errors in which these models exhibit deficien-
cies, and help researchers working in this field
to get potential avenues for improvement.

2 Related Work

2.1 Program Translation Datasets

Both CodexGLUE (Lu et al., 2021) and XLCoST
(Zhu et al., 2022) benchmark provide complete par-
allel pair functions for program translation tasks,
while XLCoST also provides random code snippet
level data pairs. However, a major issue occurs
that they do not account for the environmental de-
pendencies of running the program. Transcoder
(Roziere et al., 2020) extracts code from the Geeks-
forGeeks website and provides a test environment,
then AVATAR (Ahmad et al., 2021b) collects more
parallel datasets for Java-Python translation. How-
ever, the generated code must be completely cor-
rect to pass the test, while developers often want
to clearly locate which part of the code generates
errors to facilitate quick debugging.

2.2 Metric for Program Translation

For evaluation of Transcompilation, early studies
followed the NLP analogy and mainly employed
BLEU (Papineni et al., 2002) to evaluate the gener-
ated translations. But the n-gram overlap does not
directly reflect the quality of the resulting transla-
tions. CodeBLEU (Ren et al., 2020) improves upon
BLEU by using features from the abstract syntax
tree (AST) and data flow of variables. Neverthe-
less, these static metrics still cannot tell whether
the translated code has the same behavior as the

source code. TransCoder (Roziere et al., 2020) test
whether the translated program outputs the same
results as the source program for each test case.
They defined Computational Accuracy (CA@ K)
to evaluate the probability that a given program
can be translated and produce the correct output
in K attempts. The results of the CA meet human
expectations, but it is too expensive to build a test
environment for code with complex dependencies.

3 Syntactic Unit Tests Suite

3.1 Syntactic Unit Tests (SUT)

Inspired by how humans learn programming, we
note that it is essential for a program translator to
master the syntax elements to learn how to write
programs in a language. To evaluate whether the
translation model has a solid understanding of lan-
guage characteristics, tests designed for each syn-
tax element are necessary. Similar to Computa-
tional Accuracy by the authors of TransCoder (Roz-
iere et al., 2020), we introduce scenario programs
and unit tests which must be satisfied for each syn-
tax elements of the languages under consideration.
The idea is that, if the model fully understands a
syntax element, it should translate the test func-
tion correctly and thus pass the unit tests. Further,
failures are explicitly associated with syntax ele-
ments, allowing us to interpret the performance of
the model and plan for improvements which target
the most impactful elements.

The program in each test case accepts one or
more parameters as input and generates the ex-
pected output. Each case from SUT has four prop-
erties: 1) the name and category of the syntax el-
ement 2) the source program 3) the input of the
function 4) the expected output of the function. We
manually craft SUT datasets for four languages:
C++, Java, Python, and C#, following program-
ming language instruction sets and show some spe-
cific cases in Appendix A.
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Figure 1: Comparison the construct process between SUT Acc(the left) and Computation Accuracy(the right).
Our method wraps the translated target language code with a cross-language interaction python library, and executes
it uniformly in the python environment. We only compare the final execution results, so the target language does not

need to provide the corresponding golden code.

3.2 Evaluation Harness

3.2.1 Syntax Unit Test Accuracy

Transcoder (Roziere et al., 2020) randomly selected
coding problems from the GeeksforGeeks website
and used Computation Accuracy as an evaluation
metric. Our syntax unit test accuracy metric eval-
uates the model’s pass rate on disentangled test
samples just containing basic elements. Figure 1
compares the calculation process of Our SUT Acc
and Transcoder’s CA. Our method does not rely on
parallel data pairs, which not only reduces poten-
tial data noise, but also can be expanded upon with
relative ease. The translated function is wrapped
in a Python unittest! function. Leveraging lan-
guage interoperation tools such as JPype? and py-
bind113, we can use Python to compile and execute
the programs in the other languages under consid-
eration. Combined with the above unit tests, the
system injects each input of the input list to the unit
test function and compares the output with the ex-
pected output, defining it as passing if they match.
Syntax Unit Test Accuracy calculates pass rate of
execution results and measures the various basic
syntactic correctness of the model.

1https://docs.python.org/3/library/unittest.
html

2https ://jpype.readthedocs.io/
3https ://pybind11.readthedocs.io/

3.2.2 Syntax Element Test Score (SETS)

Based on the results of SUT Acc, we can get some
sense of translation performance on the syntax el-
ements. However, sometimes SUT case contains
multiple syntax elements as some syntax elements
are not by themselves able to render a valid pro-
gram. Therefore, we further disentangle the statisti-
cal effects of multiple syntax elements in each SUT
case. For each SUT test case i, we use the parsing
tool Tree-sitter* to obtain the set of syntax elements,
and construct a matrix A;; which is 1 if that test pro-
gram contains syntax element j. Then when we get
the results y; of each unit test, which may empiri-
cally be 1 or 0 if the test passed or failed. We are in-
terested in the fail rate of syntax element j though,
and so we model the relationship as y = Az, where
y; = log P(fail test;) is the empirical log fail rate
of test i, x; = log P(fail syntax element;) is the
unknown fail rate of syntax element j, and A is
the known relationship between test ¢ and syntax
element j. We then use Lasso regression to get con-
sistent results for the estimated log fail rate of each
syntax element. The higher the score, the worse
the model is at translating such basic elements.

4https: //tree-sitter.github.io/tree-sitter/
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Table 2: Comparation the translation performance of these program translators on our SUT and test dataset in
Transcoder. “To X” & “From X”: average performance when translating to & from language X. The SUT Acc line
shows the pass rate on our SUT. The CA line and the CA filter line respectively show the pass rate on the test dataset
in Transcoder GeeksforGeeks and after the data errors in it are filterd.

Model EvalSet ToC++ FromC++ TolJa FromJa ToPy FromPy ToC# FromC#  Avg.
TransCoder SUT Acc  3594%  4594%  34.74% 42.58% 45.16% 27.32% - - 38.61%
CA 56.20%  56.10%  50.85% 64.40% 48.05% 34.60% - - 51.70%
CAfilter 61.04% 60.85%  55.08% 69.96% 52.22% 37.53% - - 56.11%
TransCoder-ST ~ SUT Acc  42.02%  49.59%  43.67% 57.42% 53.28% 31.95% - - 46.32%
CA 70.65%  64.65%  63.10% 76.75% 65.10% 57.45% - - 66.28%
CAfilter 76.73%  70.13%  68.35% 83.38% 70.74% 62.31% - - 71.94%
text-davinci-003  SUT Acc  55.99%  6531%  58.89% 63.54% 65.60% 41.05% 58.08% 68.67% 59.64%
CA 77.84%  14.72%  72.09% 79.79% 74.14% 69.57% - - 74.69%
CAfilter 84.54%  81.06%  78.09% 86.82% 80.71% 75.45% - - 81.11%
gpt-3.5-turbo SUT Acc  60.62%  70.45%  62.50% 67.18% 78.99% 5031% 63.53% 77.70% 66.41%
CA 88.55%  8521%  80.60% 88.71% 85.67% 80.89% - - 84.94%
CAfilter 96.17%  92.45%  87.31% 98.61% 93.09% 87.74% - - 92.56%

4 Experimental Results

4.1 Evaluation of Program Translators

Table 2 shows the translation performance of in-
fluential program translators with our SUT and
the unit test proposed in TransCoder (Roziere
et al., 2020). For a detailed introduction to these
models, please refer to Appendix B. The test
data in TransCoder still remains some data impu-
rity(mainly on the input of the test sample and
the mismatch of the given translation pair logic).
Table 2 demonstrates that after these errors were
addressed, certain translation tasks almostly no
longer confused the SOTA models, while the SUT
remained challenging for them. It is worth noting
that although most test functions are elementary,
models still fail to translate in many cases. Our
test results indicate a crucial bottleneck in most
existing program translators: these models focus
on achieving program mappings in a macroscopic
manner, without specially designed tasks to learn
code snippet mappings associated with each indi-
vidual syntax. This may limit the further improve-
ment of model performance.

4.2 Performance on Syntactic Element

In this section, we present the translation perfor-
mance of our models on the base elements using
SETS scores. For the convenience display at fig 2,
it is summarized into 5 categories, Variable & Con-
stant, Datatype, Data Structure, Operator, and Loop
& Branch. More detailed analysis can be seen
in Appendix C. The diagnose report can assist re-

== Variable & Constant
Datatype

mmm Data Structure

mmm Operator

=== Loop & Branch

mE
m

B e
N .

Transcoder Transcoder-ST text-davinci-003 gpt-3.5-turbo

Figure 2: Error Distribution of These Tested Models.

searchers in identifying the model’s weak areas
and addressing these issues to quickly improve the
model’s performance. In the appendix D, we pro-
vide a brief demonstration of how our reports can
be utilized to enhance model performance.

5 Conclusion

In this paper, we introduce an interpretable bench-
mark via Syntactic Unit Test and associated Syntax
Element Test Score, which can diagnose the spe-
cific weakness of a given translation model. It fills
the gap in the field of a fine-grained evaluation
dataset for program translation. By our designed
evaluation suites, researchers can actively probe
deficiencies in their models about specific basic
syntactic elements and improve their performance
in a targeted manner.
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Limitations

While our work provides an evaluation tool for
exploring code translation models on fine-grained
underlying semantic elements. However, limited
by time and manpower, our data set is still not
comprehensive enough, and currently only supports
four languages: Python, Java, C++ and C#. This
article only uses the S-Tuning experiment (shown
in the appendix D) to show the prospect of fine-
grained data sets for improving the model effect.
Regarding how to use these diagnostic information,
more effective solutions need to be proposed by the
follow-up community.
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A Examples of SUT Cases

1) C++
name sre input expected_output
int foo(int a, int b) {
o int ¢ = a / b;
division operator return c; [09,2),09,3), 9,4 ] [4,3,2]
}
int foo(int x, int y) {
i int z = > 2% ¢y
conditional operator e,y sy [(1,2), 2, D, (1, D, (1,-2), | [2,2,1,-1,-1,0]
Y (-2,-1),(0,0)]
int foo(int x, int y) {
int s = 0;
for(int i = 1; i <= x; ++i) {
break in for statement ;iisi? y) break; [3,1),3,2),3,3)] [3,3,6]
}
return s;
}
int foo(int x) {
int al3];
ale] = o;
. 17 = 1;
array index Iy [1.2,3] [0,1,2]
return alx-11;
}
Figure 3: Examples of C++ SUT cases.
2) Java
name src input expected_output
int foo(String s) {
string length return s.length; [ "abcde" | [5]
}
int foo(int a, int b) {
if (a > b)
return 1;
} else if (a == b) {
if-else if-else condition return o; [(4.4)] [0]
} else {
return -1;
3
}
int foo(int a) {
int i = a;
do {
do-while statement 1 [3] [4]
while (i < a);
return i;
}
int foo(int a) {
int[]l n = {1,2,3,4};
for (int i : n) {
for each statement a += i; [8] [18]
}
return a
}

Figure 4: Examples of Java SUT cases.
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3) Python

name

src

input

expected_output

raw string

def foo():
a =r'\n'
return a

[]

["\\n"]

conditional expression

def foo(a, b):
return b if a > b else a

[(4.9]

[4]

continue in for state-
ment

def foo(x):
a = list(range(10))
s =0
for i in a:
if i % x == 0:
continue
s += i
return s

[25,27]

stack top

def foo():
s = [1]
s.append (1)
s.append(2)
s.append(3)
return s[-1]

[3]

Figure 5: Examples of Python SUT cases.

4) C#

name

src

input

expected_output

double to string

string foo(double a) {
return a.ToString();

}

[3.14,-1.5]

["3.14","-1.5" ]

switch statement

int foo(int a) {
int b;
switch (a) {
case 1:
b =a+ 1;
break;
case 2:
b =a+ 2;
break;
case 3:
b =a + 3;
break;
default:
b = a + 4;
break;

return b;

}

[1,2,3,4,5]

[2,4,6,8,9]

initialize string with
char array

string foo() {
charf]l a = {'a', 'b', 'c'}
string b = new string(a);
return b;

[ "abc" ]

array traversal

int foo() {
int[] arr = new int[]{1, 2,
int b = 0;
foreach (int a in arr) {
b += a;
3}

return b;

33};

[6]

Figure 6: Examples of C# SUT cases.
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B Models for evaluation

¢ TransCoder (Roziere et al., 2020) is an unsu-
pervised program translation model that can
translate functions between C++, Java, and
Python with high accuracy.

¢ TransCoder-ST (Roziere et al., 2021) en-
hances TransCoder by leveraging an auto-
mated unit-testing system to filter out invalid
translations in the back-translation process.

* text-davinci-003 originated from Instruct-
GPT (Ouyang et al., 2022), the OpenAl team
continues to use Instruction Learning and Re-
inforcement Learning from Human Feedback
(RLHF) based on the GPT series of models to
guide the training of the model.

e gpt-3.5-turbo originated from Chat-
GPT (OpenAl., 2022), it is similar to the
training method of InstructGPT, and adding
more high-quality training data, making it
be the currently one of the most competitive
code generation models.

C Detailed Syntax Elements Probing

According to the translations and error messages
of failed cases, we manually probe the syntactic de-
fects for these models. For simplicity, we analyze
one language pair for each model since our method-
ology can easily be generalized to other languages.
Specifically, we focus on the C++—Python trans-
lation task for TransCoder/TransCoder-ST, and
the Python—C++ translation task for text-davinci-
003/gpt-3.5-turbo. The probed syntactic defects for
each model are summarized as follows:
TransCoder

1. update expression: C++ increment and decre-
ment operators (“++”,“=") have different exe-
cution logic when they are used as prefix and
postfix. The model is totally confused about

its syntax.

ii. long keyword: The model naively copies
“long” to the translation, while Python has
no support for this type.

iii. comma expression: C++ comma expression
is a way to simplify code. It can be used
in an assignment of several variables (e.g.,
“a,b=1,2"), or used in the init/loop expres-
sion of “for” statement to contain multiple

statements. The model sometimes translates
it incorrectly.

iv. do-while statement: “do-while” statement is
an exclusive usage to write a loop in C++, and
the model keeps it in the translation which
causes syntax errors.

v. switch-case statement: “switch-case” state-
ment is also an exclusive usage to write a
branch in C++, and the model translates it
into a serial “try-except” expression.

vi. conditional expression: C++ ternary operator
(“?:) is used to write a branch in the sim-
plest way, and one-line “if-else” is used in
Python for the same syntax. The model cannot
understand its correct translation.

TransCoder-ST

TransCoder-ST improves on the syntactic de-
fects in TransCoder. However, it still cannot fully
understand the defect i, ii, iii above.
text-davinci-003

text-davinci-003 can easily solve many funda-
mental problems that are prone to errors in the
Transcoder series model, but it will still be con-
fused by some of the carefully designed problems.

i. preserved words: There are many system
reserved word in python, c++, c# and java,
which are not allowed to be used as variable
names, but the reserved word in different lan-
guages only partially overlap, which makes
the variable names in the source language may
be unacceptable in the target language, and
models are often copied directly for use.

i. variable initialization: Initialization in differ-
ent languages often has different implementa-
tion methods. In some scenarios, it is random
initialization, while in others, default values
are assigned, which often confuses the current
powerful LLMs(large language models).

ii. data structure operation: There are some spe-
cial data types or relatively unpopular opera-
tions among them, and the text-davinci-003
model cannot be well understood and sup-
ports mapping to corresponding implemen-
tation methods in other languages, such as the
del method of list in Python.

ii. dynamic data type: Python can disregard the
type requirements of strongly typed languages
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for assignment, but at runtime, it will dis-
tinguish the type of value that the variable
points to, which is still difficult for static lan-
guages such as C++ to implement automatic
type derivation.

gpt-3.5-turbo

gpt-3.5-turbo can sometimes cleverly identify
scenarios that are prone to confusion in text-
davinci-003, especially in the i, ii, but it still cannot
perfectly translate all types of code correctly, espe-
cially when the input code structure is complex.

D Syntax Fine-Tuning (S-Tuning)

In this section, we present a solution for improving
the weak points of model translation based on our
diagnosis report. It is also very convenient to use
this report to expand the model’s capabilities in
other ways.

D.1 S-Tuning Dataset

Through the analysis report, we found that the
model is relatively weak in the mapping ability
of the special syntax structure of each language,
which is especially reflected in Transcoder and
Transcoder-st. We introduce an unsupervised data
augmentation method called Syntax Fine-Tuning
(S-Tuning) that leverages syntactic defects probed
on our SUT dataset to generate syntactically cor-
rect parallel samples for supervised fine-tuning. All
syntactic structures in a source language which are
not present in a target language can be transformed
to equivalent but more elementary structures which
are closer in appearance o structures in the target
language. For example, when translating from C++
to Python, int x=i++; can be transformed into
int x=i; i=i+1;, which is much closer to a cor-
rect Python implementation. This can be viewed
as analogous to classical syntax-tree transforma-
tion transcompilers, but is a heuristic to bring the
source and target closer together to improve the
ability of statistical machine learning models to
learn to map patterns. With the set of automatic
syntax transformations in hand, we augment the
existing training data, which we call the S-Tuning
dataset, to modify the source language code snip-
pets and fine-tune any existing model to improve its
ability to translate elementary syntactic structures.
The S-Tuning dataset is built based on a large-scale
monolingual dataset of each source language under
consideration, we show some case in Fig. 8 For

Step Code

int foo(int a) ({
Source C++ int b = ++a;
return b;

}

int foo(int a) ({
a+=1;
intb=a;
return b;

Logically equivalent modification

def foo ( a ) :
a += 1
b=a
return b

Translation of the modification

Figure 7: An example of creating a S-Tuning sample of
C++ prefix increment for C++—Python translation. The
source C++ function and translation of the modification
are combined as a parallel sample.

each syntax element, the generation of its S-Tuning
dataset consists of three steps:

1. Modification: For each source language pro-
gram z that contains the syntax element, we
generate a logically equivalent function xz’
with syntax as close as possible to a syntax of
the target language.

2. Translation: Assuming the model will under-
stand the commonly used syntax structures,
we use an existing trained transcompilation
model like TransCoder to translate the modi-
fied function 2’ into the target language pro-
gram y.

3. Reinforcement: We then fine-tune the
transcompilation model like TransCoder to
translate source language program z into the
translated target language program y, help-
ing the model associate the previously poorly
understood syntax elements with their proper
translation in the target language.

Let us take an example to illustrate the process
of S-Tuning dataset generation. The TransCoder-
ST (Roziere et al., 2021) model achieves strong
performance on translation among C++, Java, and
Python. However, it cannot always correctly trans-
late some basic expressions such as prefix incre-
ment operation. “++” operator has subtle syntax in
C++. The prefix and postfix “++” have different
semantics depending on the program context. The
process of creating the S-Tuning dataset for prefix
increment is shown in Fig. 7.
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Table 3: Statistics of the S-Tuning datasets in our exper-
iment. Note that TransCoder/TransCoder-ST requires
monolingual data for fine-tuning.

Model Parallel Monolingual

# source-target # source # target
TransCoder 120k 200k 200k
TransCoder-ST 60k 200k 200k

D.2 S-Tuning Experiment
D.2.1 S-Tuning Dataset Generation

IBM Project CodeNet® dataset is used as our mono-
lingual data source. It is a large-scale curated
dataset with diverse implementations where those
defects can be easily matched. For each defect, we
first search in the monolingual dataset to match the
function z that contains the syntax. Then, the func-
tion is transformed into a logically equivalent form
2/ that is familiar to the model based on the mod-
ification rules shown in Fig. 8. Next, the vanilla
model is used to generate the correctly translated
function y. Finally, the original function x and the
translated function y are paired as a parallel sam-
ple in the S-Tuning dataset. During the S-Tuning
of TransCoder/TransCoder-ST, we note that fine-
tuning solely with parallel functions has negative
effects on model performance, and other training
steps with monolingual functions are also indis-
pensable.

D.2.2 Fine-tuning Details

Dataset For TransCoder/TransCoder-ST, we
match 20,000 C++ functions for each defect to
generate parallel S-Tuning dataset, and we also ex-
tract 200,000 C++ and 200,000 Python functions
as monolingual datasets for other training steps in
vanilla TransCoder (i.e., masked language mod-
eling, denoising auto-encoding, back-translation).
The statistics of the S-Tuning datasets in our exper-
iment are shown in Table 3.

Training We initialize the three models with their
best checkpoints released on GitHub. The models
are optimized with the Adam (Kingma and Ba,
2015) optimizer, a learning rate of 2 x 10~°. Other
settings are the same as the original. We fine-tune
the models for a maximum of 100 epochs, and save
the model parameters in every epoch. The final
models are selected mainly based on the SUT ac-
curacy. The fine-tuning experiments are conducted

5https ://github.com/IBM/Project_CodeNet

Table 4: S-Tuning results of TransCoder and
TransCoder-ST C++—Python models.

TransCoder GeeksforGeeks SUT

Model
EM BLEU CodeBLEU CA@I Acc
TransCoder 9.6 68.8 69.9 47.1 48.0
TransCoder (S-Tuning) 9.7 69.1 70.4 50.6 63.9
TransCoder-ST 98 704 70.1 61.3 52.0
TransCoder-ST (S-Tuning) 99 70.6 70.5 63.4 70.4

in one NVIDIA Tesla V100 GPU.

D.3 S-Tuning Results and Discussion

Table 4 shows the S-Tuning results of TransCoder
and TransCoder-ST C++—Python models. After
S-Tuning, TransCoder improves with 15.9% SUT
accuracy and 3.5% CA @1, and TransCoder-ST im-
proves with 18.4% SUT accuracy and 2.1% CA@]1.
We believe that if we fine-tune the models for more
defects, the model performance can be further en-
hanced. We note that static metrics (EM, BLEU,
CodeBLEU) have marginal improvements after S-
Tuning, which is consistent with our motivation
that these metrics cannot assess the syntactic cor-
rectness via program execution. Programs with
subtle literal differences will have high EM/BLEU/-
CodeBLEU scores while they could lead to com-
pletely different computation results.

Moreover, we observe that our S-Tuning pro-
cedures cannot be easily applied to some syntax
elements. For example, template functions in C++
are highly flexible and hard to use rules to describe
logically equivalent modifications. Therefore, we
skip such syntactic defects even though we have
probed them. How to patch those highly flexible
syntactic defects remains an intractable task that is
worth exploring in the future work.
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Language Syntactic Defect Example Logically Equivalent Modification
int foo(int a) { int foo(int 2) {
. . int b = ++a; ?+=1;
i. update expression return b: int b = a;
} ’ return b;
}
long foo() { int foo() {
.. long a(1); int a(1);
ii. long keyword return a; return a;
3 3
: int foo() {
int foo : A
int(z {j~ int 1, j;
for (i = 0, j = o ¥:gf
. i < 5; i++) { J =9 .
ili. comma expression =1 for (5 i < 5; i++)
3 J ’ Jo+= i
return j; ) .
3 return j;
}
. int foo() {
gm0 Gl
do ¢ ’ a=a+1;
. . i <
iv.  do-while statement a=a+1; Whﬂ: iaa +53 g
} while (a < 5); ;
C++—Python return a: }
3 ! return a;
3
int foo() { int foo() {
int a =0, b= 0 i o :_oé) . o
switch (a) { b :_1_
case 0: 3 -
caseb1': 1; break; else if (a == 1) {
V. switch-case statement b = 2; break; b = 2;
defal;li:sl else |
’ b = 3;
; return b; return b;
}
int foo() {
int a = 1;
int foo() { int b;
int a = 1; if (a > 0) {
vi diti ! ressi int b; b =1;
conditional expression b= (a>0) 71 } else {
return b; b = -1;
} }
return b;
}

Figure 8: The manually probed syntactic defects for the models studied. For each defect, we show a code snippet
example and its corresponding logically equivalent modification.
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