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Abstract

The theory of Conceptual Spaces is an influ-
ential cognitive-linguistic framework for repre-
senting the meaning of concepts. Conceptual
spaces are constructed from a set of quality
dimensions, which essentially correspond to
primitive perceptual features (e.g. hue or size).
These quality dimensions are usually learned
from human judgements, which means that ap-
plications of conceptual spaces tend to be lim-
ited to narrow domains (e.g. modelling colour
or taste). Encouraged by recent findings about
the ability of Large Language Models (LLMs)
to learn perceptually grounded representations,
we explore the potential of such models for
learning conceptual spaces. Our experiments
show that LLMs can indeed be used for learn-
ing meaningful representations to some extent.
However, we also find that fine-tuned models
of the BERT family are able to match or even
outperform the largest GPT-3 model, despite
being 2 to 3 orders of magnitude smaller.1

1 Introduction

Conceptual spaces (Gärdenfors, 2000) represent
concepts in terms of cognitively meaningful fea-
tures, called quality dimensions. For example, a
conceptual space of colour is composed of three
quality dimensions, representing hue, saturation
and intensity. Conceptual spaces provide an elegant
framework for explaining various cognitive and
linguistic phenomena (Gärdenfors, 2014). Within
Artificial Intelligence (AI), the role of conceptual
spaces is essentially to act as an intermediate rep-
resentation layer, in between neural and symbolic
representations (Gärdenfors, 2004). As such, con-
ceptual spaces could play a central role in the devel-
opment of explainable AI systems. Unfortunately,
such representations are difficult to learn from data.

1Our datasets and evaluation scripts are available
at https://github.com/ExperimentsLLM/EMNLP2023_
PotentialOfLLM_LearningConceptualSpace.

Most applications of conceptual spaces are thus lim-
ited to narrow domains, where meaningful repre-
sentations can be learned from ratings provided by
human participants (Paradis, 2015; Zwarts, 2015;
Chella, 2015).

In this paper, we explore whether Large Lan-
guage Models (LLMs) could be used for learn-
ing conceptual spaces. This research question is
closely related to the ongoing debate about the ex-
tent to which Language Models (LMs) can learn
perceptually grounded representations (Bender and
Koller, 2020; Abdou et al., 2021; Patel and Pavlick,
2022; Søgaard, 2023). Recent work seems to sug-
gest this might indeed be possible, at least for the
colour domain. For instance, Abdou et al. (2021)
found that LMs are able to learn representations of
colour terms which are isomorphic to perceptual
colour spaces. When it comes to predicting the
typical colour of objectes, Paik et al. (2021) found
that the predictions of LMs are heavily skewed
by surface co-occurrence statistics, which are un-
reliable for colours due to reporting bias (Gor-
don and Durme, 2013), i.e. the fact that obvious
colours are rarely mentioned in text. However, Liu
et al. (2022a) found the effects of reporting bias
to largely disappear in recent LLMs. These find-
ings suggest that it may now be possible to distill
meaningful conceptual space representations from
LLMs, as long as sufficiently large models are used.
However, existing analyses are limited in two ways:

• Several works have explored the colour do-
main, and visual domains more generally (Li
et al., 2023), but little is known about the abil-
ities of LLMs in other perceptual domains.

• Most analyses focus on classifying concepts,
e.g. predicting colour terms or the materials
from which objects are made, rather than on
evaluating the underlying quality dimensions.

We address the first limitation by including an eval-
uation in the taste domain. To address the second
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limitation, rather than considering discrete labels
(e.g. sweet), we use LLMs to rank concepts accord-
ing to the degree to which they have a particular
feature (e.g. sweetness).

2 Datasets

The primary focus of our experiments is on the
taste domain, which has not yet been considered
in this context, despite having a number of impor-
tant advantages. For instance, the relevant quality
dimensions are well-established and have a linear
structure (unlike hue in the colour domain). This
domain also seems particularly challenging, as the
typical terms which are used to describe taste only
apply to extreme cases. For instance, we can assert
that grapefruit is bitter and bananas are sweet, but
it is less clear how a language model would learn
whether chicken is sweeter than cheese. As ground
truth, we rely on the ratings that were collected
by Martin et al. (2014). They rated a total of 590
food items along six dimensions: sweet, salty, sour,
bitter, umami and fat. The ratings were obtained by
a panel of twelve assessors who were experienced
in sensory profiling. They scored the food items
during an eight month measurement phase, after
having received 55 hours of training in a labora-
tory. We manually rephrased some of the names of
the items in this dataset, to make them more natu-
ral. For instance, cherry (fresh fruit) was changed
to cherry and hake (grilled with lemon juice) was
changed to grilled hake with lemon juice.

We complement our analysis in the taste domain
with experiments on three basic physical domains:
mass, size and height. These were found to be
particularly challenging by Li et al. (2023), with
LLMs often failing to outperform random guessing.
As the ground truth for mass, we use the house-
hold dataset from Standley et al. (2017), which
specifies the mass of 56 household objects. The
original dataset includes images of each object.
We removed 7 items which were not meaningful
without the image, namely big elephant, small ele-
phant, Ivan’s phone, Ollie the monkey, Marshy the
elephant, boy doll and Dali Clock, resulting in a
dataset of 49 objects. We treat this problem as a
ranking problem. Li et al. (2023) also created a
binary classification version of this dataset, which
involves judging pairwise comparisons (e.g. is a
red lego brick heavier than a hammer?). For size
and height, we use the datasets created by Liu et al.
(2022b). These size and height datasets each con-

sist of 500 pairwise judgements (e.g. an ant is larger
than a bird). Note that unlike for the other datasets,
no complete ranking is provided.

3 Methods

We experiment with a number of different models.

Ranking with GPT-3 We use GPT-3 models
of four different sizes2: ada, babbage, curie and
davinci. To rank items according to a given dimen-
sion, we use a prompt that contains the name of
that dimension as the final word, e.g. for sweetness
we could use “It is known that [food item] tastes
sweet”. We then use the probability of this final
word, conditioned on the rest of the prompt, to rank
the item: the higher the probability of sweet, the
more we assume the item to be sweet.

Pairwise Comparisons with GPT-3 To predict
pairwise judgements, we consider two approaches.
First, we again use conditional probabilities. For
instance, to predict whether an ant is larger than
a bird, we would get the conditional probability of
large in the sentences an ant is large and a bird is
large. If the conditional probability we get from
the first sentence is lower than the probability from
the second sentence, we would predict that the
claim that an ant is larger than a bird is false. Sec-
ond, we use a prompt that asserts the statement
to be true (e.g. “An ant is larger than a bird”) and
a prompt that asserts the opposite (e.g. “A bird is
larger than an ant”). We compute the perplexity
of both statements and predict the version with the
lowest perplexity to be the correct one.

Ranking with ChatGPT and GPT-4 ChatGPT
and GPT-4 are more difficult to use than GPT-
3 because the OpenAI API does not allow us to
compute conditional probabilities for these mod-
els. Instead, to use these conversational models,
we directly ask them to rank a set of items, using a
prompt such as: Rank the following items accord-
ing to their size, from the largest to the smallest,
followed by a list of items to be ranked.

Baseline: DeBERTa We consider two baselines.
First, we use a DeBERTa-v3-large model (He et al.,
2021), which we fine-tuned to predict the com-
monsense properties of concepts. To this end, we

2The exact model sizes have not been made public,
but were estimated to be 350M parameters for ada, 1.3B
parameters for babbage, 6.7B parameters for curie and
175B parameters for davinci: https://blog.eleuther.ai/
gpt3-model-sizes/.
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used the extended McRae dataset (McRae et al.,
2005) introduced by Forbes et al. (2019) and the
augmented version of CSLB3 introduced by Misra
et al. (2022). Together, these two datasets contain
19,410 positive and 31,901 negative examples of
(concept,property) pairs. We fine-tune the model
on these examples using the following prompt: can
concept be described as property? <MASK>.
For instance, for the example (banana,yellow), the
corresponding prompt would be: can banana be
described as yellow? <MASK>. The probability
that the concept has the property is then predicted
using a linear classifier that takes the final-layer
embedding of the <MASK> token as input. We use
the resulting model for the different evaluations,
without any further fine-tuning.

Baseline: Bi-encoder As the second baseline,
we use two variants of the bi-encoder model from
Gajbhiye et al. (2022). First, we use the original
BERT-large model from Gajbhiye et al. (2022) that
was trained on data from Microsoft Concept Graph
(Ji et al., 2019) and GenericsKB (Bhakthavatsalam
et al., 2020). However, as these training sets are not
specifically focused on commonsense knowledge,
we used ChatGPT to construct a dataset of 109K
(concept,property) pairs, since no existing dataset
of sufficient size and quantity was available. The
key to obtain high-quality examples was to ask the
model to suggest properties that are shared by sev-
eral concepts, and to vary the examples that were
provided as part of a few-shot prompting strategy.
More details on how we collected this dataset us-
ing ChatGPT are provided in Appendix A. We then
trained the BERT-large bi-encoder on this dataset.

4 Experiments

Taste Domain Table 1 summarises the main re-
sults on the taste dataset. For this experiment, each
model was used to produce a ranking of the 590
food items, which was then compared with the
ground truth in terms of Spearman’s rank corre-
lation (ρ). For the LMs, we experimented with
two prompts. Prompt 1 is of the form “[food item]
tastes [sweet]”, e.g. “apple tastes sweet”. Prompt 2
is of the form “it is known that [food item] tastes
[sweet]”. For the DeBERTa model and the bi-
encoders, we verbalised the sweetness property
as “tastes sweet”, and similar for the others. The
results in Table 1 show a strong correlation, for

3https://cslb.psychol.cam.ac.uk/propnorms
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1 Ada 17.5 8.5 12.2 16.4 22.5 10.7
Babbage 19.5 51.1 20.2 22.0 22.6 16.0
Curie 36.0 46.3 32.8 23.2 22.6 31.7
Davinci 55.0 63.2 33.3 27.2 57.0 52.0
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2 Ada 23.1 11.9 8.5 16.8 -6.4 9.9
Babbage 27.9 55.7 19.3 23.9 29.7 34.0
Curie 35.4 47.9 30.3 22.7 25.4 37.5
Davinci 50.2 54.4 34.6 28.3 49.8 42.1

DeBERTa 69.1 67.0 43.9 24.7 34.4 64.0
Bi-encMSCG+GKB 27.4 -4.4 15.4 14.4 -11.8 12.6
Bi-encChatGPT 60.3 47.1 40.4 9.0 40.7 40.2

Table 1: Ranking using conditional probability (Spear-
man ρ%). Prompt1: “[food item] tastes [property]”.
Prompt 2: “it is known that [food item] tastes [prop-
erty]”.

Item Gold Davinci

Cracker with Nutella spread 5 324
Chocolate with nut 15 201
Sweet pancake with maple syrup 34 279
Fruit cake 41 265
Sweet cookies with chocolate 60 233
Cracker with jam 67 268

Cooked bell pepper 252 8
Redcurrant 282 36
Radish 431 97
Mascarpone cheese 477 38
Cooked green cabbage 512 49
Saint-agur Cheese 584 61

Table 2: Qualitative analysis of the predictions by
davinci for sweetness, using prompt 1. The table shows
the rank positions of several food items, when ranking
the items from the sweetest (rank 1) to the least sweet
(rank 590), according to the ground truth and the predic-
tions obtained with the Davinci model.

the GPT-3 models, between model size and perfor-
mance, with the best results achieved by davinci.
Similar as was observed for the colour domain
by Liu et al. (2022a), there seems to be a quali-
tative change in performance between LLMs such
as davinci and smaller models. While there are
some differences between the two prompts, similar
patterns are observed for both choices. ChatGPT
and GPT-4 were not able to provide a ranking of
the 590 items, and are thus not considered for this
experiment. We also tried ChatGPT on a subset of
50 items, but could not achieve results which were
consistently better than random shuffling.

Surprisingly, we find that the DeBERTa model
outperforms davinci in most cases, and often by
a substantial margin. This is despite the fact that
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Mass Mass Height Size
ρ Acc Acc Acc
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. Ada 23.0 47.8 68.7 59.1
Babbage 48.9 80.9 67.9 76.4
Curie 30.6 65.1 77.6 86.4
Davinci 36.2 76.8 76.4 80.4

P
E

R
P

L
E

X
IT

Y Ada - 49.0 49.7 36.5
Babbage - 55.0 59.1 66.7
Curie - 56.6 43.3 45.5
Davinci - 70.8 54.7 51.1

R
A

N
K ChatGPT† 28.6 68.3 89.9 84.3

GPT-4† 58.6 84.9 99.1 99.1

DeBERTa -8.9 42.8 86.6 93.9
Bi-encMSCG+GKB 31.1 69.2 69.7 71.9
Bi-encChatGPT 11.8 67.6 77.2 60.3

Table 3: Results for physical properties, viewed as a
ranking problem (mass) and as a pairwise judgment
problem (mass, height and size). Prompt: “In terms of
[mass/height/size], it is known that a typical [concept]
is [heavy/tall/large]”. Results with † required manual
post-processing of predictions.

the model is 2 to 3 orders of magnitude smaller.
Furthermore, we can see a large performance gap
between the two variants of the bi-encoder model,
with the model trained on ChatGPT examples out-
performing curie, and even davinci in two cases.

Table 2 presents some examples of the predic-
tions that were made by davinci for sweetness (us-
ing prompt 1), comparing the ranks according to
the ground truth (gold) with the ranks according to
the davinci predictions. The table focuses on some
of the most egregious mistakes. As can be seen,
davinci fails to identify the sweetness of common
foods such as chocolate, fruit cake and jam. Con-
versely, the model significantly overestimates the
sweetness of different cheeses and vegetables.

Physical Properties Table 3 summarises the re-
sults for the physical properties. For mass, we con-
sider both the problem of ranking all objects, evalu-
ated using Spearman ρ%, and the problem of evalu-
ating pairwise judgments, evaluated using accuracy.
Height and size can only be evaluated in terms of
pairwise judgments. To obtain conditional proba-
bilities from the GPT-3 models, we used a prompt
of the form “In terms of [mass/height/size], it is
known that a typical [concept] is [heavy/tall/large]”.
We also tried a few variants, which performed
worse. To compute perplexity scores, for evalu-
ating pairwise judgements, we used a prompt of
the form “[concept 1] is heavier/taller/larger than
[concept 2]”. For the baselines, we obtained scores

for the properties heavy, tall and large.
The correlation between model size and per-

formance is far from obvious here, except that
ada clearly underperforms the three larger mod-
els. However, among the GPT-3 models, babbage
actually achieves the best results in several cases.
The results based on conditional probabilities are
consistently better than those based on perplexity.
ChatGPT and GPT-4 were difficult to use with the
ranking prompt, as some items were missing, some
were duplicated, and many items were paraphrased
in the ranking. The results in Table 3 were obtained
after manually correcting these issues. With this
caveat in mind, it is nonetheless clear that GPT-4
performs exceptionally well in this experiment. In
accordance with our findings in the taste domain,
DeBERTa performs very well on the height and
size properties, outperforming all GPT-3 models
by a clear margin. For mass, however, DeBERTa
failed completely, even achieving a negative cor-
relation. The bi-encoder models perform well on
height and size, although generally underperform-
ing the largest GPT-3 models. For mass, the bi-
encoder trained on ChatGPT examples performs
poorly, while the model trained on Microsoft Con-
cept Graph and GenericsKB was more robust. It is
notable that the results in Table 3 are considerably
higher than those obtained by Li et al. (2023) using
OPT (Zhang et al., 2022). For mass, for instance,
even the largest OPT model (175B) was not able to
do better than random guessing.

In Table 3, the pairwise judgments about mass
were assessed by predicting the probability of the
word heavy (for the GPT-3 models) or by predict-
ing the probability that the property heavy was
satisfied (for the baselines). Another possibility is
to use the word/property light instead, or to com-
bine the two probabilities. Let us write pheavy
to denote the probability obtained for heavy (i.e.
the conditional probability of the word, as pre-
dicted by the language model, or the probability
that the property is satisfied, as predicted by a base-
line model), and similar for plight. Then we can
also predict the relative mass of items based on
the value pheavy · (1 − plight) or based on the
value pheavy/plight. These different possibilities
are evaluated in Table 4. As can be seen, there is
no variant that consistently outperforms the others.

Analysis of Training Data Overlap For the base-
lines, we may wonder to what extent their knowl-
edge comes from the pre-trained language model,

11839



ada babbage curie davinci DeBERTa Bi-encMSCG+GKB Bi-encChatGPT

pheavy 46.6 81.7 64.7 76.8 67.7 69.2 42.9
1− plight 49.8 51.3 41.5 53.4 43.4 61.9 53.4
pheavy · (1− plight) 46.6 81.7 64.7 76.8 47.8 69.2 48.1
pheavy/plight 61.4 68.3 52.1 65.9 65.2 75.7 46.5

Table 4: Analysis of alternative strategies for predicting pairwise judgements about mass (accuracy).

Bitter Sour Mass Height Size
ρ ρ ρ Acc Acc

Full training 24.7 43.9 -8.9 86.6 93.9
Filtered training 24.8 35.0 30.7 82.0 90.8

Table 5: Comparison of the DeBERTa model in two
settings: the full training setting, where the McRae and
CSLB datasets are used for fine-tuning, and a filtered
setting, where relevant properties are omitted.

and to what extent it has been injected during the
fine-tuning step. For this analysis, we focus in
particular on the DeBERTa model, which was fine-
tuned on the McRae and CSLB datasets. These
datasets indeed cover a number of physical prop-
erties, as well as some properties from the taste
domain. Table 5 summarises how the performance
of the DeBERTa model is affected when removing
the most relevant properties from the McRae and
CSLB training sets, which we refer to as filtered
training in the table. For instance, for the property
bitter, in the filtered setting we omit all training
examples involving the properties “bitter" and “can
be bitter in taste”; for sour we remove the prop-
erties “sour” and “can be sour in taste”; for mass
we remove the properties “heavy", “light", “light
weight" and “can be lightweight"; for height we
remove the properties “short", “can be short", “tall"
and “can be tall"; and for size we remove the prop-
erties “large" and “small". Note that the McRae
and CSLB datasets do not cover any properties that
are related to sweetness, saltiness, umami and fat-
tiness. The results in Table 5 show that filtering
the training data indeed has an effect on results,
although the performance of the model overall re-
mains strong. Interestingly, in the case of mass, the
filtered setting leads to clearly improved results.

5 Conclusions

We proposed the use of a dataset from the taste
domain for evaluating the ability of LLMs to learn
perceptually grounded representations. We found
that LLMs can indeed make meaningful predic-

tions about taste, but also showed that a fine-tuned
DeBERTa model, and in some cases even a fine-
tuned BERT-large bi-encoder, can outperform GPT-
3. The performance of these smaller models cru-
cially depends on the quality of the available train-
ing data. For this reason, we explored the idea of
collecting training data from ChatGPT, using a new
prompting strategy. We complemented our exper-
iments in the taste domain with an evaluation of
physical properties, where we achieved consider-
ably better results than those reported in the litera-
ture (Li et al., 2023). Whereas previous work was
essentially aimed at understanding the limitations
of language models, our focus was more practical,
asking the question: can high-quality conceptual
space representations be distilled from LLMs? Our
experiments suggest that the answer is essentially
positive, but that new approaches may be needed
to optimally take advantage of the knowledge that
can be extracted from such models.

Limitations

It is difficult to draw definitive conclusions about
the extent to which cognitively meaningful rep-
resentations can be obtained by querying LLMs.
Among others, previous work has found that per-
formance may dramatically differ depending on the
prompt which is used; see e.g. (Liu et al., 2022a).
We have attempted to make reasonable choices
when deciding on the considered prompts, through
initial experiments with a few variations, but clearly
this is not a guarantee that our prompts are close
to being optimal. However, this also reinforces
the conclusion that LLMs are difficult to use di-
rectly for learning conceptual spaces. While we be-
lieve that taste represents an interesting and under-
explored domain, it remains to be verified to what
extent LLMs are able to capture perceptual features
in other domains.
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A Collecting Concept-Property Pairs
using ChatGPT

To obtain training data for the bi-encoder model
using ChatGPT, we used the following prompt:

I am interested in knowing which prop-
erties are satisfied by different concepts.
I am specifically interested in properties,
such as being green, being round, be-
ing located in the kitchen or being used
for preparing food, rather than in hyper-
nyms. For instance, some examples of
what I’m looking for are: 1. Sunflower,
daffodil, banana are yellow 2. Guitar,
banjo, mandolin are played by strum-
ming or plucking strings 3. Pillow, blan-
ket, comforter are soft and provide com-
fort 4. Car, scooter, train have wheels
5. Tree, log, paper are made of wood 6.
Study, bathroom, kitchen are located in
house. Please provide me with a list of
50 such examples.

We repeated this request with the same prompt
around 10 times. After this, we changed the ex-
amples that are given (shown in bold above). This
process was repeated until we had 287K concept-
property pairs. After removing duplicates, a total
of 109K such pairs remained. We found it was nec-
essary to regularly change the examples provided
to ensure the examples were sufficiently diverse
and to avoid having too many duplicates. These ex-
amples were constructed manually, to ensure their
accuracy and diversity. Asking for more than 50
examples with one prompt became sub-optimal, as
the model tends to focus on a narrow set of similar
properties when the list becomes too long.

To verify the quality of the generated dataset, we
manually inspected 500 of the generated concept-
property pairs. In this sample, we identified 6 er-
rors, which suggests that this dataset is of sufficient
quality for our intended purpose. Compared to re-
sources such as ConceptNet, the main limitation
of the ChatGPT generated dataset is that it appears
to be less diverse, in terms of the concepts and
properties which are covered. We leave a detailed
analysis of this dataset for future work.

B Issues with ChatGPT and GPT-4

For the experiments in Table 3, we used Chat-
GPT and GPT-4 to rank 49, 25 and 26 unique
objects according to their mass, height and size
respectively. The prompt used was as follows:
“Rank the following objects based on their typical
[mass/height/size], from [heaviest to the lightest/
tallest to the shortest/ largest to the smallest]", fol-
lowed by a list of the items. We could not directly
evaluate the responses of ChatGPT and GPT-4 be-
cause of the following issues:

• Missing objects: For instance, GPT-4 ranked
48 out of 49 objects and ChatGPT ranked 46
out of 49 objects respectively, according to
their mass.

• Paraphrasing: While ranking, both GPT-4 and
ChatGPT changed some of the the names of
the objects. For instance, “wooden train track"
was renamed as "wooden train track piece",
“gardening shears" was renamed as "garden
shears".

• Duplicates: GPT-4 and ChatGPT both occa-
sionally introduced duplicates in the list.

To address these issues, we removed the dupli-
cates and appended the missing items at the end of
the ranking. We manually corrected the modified
names.
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