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Abstract

When people interpret text, they rely on infer-
ences that go beyond the observed language it-
self. Inspired by this observation, we introduce
a method for the analysis of text that takes im-
plicitly communicated content explicitly into
account. We use a large language model to
produce sets of propositions that are inferen-
tially related to the text that has been observed,
then validate the plausibility of the generated
content via human judgments. Incorporating
these explicit representations of implicit con-
tent proves useful in multiple problem settings
that involve the human interpretation of utter-
ances: assessing the similarity of arguments,
making sense of a body of opinion data, and
modeling legislative behavior. Our results sug-
gest that modeling the meanings behind ob-
served language, rather than the literal text
alone, is a valuable direction for NLP and par-
ticularly its applications to social science.'

1 Introduction

The meaning and import of an utterance are often
underdetermined by the utterance itself. Human
interpretation involves making inferences based on
the utterance to understand what it communicates
(Bach, 1994; Hobbs et al., 1993). For the disci-
plines and applications that are concerned with
making sense of large amounts of text data, hu-
man interpretation of each individual utterance is
intractable. Some NLP methods are designed to fa-
cilitate human interpretation of text by aggregating
lexical data; for example, dictionaries map words
to constructs (e.g., Pennebaker et al., 2001), and
topic models discover interpretable categories in
a form of automated qualitative content analysis
(Grimmer and Stewart, 2013; Hoyle et al., 2022).
Much of the time, though, these techniques oper-
ate over surface forms alone, limiting their ability
* Equal contribution.
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Figure 1: Example showing a pair of tweets from legis-
lators along with inferentially-related propositions. Em-
beddings over observed tweets have a high cosine dis-
tance, while embeddings over (different types of) propo-
sitions place them closer to each other (see § 5).

to capture implicit content that facilitates human
interpretation. While contextual embeddings are a
step in this direction, these representations remain
dominated by lexical content (Zhang et al., 2019).

In this work, we introduce a framework for the
interpretation of text data at scale that takes im-
plicitly communicated content more explicitly into
account. Specifically, we generate sets of straight-
forward propositions that are inferentially related
to the original texts. We refer to these as inferential
decompositions because they break the interpre-
tations of utterances into smaller units. Broadly
speaking, we follow Bach (2004, p. 476) in distin-
guishing “information encoded in what is uttered”
from extralinguistic information. Rather than being
logical entailments, these generations are plausi-
ble entailments of the kind found in discussions of
textual entailment (Dagan et al., 2009) and implica-
ture (Davis, 2019).This idea relates to decomposi-
tional semantics (White et al., 2020), but eschews
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linguistically-motivated annotations in favor of a
more open-ended structure that facilitates direct
interpretation in downstream applications.

We perform this process using a large language
model (LLM), specifying a practitioner protocol
for crafting exemplars that capture explicit and im-
plicit propositions based on utterances sampled
from the corpus of interest, thereby guiding the
language model to do the same (§ 2). In designing
our approach, we observe that the inherent sparse-
ness of text data often makes it useful to represent
text using lower-dimensional representations. Ac-
cordingly, our notion of decomposition (and the
generation process) encourages propositions that
contain simple language, making them both easier
to interpret and more amenable to standard em-
bedding techniques. We observe that the viability
of this technique rests on models’ ability to reli-
ably generate real-world associations (Petroni et al.,
2019; Jiang et al., 2020; Patel and Pavlick, 2022),
as well as their capacity to follow instructions and
mirror the linguistic patterns of provided exemplars
(Brown et al., 2020; Liu et al., 2022).

We situate our approach within the text-as-data
framework: the “systematic analysis of large-scale
text collections” that can help address substantive
problems within a particular discipline (Grimmer
and Stewart, 2013). First, we validate our method
with human annotations, verifying that generated
decompositions are plausible and easy to read, and
we also show that embeddings of these inferential
decompositions can be used to improve correlation
with human judgments of argument similarity (§ 3).
We then turn to two illustrations of the technique’s
utility, both drawn from real-world, substantive
problems in computational social science. The first
problem involves making sense of the space of
public opinion, facilitating human interpretation of
a set of comments responding to the US Food and
Drug Administration’s plans to authorize a COVID-
19 vaccine for children (§ 4). The second involves
the question of how likely two legislators are to
vote together based on their tweets (§ 5).

2 The Method and its Rationale

The key idea in our approach is to go beyond the
observable text to explicitly represent and use the
kinds of implicit content that people use when in-
terpreting text in context.

Consider the sentence Build the wall!. Follow-
ing Bender and Koller (2020), human interpreta-

Human utterances communicate propositions that
may or may not be explicit in the literal meaning of
the utterance. For each utterance, state the implicit
and explicit propositions communicated by that ut-
terance in a brief list. Implicit propositions may be
inferences about the subject of the utterance or about
the perspective of its author. All generated proposi-
tions should be short, independent, and written in
direct speech and simple sentences.

HAHH

INPUT: { utterance }

OUTPUT: { inference 1 } | { inference 2 } | ...

Figure 2: A condensed version of our prompt to models.

tion of this sentence in context involves deriving
the speaker’s communicative intent ¢ from the ex-
pression itself, e, together with an implicit universe
of propositions outside the utterance, U—world
knowledge, hypotheses about the speaker’s beliefs,
and more. In this case, some elements of U might
be factual background knowledge such as “The U.S.
shares a border with Mexico” that is not communi-
cated by e itself. Other elements might include im-
plicitly communicated propositions such as “immi-
gration should be limited”. Propositions from this
latter category, consisting of relevant plausible en-
tailments from the utterance, we denote as R C U.2

We are motivated by the idea that, if human in-
terpretation includes the identification of plausible
entailments R based on the expressed e, automated
text analysis can also benefit from such inferences,
particularly in scenarios where understanding text
goes beyond “who did what to whom”. The core of
our approach is to take an expression and explicitly
represent, as language, a body of propositions that
are related inferentially to it.

Operationally, our method is as follows:

1. For the target dataset, randomly sample a
small number of items (e.g., tweets).

2. Craft explicit and implicit propositions rele-
vant to the items (inferential decompositions
expressed as language) following the instruc-
tions in appendix A.2 to form exemplars.

3. Prompt a large language model with our in-
structions (fig. 2) and these exemplars.

4. Confirm that a random sample of the gener-
ated decompositions are plausible (§ 3).>

5. Use the decompositions in the target task.

2Cf. Bach’s characterization of pragmatic information as
“relevant to the hearer’s determination of what the speaker is
communicating ... generated by, or at least made relevant by,
the act of uttering it”. Similarly, interpretation as abduction
(Hobbs et al., 1993) is an inferential process that starts from
the utterance.

3While this step is not necessary, we recommend validating
generations, particularly in sensitive use cases.
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Figure 3: Human-judged plausibility of inferentially-
related propositions for different inference types. The
vast majority of inferred propositions are plausible.

To ground these propositions in a context, we
develop domain-dependent user guidelines (step 2)
for exemplar creation, limiting the focus to infer-
ences about the utterance topic and its speaker (and
explicit content, appendix A.2).4

Continuing with the example e of Build the wall!,
the method might generate the augmented represen-
tation R = {A US border wall will reduce border
crossings, Illegal immigation should be stopped,
...} as plausible inferences about the speaker’s
perspective (an actual example appears in fig. 1).

Because the propositions are expressed in simple
language, they are easier to represent with standard
embedding techniques: when using K -means clus-
tering to over the embedded representations, the
clusters are far more readable and distinct than
baselines (§ 4). Hence, this approach facilitates
interpretation of text data at scale.’

3 Generation Validity

Text analysis methods used in the computational
social sciences have known issues with validity.
The interpretation of unsupervised models is par-
ticularly fraught—Ieading to potentially incorrect
inferences about the data under study (Baden et al.,
2021). We validate the two components of our
approach: the quality of the generations and the
similarity of their embeddings.

First, if we want to use the generated inferen-
tial decompositions in downstream applications, it
is important that they are reasonable inferences
from the original utterance. Large language mod-
els are known to hallucinate incorrect information

“In principle, alternative guidelines meeting other desider-
ata are possible, and can be validated with the same process.

Scale” refers to dataset sizes that render human analysis
too costly, and is constrained only by computational budget.

Decompositions

Baseline Explicit Implicit Both
Implicit
Arg Facet 54.01 59.98 58.84 59.79
BWS Arg. 53.74 55.32 54.63 55.09
UKP Aspect  50.04 52.86 53.40 53.39
Explicit
Twitter-STS ~ 69.05 72.69 69.92 71.92
SICK-R 80.59 81.39 75.92  80.00
STS-B 83.42 81.27 7759 81.76

Table 1: Measured against human similarity judgments,
similarities computed using inferential decompositions
are generally better than similarities computed using the
observable text (Spearman p). Improvements from the
baseline are underlined.

in some circumstances (Maynez et al., 2020; Cao
et al., 2022; Ji et al., 2023), but can also exhibit
high factuality relative to prior methods (Goyal
et al., 2023). This leads to the question: Do lan-
guage models reliably produce plausible explicit &
implicit propositions?

Second, since similarity over embedded text un-
derpins both the text analysis (§ 4) and downstream
application (§ 5) that validate our approach, we
measure the correlation of embedding and ground-
truth similarities for several standard semantic-
textual-similarity tasks. Assuming that human sim-
ilarity judgments make use of both explicit and
implicit inferences, we also ask whether includ-
ing such information in sentence representations
improve automated estimates of similarity.

Generation of decompositions. We generate in-
ferential decompositions for datasets across a di-
verse set of domains. Our method should effec-
tively encode stance, often an implicit property
of text, so we adopt three argument similarity
datasets (Argument Facets from Misra et al. 2016;
BWS from Thakur et al. 2020-10; and UKP from
Reimers et al. 2019). As a reference point, we
also select several standard STS tasks from the
Massive Text Embedding Benchmark, which are
evaluated for their observed semantic similarity
(MTEB, Muennighoff et al., 2023).° We also use
the datasets underpinning our analyses in sections 4
and 5: public commentary on FDA authorization of
COVID-19 vaccines, and tweets from US senators.

To generate decompositions, we use the instruc-
tions and exemplars in appendix A.4, further di-
viding the exemplars into explicit and implicit

®For the Twitter dataset (Xu et al., 2015), we use the origi-
nal 5-scale Likert similarity, not the binary scores in MTEB.



categories, as determined by our guidelines (ap-
pendix A.2). See fig. 1 for an illustration. For the
human annotation, we sample 15 examples each
from STS-B (Cer et al., 2017), BWS, Twitter-STS
(Xu et al., 2015), and our two analysis datasets.
The language model is text-davinci-003
(INSTRUCTGPT, Ouyang et al., 2022), and em-
beddings use all-mpnet-base-v2 (Reimers
and Gurevych, 2019). Throughout this work, we
use nucleus sampling with p = 0.95 (Holtzman
et al., 2019) and a temperature of 1.

Human annotation of plausiblity. In answering
the first question, a set of 80 crowdworkers anno-
tated the extent to which a decomposition is rea-
sonable given an utterance—f{rom “1 - Definitely”
to “5 - Definitely not”—and whether it adds new
information to that utterance (full instructions in ap-
pendix A.5.1, recruitment details in appendix A.5).
We majority-code both answers, breaking ties for
the plausibility scores with the rounded mean.

In the vast majority of cases (85%-93%), the
generated decompositions are at least “probably”
reasonable (fig. 3). As expected, the plausibility
of implicit inferences tends to be less definite than
either a paraphrase baseline or explicit inferences—
but this also speaks to their utility, as they convey
additional information not in the text. Indeed, im-
plicit inferences add new information 40% of the
time, compared to 7% for explicit inferences (and
15% for paraphrases). As further validation to sup-
port the analyses in § 5, a professor of political
science annotated the implicit decompositions of
observable legislative tweets, finding 12 of 15 to
be at least “probably reasonable,” two ambiguous,
and one “probably not reasonable”.

Semantic Textual Similarity. Here, we measure
whether our method can improve automated mea-
surements of semantic sextual similarity. For each
example in each of the STS datasets, we form a set
S; = {SZ', 52',1, §i,27 R §i,n} consisting of the orig-
inal utterance and n decompositions. As baseline,
we computed the cosine similarity comparisons be-
tween embeddings of the original sentences s;, s;,
obtained using all-mpnet-base-v2. Pairwise
comparisons for expanded representations S;, S},
were scored by concatenating the embedding for s;
with the mean of the embeddings for the s; ..’
Our method substantially improves correlation

" Approaches designed to measure the similarity of sets of
vectors gave similar results(e.g., Zhelezniak et al., 2020)

K  Method Silhouettet CHT DBJ
Comments 0.052 247 341
15 Sentences 0.042 219 374
Decompositions (ours) 0.090 329 3.03
Comments 0.035 172 3.28
25 Sentences 0.035 152 3.64
Decompositions (ours)  0.096 239 2.80
Comments 0.029 104  3.26
50 Sentences 0.042 93 3.51
Decompositions (ours) 0.114 153 2.73

Table 2: Intrinsic metrics of clustering quality. On a
random subsample of 10k comments, sentences, and
decompositions, the intrinsic metrics rank our model
higher both for a fixed number of clusters (bolded)
and across clusters (underlined). CH is the Calinski-
Harabasz Index and DB is Davies-Bouldin.

on the argument similarity datasets over the embed-
ding baseline (table 1), where pairs are annotated
for the similarity of their position and explanation
with respect to a particular topic (e.g., supporting
a minimum wage increase by invoking inflation).
In this task, explicit decompositions resemble the
implicit ones—annotators give similar proportions
of “probably reasonable” scores to both types.®

On the conversational Twitter-STS dataset, the
method also shows improvement, likely due to the
colloquial and contextualized nature of the origi-
nal utterances.” Unsurprisingly, on standard STS
benchmarks, the implicit method fares worse, likely
because it over-generalizes from specific instances
that reduce precision, even if they remain correct:
“A person is mixing a pot of rice.” — “The person is
preparing food.” Indeed, our method is intended to
create such generalizations to assist in interpretabil-
ity at scale, not to improve STS tasks.!?

4 Inferential Decompositions Help Theme
Discovery

Since the augmented representations we are cre-
ating go beyond the observed text to inferentially
related propositions, we expect it to be useful in
problem settings where observable text is the “tip of
the iceberg” — intuitively, problems where it is par-
ticularly important to consider not only what was
said, but what is behind what was said. Specifically,

8For example, from a 38-word utterance, explicit: “The
minimum wage should be higher than $7.25”; implicit: “The
current minimum wage is insufficient”

Even the “explicit” setting generates “Chris Kelly has
died” from the original “RIP To tha Mac daddy Chris Kelly”.

10Altering the prompt to support STS by instead generating
paraphrases leads to state-of-the-art results, appendix A.3.



Evaluation Time

Membership Score

Relatedness Judgement

4-
60- 0.75-
3-
40- 0.50-
2.
20- 0.25- 1-
0 0 0-
ext e on? ext nee® o> e nces on®
oot e 05\ oo e oS\ et e oS\
co ce! ocO o ce ocO co ce! o0

Figure 4: Human evaluation of clustering outputs. Clusters of decompositions (our method) take significantly less
time to review and are more distinctive from one another. Relatedness scores are high for the observed comments,
but significantly worse membership identification scores reveal this to be a spurious result owed to the topical
homogeneity of the dataset (all comments are about COVID vaccines). All differences are significant at p < 0.05
except membership scores between comments and sentences and evaluation times for sentences and decompositions.

we ask whether the representation of comments’
explicit & implicit propositions lead to improved
discovery of themes in a corpus of public opinion.
Understanding public opinion on a contentious is-
sue fits that description: expressions of opinion
are generated from a more complex interplay of
personal values and background beliefs about the
world. This is a substantive real-world problem; in
the US, federal agencies are required to solicit and
review public comments to inform policy.

Our approach is related to efforts showing that
intermediate text representations are useful for in-
terpretive work in the computational social sciences
and digital humanities, where they can be aggre-
gated to help uncover high-level themes and narra-
tives in text collections (Bamman and Smith, 2015;
Ash et al., 2022). In a similar vein, we cluster in-
ferential decompositions of utterances that express
opinion to uncover latent structure analogous to the
discovery of narratives in prior work. We analyze
a corpus of public comments to the U.S Food and
Drug Administration (FDA) concerning the emer-
gency authorization of COVID-19 vaccinations in
children — in terms of content and goals, our ap-
plication resembles the latent argument extraction
of Pacheco et al. (2022), who, building on content
analysis by Wawrzuta et al. (2021), clustered tweets
relating to COVID-19 to facilitate effective anno-
tation by a group of human experts. In our case,
we not only discover valuable latent categories, but
we are able to assign naturalistic category labels
automatically in an unsupervised way.'!

"In preliminary experiments, topic model outputs were of
mixed quality.

Dataset. We randomly sampled 10k responses
from a set of about 130k responses to a request
for comments by the FDA regarding child vaccine
authorization.'? Our dataset contains often-lengthy
comments expressing overlapping opinions, collo-
quial language, false beliefs or assumptions about
the content or efficacy of the vaccine, and a general
attitude of vaccine hesitancy (see the “Comment”
column of table 10 for examples).

Method. We generate 27,848 unique inferential
decompositions from the observable comments at
an average of 2.7 per comment. We use K-means
clustering to identify categories of opinion, vary-
ing K. Specifically, two authors created 31 ex-
emplars from seven original comments from the
dataset that exhibit a mixture of implicit proposi-
tion types (table 10). In addition to clustering the
observed comments themselves as a baseline, as
a second baseline we split each comment into its
overt component sentences and cluster the full set
of sentences. This results in 10k comments, 45k
sentences, and 27k decompositions.

Automated Evaluation. We lack ground truth
labels for which documents belong to which clus-
ter, so we first turn to intrinsic metrics of clus-
ter evaluation: the silhouette (Rousseeuw, 1987),

Zregulations.gov/document /FDA-2021-N-
1088-0001. Comments are public and users can elect to
post anonymously. We obtained permission from the agency
to use these data. We will not directly release the data out
of caution, because the original authors did not explicitly
consent to redistribution, but we refer interested researchers to
https://www.regulations.gov/bulkdownload
and Pampell (2022). Note that some comments can contain
upsetting language, which we communicated to annotators.
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Source

Cluster 1

Cluster 2

Cluster 3

Decomposition Clusters

The vaccine may be harmful to children.
Children are vulnerable to the long-term
effects of the vaccine.

Vaccines are still under trials and their
side effects are unknown.

The vaccine has not been properly tested.
There is not enough data on the vaccine’s
long-term effects.

Natural immunity is better than vaccine-
induced immunity.

Natural immunity is important for chil-
dren to develop.

Natural immunity is more effective.
Natural immunity is better for fighting the
covid virus.

People should develop immunities to stay
healthy.

Natural immunity should be reflected in
science.

The government is attempting to control
citizens.

American rights are being eroded.

The government should investigate the
use of

We need to protect our children.

The US values freedom and choice.

Expert Narratives
‘Wawrzuta et al. (2021)

The vaccine is not properly tested, it was
developed too quickly

Natural methods of protection are better
than the vaccine

Lack of trust in the government

Crowdworker Label

Long-term vaccine worries

Natural Immunity

Control by government

Table 3: For public commentary datasets about COVID-19, clusters of inferential decompositions (our approach,
top row) align with arguments discovered independently by Wawrzuta et al. (2021) (middle row). The overlap is
strong despite the commentary coming from different platforms (Government website & Facebook) and countries
(US & Poland). In addition, outside of the exemplars passed to the LLM (table 10), our approach is also entirely
unsupervised. In the bottom row, we show an illustrative label for each cluster from a crowdworker.

Calinski-Harabasz (Calinski and Harabasz, 1974),
and Davies-Bouldin (Davies and Bouldin, 1979)
scores; roughly speaking, these variously measure
the compactness and distinctiveness of clusters.
Since metrics can be sensitive to the quantity of
data in a corpus (even if operating over the same
content), we subsample the sentence and decompo-
sition sets to have the same size as the comments
(10k)."? Clusters of decompositions dramatically
outperform clusters of comments and sentences
across all metrics for each cluster size—in fact,
independent of cluster size, the best scores are ob-
tained by decomposition clusters (Table 2).

Human Evaluation. Performance on intrinsic
metrics does not necessarily translate to usefulness,
so we also evaluate the cluster quality with a hu-
man evaluation. After visual inspection, we set
K = 15. For a given cluster, we show an annotator
four related documents and ask for a free-text label
describing the cluster and a 1-5 scale on perceived
“relatedness”. We further perform a membership
identification task: an annotator is shown an unre-
lated distractor and a held-out document from the
cluster, and asked to select the document that “best
fits” the original set of four. Participant information
and other survey details are in appendix A.S.
Results are shown in Fig 4. While comment clus-
ters receive a higher relatedness score, this is likely
due to the inherent topical coherence of the dataset:
there are often several elements of similarity be-
tween any two comments. A lower score in the
membership identification task, however, indicates
3Results are similar for the silhouette and Davies-Bouildin

scores without subsampling; the Calinski-Harabasz is better
for the sentences.

that comment clusters are less distinct. Moreover,
the comprehension time for comments is signifi-
cantly longer than for sentences and decomposi-
tions (Evaluation Time in Fig 4), taking over 50%
longer to read. On the other hand, clusters of
decompositions strike a balance: they obtain mod-
erately strong relatedness scores, can be understood
the quickest, and are highly distinct.

Convergent Validity. Although further explo-
ration is necessary, we find that our crowdworker-
provided labels can uncover themes discovered
from classical expert content analysis (table 3). For
example, two crowdworkers assign labels contain-
ing the text “natural immunity” to the cluster in
table 3—this aligns with the theme NATURAL IM-
MUNITY IS EFFECTIVE discovered in Pacheco et al.
(2023) (through a process requiring more human
effort) and a similar narrative in Wawrzuta et al.
(2021). Meanwhile, this concept does not appear
anywhere in the crowdworker labels for the base-
line clusters of sentences or comments.

5 Decompositions support analyses of
legislator behavior

Having established our method’s ability to facilitate
human interpretation of text data (§ 3 and § 4), we
now examine the usefulness of generated inferen-
tial decompositions in a very different downstream
application where the relevant analysis of text is
likely to involve more than just overt language con-
tent. Here, we model legislator behavior using their
speech (here, tweets), asking: does the similarity
between legislators’ propositions help explain the
similarity of their voting behavior?
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® Democrat
® Republican

> Supreme Court should be saved from threats to
reproductive rights

> Brett Kavanaugh's confirmation could jeopardize
reproductive rights

> Roe v. Wade affirms a woman's right to choose
> Roe v. Wade should be upheld

> Elective abortions after 20 weeks should be prohibited

> Access to abortion should be protected

> Abortion after 20 weeks is unethical

> The US should align its abortion laws with other countries

Figure 5: t-SNE (van der Maaten and Hinton, 2008) visualization of the embedding space of implicit inferred
decompositions found in the “Abortion” topic from legislative tweets. % and ¥ are two clusters selected from
10 clusters obtained using K -means; % (59% Democrat) talks about the role of judiciary in reproductive rights,
while the ¥ (73% Republican) talks about banning late stage abortion. Our method leads to more compact (better
Silhouette, CH, and DB scores compared to tweets) and easier to interpret clusters that help with narrative discovery.

Traditional theories of homophily (McPherson
et al., 2001) suggest that shared properties (e.g.,
electoral geography, Clark and Caro, 2013) in-
crease the likelihood that two legislators vote the
same way — and many research questions have
centered around such co-voting (Ringe et al., 2013;
Peng et al., 2016; Wojcik, 2018). In preliminary
experiments we found when modeling co-voting,
text similarity between legislator was a valuable
predictor of co-voting (Goel, 2023). Here we posit
that such modeling can further benefit by going
beyond surface text to capture inferentially related
propositions related to viewpoints.

Consider Figure 1. While the observable tweets
themselves are not similar in their surface form,
they express similar views regarding the impor-
tance of the preservation of nature, something that
would be clear to a human reader interpreting them.
This can be captured by inferential decompositions
that reveal authors’ viewpoints toward the issue.

We operationalize our method for this purpose
by creating exemplars that contain inferences about
the utterance topic and perspective (table 12 in
appendix). This guides the language model toward
domain-relevant facets of similarity between the
texts, and therefore the authors of the texts, that
may not be apparent from the surface form.

Model Setup. For the task of modeling co-vote
behavior, we extend the framework introduced by
Ringe et al. (2013) to incorporate individuals’ lan-
guage into the model. At a high level, we oper-
ationalize legislator homophily by measuring the
similarities of their embedded speech Twitter. Fol-
lowing Ringe et al. (2013) and Wojcik (2018), we
model the log odds ratio of the co-voting rate be-

tween a pair of legislators 7, j using a mixed effects
regression model, controlling for the random ef-
fects of both actors under consideration. The co-
vote rate A is the number of times the legislators
vote the same way — yea or nay — divided by their
total votes in common within a legislative session.

Aij
E [log(17]>\~)} =fo+B @i +ai+b; (1)
ij

Bs« are regression cofficients, and a;,b; model
random effects for legislators i, j.

x;; is an n-dimensional feature vector, where
each element is a similarity score that captures a
type of relationship between legislators ¢ and j.
While these features have traditionally included
state membership, party affiliation, or Twitter con-
nections (Wojcik, 2018) or joint press releases (Des-
marais et al., 2015); we consider the language sim-
ilarity between pairs of legislators based on our
proposed method.

Dataset. The goal is to represent each legislator
using their language in such a way that we can
measure their similarity to other legislators—our
informal hypothesis of the data-generating process
is that a latent ideology drives both vote and speech
behavior. Specifically, we follow Vafa et al. (2020)
by using their tweets; data span the 115! — 117"
sessions of the US Senate (2017-2021).14

We further suppose that ideological differences
are most evident when conditioned on a partic-
ular issue, such as “the environment”; in fact,
Bateman et al. (2017) note that aggregated mea-
sures like ideal points mask important variation
across issues. To this end, we first train a topic

“Tweets from github.com/alexlitel/
congresstweets, votes from voteview.com/about.
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model on Twitter data to group legislator utter-
ances into broad issues.”> Two authors indepen-
dently labeled the topics they deemed most in-
dicative of ideology, based on the top words and
documents from the topic-word (8%)) and topic-
document (8(%)) distributions.!® Then, for each
selected topic k£ and legislator [, we select the
top five tweets Ul(k) = {ul(ﬁ), . ul(]? }, filtering
out those with estimated low probability for the
topic, 01(5) < 0.5. Finally, we generate a flexi-
ble number of inferential decompositions for the
tweets Rl(k) using GPT-3.5.!7 We use two prompts
each containing six different exemplars to increase
the diversity of inferences. The collections of
tweets and decompositions are then embedded with
Sentence-Transformers (all-mpnet-base-v2
from Reimers and Gurevych, 2019).

Language Similarity. To form a text-based sim-
ilarity measure between legislators ¢ and 7, we
first compute the pairwise cosine similarity be-
tween the two legislators’ sets of text embeddings,

Scos (Ui(k) x U ](k) (or R for the decompositions).

The pairs of similarities must be further aggregated
to a single per-topic measure; we find the 10" per-
centile works well in practice (taking a maximum
similarity can understate differences, whereas the
mean or median overstates them, likely due to fi-
nite sample bias; see Demszky et al. 2019). This

process creates two sets of per-topic similarities for

each (i, j)-legislator pair, sg-f) (u), sl(-f) (r).

Results. Similarities based on inferential decom-
positions, s;;(r), both help explain the variance
in co-vote decisions as well as help predict co-
voting agreement over and above similarities based
on the observed utterances (tweets) alone, s;;(u)
(table 4).!8 Specifically, for the regression mod-
els, across three Senate sessions, the mixed effects
model that uses similarity in decompositions (R;

5Text was processed using the toolkit from Hoyle et al.
(2021), and modeled with collapsed Gibbs-LDA (Griffiths and
Steyvers, 2004) implemented in MALLET (McCallum, 2002).

SE.g, top words “border, crisis, biden, immigration”
correspond to the politically-charged issue of immigra-
tion; the more benign “tune, live, watch, discuss” cov-
ers tweets advertising a media appearance to followers.
Both annotators initially agreed on 92% of labels; dis-
agreements were resolved via discussion. The final set of
33 topic-words can be found in github.com/ahoho/
inferential-decompositions.

"Results in table 4 are extremely similar when using
Alpaca-7B, suggesting the findings are robust.

'We use membership in the same political party as a control
variable in each of the mixed effects models.

115t 116" 117th

Bt | Bt MAE|| 31 MAE]
Sim. U 10.64 | 11.86 744.81 | 17.36  981.56
Sim. R 12.69 | 17.31 736.21 | 23.0  964.86
Sanlr. U 6.02 4.40 741,59 11.09 935.45
Sim. R 7.01 | 12.67 10.82

Table 4: Explanatory power (B) and predictive capacity
(MAE) of text similarity measures in a mixed effects model of
co-vote behavior for 3 sessions of the US Senate. Coefficients
are large and significantly above zero (p < 0.001). For the
mean absolute error (MAE), we multiply the predicted co-vote
agreement error with the total number of votes in common for
the legislator pair.

row 2 in table 4) has a higher regression coefficient
(B) than the corresponding coefficient for similar-
ity in utterances (U; row 1). This also holds for
a model that uses both similarity measures in the
regression (row 3).

Additionally, we compare the predictive capac-
ity of the two similarity measurements in two sce-
narios: we train the model on data from the 115"
Senate to predict co-vote for the 116", and train on
data from the 115" and 116" sessions to predict
co-vote for the 117", Using similarity in decom-
positions leads to a lower MAE between predicted
and actual co-vote agreement than using similarity
in utterances; both similarity measures together fur-
ther reduce the error for the 117" Senate (table 4).

Examples of utterances and their decompositions
in fig. 6 help contextualize these results. For the
left-hand example, the method infers a shared im-
plicit proposition—*“President Trump is weak”™—
that underlies two tweets with little observed text
in common. However, the method can occasionally
overstate similarities between utterances (and thus,
between legislators): while the decompositions in
the right-hand example are valid inferences, they
are also overly general (‘“voting is important”).

Our approach further uncovers the narratives that
emerge among legislators from different parties
around a particular issue. In discussions around
abortion and reproductive health, our decompo-
sitions capture fine-grained viewpoints about the
role of supreme court and judiciary, and the con-
tentious debate around late stage abortions (Fig.
5). Clustering over implicit decompositions reveal
finer opinion-spaces that succinctly capture author
viewpoints towards facets of a particular issue.


github.com/ahoho/inferential-decompositions
github.com/ahoho/inferential-decompositions
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Figure 6: Pairs of legislative tweets (green) and associated decompositions (orange). Here, we show instances
where embeddings of the decompositions are closer than embeddings of the original tweets. The example on the
left shows the method working as intended, whereas the example on the right is undesired behavior. Although the
method generates multiple decompositions per tweet, we only show the two closest. In appendix A.1, we discuss
instances where the decompositions are more distant than the tweets.

6 Related Work

As a computational text analysis method that op-
erates over reduced representations of text data,
our work is similar to that of Ash et al. (2022)
and Bamman and Smith (2015). Closest to our
clustering effort (§ 4), Ernst et al. (2022) extract
and cluster paraphrastic propositions to generate
summaries. However, they constrain themselves to
the observed content alone, limiting their ability to
capture context-dependent meaning.

Our method continues the relaxation of formal
semantic representations in NLP, a process exem-
plified by the Decompositional Semantics Initia-
tive (White et al., 2016), which aims to create
an intuitive semantic annotation framework robust
to variations in naturalistic text data. The gener-
ated inferential decompositions in our work are
human-readable and open-ended, structured by a
user-defined schema in the form of exemplars. In
this way, we also follow a path forged by natural
language inference (Bowman et al., 2015; Chen
et al., 2017), which has increasingly relaxed seman-
tic formalisms when creating datasets. In future
work, we plan to relate both the exemplars and
outputs to formal categories and investigate their
utility in downstream tasks.

Our methods for generating decompositions are
distinct from extracting commonsense knowledge
from text—e.g., through templates (Tandon et al.,
2014), free-form generation from LL.Ms Bosselut
et al. (2019), or script induction (Schank and Abel-
son, 1975) (which can also use LLMs, Sancheti
and Rudinger 2022). Our decompositions are not
designed to produce general commonsense knowl-
edge such as “rain makes roads slippery” (Sap et al.,

2020), but instead to surface the explicit or implicit
propositions inferrable from an utterance.

Our work also bears a similarity to Opitz and
Frank (2022), who increase the interpretability of
sentence embeddings using an AMR graph for a
sentence. However, AMR graphs are also tied to
the information present in an utterance’s surface
form (and, moreover, it is unclear whether AMR
parsers can accommodate noisier, naturalistic text).

LLMs have been used to generate new informa-
tion ad-hoc in other settings, for example by aug-
menting queries (Mao et al., 2020) or creating ad-
ditional subquestions in question-answering (Chen
et al., 2022). In contemporaneous work, Ravfogel
et al. (2023) use an LLM to generate abstract de-
scriptions of text to facilitate retrieval. In Gabriel
et al. (2022), the authors model writer intent from
a headline with LLLMs. Becker et al. (2021) gener-
ate implicit knowledge that conceptually connects
contiguous sentences in a longer body of text.

7 Conclusion

Our method of inferential decompositions is use-
ful for text-as-data applications. First, we uncover
high-level narratives in public commentary, which
are often not expressed in surface forms. Second,
we show that, by considering alternative represen-
tations of legislators’ speech, we can better explain
their joint voting behavior. More broadly, treating
implicit content as a first-class citizen in NLP—a
capability enabled via generation in large language
models—has the potential to transform the way we
approach problems that depend on understanding
what is behind people’s utterances, rather than just
the content of the utterances themselves.



8 Limitations

Our validity checks in Section 3 reveal that while
most decompositions are deemed reasonable by hu-
mans, some are not (Fig. 3.). It remains to be stud-
ied the extent to which implausible generations are
affecting with the results, or if they are introducing
harmful propositions not present in the original text.
In future work, we will explore whether known po-
litical biases of language models (Santurkar et al.,
2023) affect our results. Although an open-source
model (specifically Alpaca-7B Taori et al. 2023)
produces similar results to those reported, our main
experiments primarily use models released by Ope-
nAl, which may lead to potential reproducibility
issues. All our analyses and experiments focus on
utterances in the English language, which could
limit the generalizability of our method. Relatedly,
our experiments are also specific to the US socio-
cultural context and rely on models that are known
to be Western-centric (Palta and Rudinger, 2023).

The embeddings could be made more sensitive
to the particular use case. In future work, we plan
to additionally fine-tune the embeddings so that
they are more sensitive to the particular use case
(e.g., establishing argument similarity, Behrendt
and Harmeling, 2021)).

9 Ethics Statement

The work is in line with the ACL Ethics Policy.
Models, datasets, and evaluation methodologies
used are detailed throughout the text and appendix.
The human evaluation protocol was approved by an
institutional review board. No identifying informa-
tion about participants was retained and they pro-
vided their informed consent. We paid per survey
based on estimated completion times to be above
the local minimum wage (appendix A.5). Partici-
pants were paid even if they failed attention checks.
All the datasets were used with the appropriate or
requested access as required. We acknowledge that
we are using large language models, which are sus-
ceptible to generating potentially harmful content.

Generally, the potential for misuse of this
method is not greater than that of the large lan-
guage models used to support it. In theory, it is
possible that a practitioner could draw incorrect
conclusions about underlying data if the language
model produces a large number of incorrect state-
ments. To the extent that those conclusions inform
downstream decisions, there could be a potential
for negative outcomes. For this reason, we advo-

cate for manual verification of a sample of outputs
in sensitive contexts (step 4 of our protocol § 2).
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A Appendix

A.1 Further Qualitative Analysis of
Legislative Tweets

In Section 5, we showed that our method can place
utterances with distant observed content closely
through decompositions. In this section, we pro-
vide further illustrative examples where small ut-
terance distances yield larger decomposition dis-
tances (Fig 7). As before, we show examples of
“correct” behavior (where the method works as in-
tended) as well as failures (where it does not).

In the left column of Fig 7, a tweet pair that dis-
cusses a similar topic (Coronavirus) has relatively
similar embeddings even though they communicate
considerably different content; appropriately, the
generated decompositions are more distant. At the
same time, although the two utterances in the right
communicate very similar content, the generated
decompositions are nonetheless further in embed-
ding space—a problem is exacerbated by the open
referent “they”. In future iterations of the method,
we plan to regularize outputs to avoid such issues.

A.2 Decomposition Exemplar Creation
Meta-Prompt

Below we present a condensed version of human in-
structions for the structured creation of exemplars.

Human utterances communicate proposi-
tions that may or may not be explicit in the
literal meaning of the utterance. Your goal
is to make a brief list of propositions that
are implicitly or explicitly conveyed by the
meaning of an utterance.

All the propositions you include should
be short, independent, and written in direct
speech and simple sentences. If possible, try
to keep propositions to a single clause con-
sisting of a subject, a predicate, and an ob-
ject (don’t worry too much about sticking to
this format: noun phrases and prepositional
phrases are acceptable). It may be helpful to
“break up” propositions as necessary, and you
should disambiguate unclear referents when
possible (“vaccine” — “COVID vaccine”).

By implicitly conveyed propositions, we
mean propositions that are plausibly or rea-
sonably inferred, even if they were not neces-
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Figure 7: Pairs of legislative tweets (green) and associate decompositions (orange). Mirroring Fig fig. 6, we show
instances where embeddings of the decomposition are farther than embeddings of the original tweets. The example
on the left shows the method working as intended, whereas the example on the right shows undesired behaviour.
Although the method generates multiple decompositions per tweet, we only show the two closest. We use the
Sentence-Transformer model all-mpnet-base-v2 to compute embeddings; generations are from Alpaca-7B.

sarily intended to be conveyed by the utter-
ance. Shorter utterances will typically com-
municate fewer propositions. Longer texts
may communicate several; we ask you to pre-
fer writing propositions that are most cen-
tral to the meaning that’s being communi-
cated. With the above in mind, limit your-
self to five propositions per utterance. Write
diverse propositions that are minimally re-
dundant with one another. Propositions can
fall into several categories.

Explicit propositions [required].

To generate propositions in this category,
rephrase elements of the utterance’s explicit
meaning as one or more simple propositions
communicated by the utterance. It may be
the case that almost no changes are neces-
sary, and you will merely write a paraphrase.
Including world knowledge is acceptable.

Inferences about utterance
subject [optional]. Make

ences from the utterance about the subject
it is talking about. These are nontrivial
but commonsense implications that can be

infer-

reasonably and directly inferred from the
utterance.

Inferences about utterance

perspective [optional] Often, the
author of an wutterance is, intentionally
or not, conveying information about their
perspectives or preferences. Write down

inferences from the utterance that are

Sentence-T5  + Paraphrases

Alpaca GPT-3
SICK-R 79.98 8146 80.49
STS-B 8393 8549 86.28
STS12 79.02 7697 79.18
STS13 88.80  88.44  89.18
STS14 8433 84.18 85.36
STS15 88.890  89.28  89.28
STS16 85.31 85.15 85.23
STS17 88.91  89.94 90.29

Table 5: Spearman’s p for STS benchmarks using a
paraphrase-based variant of our method. Sentence-T5
embeds texts in each pair with sentence-t5-x1 (Ni
et al., 2022), + Paraphrases concatenates averaged em-
beddings of additional paraphrases generated with zero-
shot Alpaca-7B or GPT-3. Improvements over Sentence-
TS5 are underlined. This demonstrates that our method
can consistently improve STS correlations of arbitrary
baseline embeddings.

consistent with the author’s perspective
(as you understand it). These propositions
sometimes take the form of modals (“should”,
“must”), or are general statements that may
express value judgments (not necessarily
true). These should be written as implied
statements. Rather than mentioning the
author explicitly by writing something like
“the author/speaker believes/thinks/fears X”,
just write the X.



A.3 Adapting the method for semantic textual
similarity tasks

Our proposed method decomposes utterances into
related propositions, which does not markedly im-
prove standard STS tasks that typically rely on the
explicit content in text (see lower half of table 1).

However, an alternative approach that instead
generates multiple expressions of the same mean-
ing does improve sentence embedding performance.
A single sentence is only one way of expressing
a meaning, and in many settings, there is value
in considering alternative ways of communicating
that same meaning. For example, the BLEU score
for machine translation evaluation (Papineni et al.,
2002) works more effectively with multiple refer-
ence translations (Madnani et al., 2007). Dreyer
and Marcu (2012) take this observation a step fur-
ther by using packed representations to encode ex-
ponentially large numbers of meaning-equivalent
variations given an original sentence.

Here, we show that improvements in sentence
representations can obtained by expanding a
sentence’s form with multiple text represen-
tations restating the same content.  Specif-
ically, we represent every sentence s; by a
set S; = {si,8i1,82,...,8in} consisting of
the original utterance and n paraphrases. As
baseline, we computed the cosine similarity
comparisons between embeddings of the original
sentences s;, s;j, obtained with the state-of-the-
art Sentence-T5 (Ni et al., 2022).1° Pairwise
comparisons for expanded representations S5;, Sj,
were scored by concatenating the embedding
for s; with the mean of the embeddings for the
S |€(8i); > p €(3ik)]. Three paraphrases per
input were generated with both a 7B-parameter
Alpaca model (Taori et al., 2023) and the
OpenAl text-davinci-003 (derived from
?) using a O-shot prompt: “Paraphrase
the following text.\n###\n Text:
{input}\n Paraphrase: {output}”

Table 5 summarizes results on STS tasks from
the Massive Text Embedding Benchmark (MTEB,
?). Our method improves over the Sentence-T5
alone in all but one instance.?’

YFor all experiments we use the model
sentence-t5-x1; directionally similar results were
observed for the lightweight al1l-mpnet-base-v2

“Given the modularity of our approach, we expect that for
instances where we there is an absolute improvement over the
Sentence-T5 baseline, substituting the state-of-the-art embed-
ding model would further improve results.

A.4 Prompts and Exemplars

We present our prompts in table 6 and our exem-
plars in tables 7 to 12.

A.5 Survey Details

Inferential Decomposition Annotation. 80 flu-
ent English speakers in the US and UK with at
least a high school diploma (or equivalent) annotate
a random sample of 15 utterance-decomposition
pairs, recruited via Prolific (prolific.co). We
paid 2.10 USD/survey, which take a median 10
minutes.

Clustering Annotation. We recruited 20 fluent
English speakers in the US and UK with at least a
high school diploma via Prolific. After instruction
with two artificially high- and low-quality clusters
to help calibrate scores, participants reviewed a
random sample of ten clusters from the pool of 45.
We paid 3.50 USD/survey, median completion time
was 17 min.

Total compensation to annotators was 257 USD;
we targeted 14 USD/hour.

A.5.1 Instructions and Examples Provided to
Survey Participants for Human
Annotation and Evaluation

We present the instructions and examples provided
to human annotators or survey participants, in order
to validate the quality of the generations (§ 3), in
fig. 8 and fig. 9 respectively.

We present the instructions and examples pro-
vided to human annotators or survey participants,
in order to evaluate the quality of clustering of-
fered by our approach (§ 4), in fig. 10 and fig. 11
respectively.


prolific.co

Dataset Prompt Exemplars Per Prompt

STS Paraphrases Paraphrase the following text. 0
#H#
Text: <input>
Paraphrase: <output>

FDA Comments Human utterances contain propositions that may or may not be 6

explicit in the literal meaning of the utterance. Given an
utterance, state the propositions of that utterance in a brief
list. All generated propositions should be short, independent,
and written in direct speech and simple sentences. A proposition
consists of a subject, a verb, and an object.

These utterances come from a dataset of public comments on the
FDA website concerning the covid vaccine.

Utterance: <input>
Propositions: <output>

Explicit Human utterances communicate propositions. For each utterance, 7
state the explicit propositions communicated by that utterance
in a brief list. All generated propositions should be short,
independent, and written in direct speech and simple sentences.
If possible, write propositions with a subject, verb, and

object. <dataset_description>
4
Implicit Human utterances communicate propositions that may not be 7

explicit in the literal meaning of the utterance. For each
utterance, state the implicit propositions communicated by
that utterance in a brief list. Implicit propositions may be
inferences about the subject of the utterance or about the
perspective of its author. All generated propositions should
be short, independent, and written in direct speech and simple

sentences. If possible, write propositions with a subject, verb,
and object. <dataset_description>
44
All Human utterances communicate propositions that may or may not 7

be explicit in the literal meaning of the utterance. For

each utterance, state the implicit and explicit propositions
communicated by that utterance in a brief list. Implicit
propositions may be inferences about the subject of the
utterance or about the perspective of its author. All generated
propositions should be short, independent, and written in direct

speech and simple sentences. If possible, write propositions
with a subject, verb, and object. <dataset_description>
44

Table 6: Prompt templates used for obtaining the decompositions. The FDA Comments and their generations were
used in 4, and the generations on legislative tweets were used in 5. We used six exemplars along with the prompts in
both of these cases. When generating from Alpaca-7B, we alter these templates according to their format.?!
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exemplars from this set to form a prompt, per Table 6.
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Table 8: Exemplars for inferential decomposition for the source type of argument/stance datasets. We sample n

exemplars from this set to form a prompt, per Table 6.
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Part one of the exemplars for inferential decomposition for FDA comments. We sample n exemplars from

Table 10

this set to form a prompt, per Table 6. The other exemplars for FDA comments are provided in Table 11.
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Part two of the exemplars for inferential decomposition for FDA comments. We sample n exemplars from

this set to form a prompt, per Table 6. The other exemplars for FDA comments are provided in Table 10.

Table 11
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Section 5. We sample n exemplars from this set to form a prompt, per Table 6.



Introduction
In this survey, you will be answering simple questions about written content from different sources, like

news articles and social media posts.

Instructions
You will review two pieces of written content and will answer two questions about the relationship

between them. We call these pieces of writing Text 1 and Text 2.

1. You will answer how reasonable it is to conclude that someone who said the first text would
also say the second text. In some cases, Text 1 may be expressing an opinion or belief. You should
answer this question based on what the person who said Text 1 would say (nhot necessarily what you think).
Sometimes, Text 1 may be factual, like a news story. Here, you should answer whether Text 2 is

plausibly true based on Text 1.

2. You will answer whether Text 2 adds new information to Text 1 or changes the information in Text 1.
By new information, we mean something that was not explicitly said in the Text 1. A paraphrase does not
add new information.

The answer may not always be obvious, so use your best judgment.

Figure 8: Instructions used in the survey for human validation of the generations as discussed in § 3.



Examples

Text 1: There is a teal teapot in the kitchen.

Text 2: The kitchen contains a teal teapot.

Answer: If someone said Text 1, then it is definitely reasonable that they would also say Text 2. Text
2 does not add new information to Text 1.

Text 1: The cat meowed in the kitchen before its usual dinnertime.

Text 2: The cat was hungry.

Answer: If someone said Text 1, then it is probably reasonable to conclude that they would also say Text
2. Text 2 adds new information to Text 1.

Text 1: I'm really hungry right now!

Text 2: I just ate a big meal.

Answer: If someone said Text 1, then it is probably not reasonable to conclude that they would also say
Text 2. Text 2 adds new information to Text 1.

Text 1: The plandemic is a massive attempt to place global power into a one dictatorship based on a
complete lie!

Text 2: COVID is a hoax

Answer: If someone said Text 1, then it is probably reasonable to conclude that they would also say Text
2. Text 2 also adds new information to Text 1.

Text 1: The arraignment of former President Donald Trump has concluded. Trump pleaded not guilty to 37
charges related to alleged mishandling of classified documents.

Text 2: Donald Trump pleaded not guilty to charges.

Answer: If someone said Text 1, then it is definitely reasonable to conclude that they would also say Text
2. Text 2 does not add new information to Text 1.

Text 1: Barack Obama was elected president in November 2016.

Text 2: Barack Obama was elected president in May 1900.

Answer: If someone said Text 1, then it is definitely not reasonable to conclude that they would also say
Text 2. Text 2 adds new information to Text 1.

Figure 9: Examples used in the survey for human validation of the generations as discussed in § 3.



Introduction
In this survey, you will be answering questions about small collections of comments. All comments in this

survey are related to COVID-19 vaccines in children.

As background, the FDA approved vaccination for children ages 5-11 in 2021. During this approval process,
the FDA sought public commentary. You will be reading excerpts of that commentary.

Note that much of the commentary makes reference to known misinformation, falsehoods, and
unsubstantiated claims. You should not take the commentary at face value!

Instructions
You will review short lists of commentary, then answer a few questions about how related the items are in

each list. Everything is related to COVID vaccination in children, so you are interested in what makes them
related other than that fact.

First, you will read the collection and write a label for what they have in common. A label can be one or
more words that succinctly describe the collection. Try your best to write a descriptive label.

Then you will answer how related the collection is, other than the fact that they are all about COVID
vaccination. The scale is from 1 - Very loosely related to 5 - Very closely related.

Finally, you will read two more documents, and select the one you think best belongs with the others.

Figure 10: Instructions used in the survey for human evaluation of clustering quality as discussed in § 4.



Examples
Here, we will show two examples of comment collections that all relate to the economy.

Closely-related Collection

e

Its profiteering, not inflation. Inflation is the term they use to cloak the reality and make you think no
one is causing this or is responsible. Its profiteering.

. A lack of antitrust enforcement is the main driver because it allows companies to raise prices without

consequences from competitors or the government.

. The greed at the corporate level is getting out of control. Not sure how long they expect to able to do

this, how much they think they can do to make their employees’ lives excruciatingly difficult, and
things too expensive for consumers, all the while they're taking in obscene salaries.

. Inflation is happening, and is caused by many economical factors. However it is being exasperated by

corporate greed, inflation is just the mask.

These comments are all very closely related. A descriptive label might be "inflation and corporate
greed", because the comments discuss corporations raising prices to increase profits.

Loosely-related collection

318

Ban all cryptocurrency entirely and get all of the functional benefits by issuing a central bank digital
currency instead.

. The US is already one of the most economically diverse, least trade dependent nations with a wide

variety of secure supply lines.

. All T can say is that I recently noticed that the ONE THING I still sptarge splurgeD on (Clif bars -

they’re my husbands favorite and he has one for breakfast every day) have gone up nearly $1.50 in 4
months.

. I only apply to jobs that have the salary listed now because inevitably if it's not listed, it's a terrible

salary. I'm so thankful that states are passing salary transparency laws that require companies to post
the pay range in job postings.

These comments are all very loosely related. It is hard to think of a more descriptive label than something
general like "the economy".

Figure 11: Examples used in the survey for human evaluation of clustering quality as discussed in § 4.



