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Abstract
Quantization is a promising approach for reduc-
ing memory overhead and accelerating infer-
ence, especially in large pre-trained language
model (PLM) scenarios. While having no ac-
cess to original training data due to security
and privacy concerns has emerged the demand
for zero-shot quantization. Most of the cutting-
edge zero-shot quantization methods primar-
ily ❶ apply to computer vision tasks, and ❷
neglect of overfitting problem in the genera-
tive adversarial learning process, leading to
sub-optimal performance. Motivated by this,
we propose a novel zero-shot sharpness-aware
quantization (ZSAQ) framework for the zero-
shot quantization of various PLMs. The key
algorithm in solving ZSAQ is the SAM-SGA
optimization, which aims to improve the quan-
tization accuracy and model generalization via
optimizing a minimax problem. We theoreti-
cally prove the convergence rate for the mini-
max optimization problem and this result can
be applied to other nonconvex-PL minimax op-
timization frameworks. Extensive experiments
on 11 tasks demonstrate that our method brings
consistent and significant performance gains
on both discriminative and generative PLMs,
i.e., up to +6.98 average score. Furthermore,
we empirically validate that our method can
effectively improve the model generalization.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2018) and GPT-3 (Brown
et al., 2020), have achieved great success in a vari-
ety of NLP tasks (Raffel et al., 2020; Zhong et al.,
2022b, 2023a; Liu et al., 2023b). However, with the
scaling of model size, the inference of larger PLMs,
e.g., OPT (Zhang et al., 2022) and LLaMA (Tou-
vron et al., 2023), becomes more computation-
ally expensive and memory-intensive (Shen et al.,
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2023). Hence, it is crucial and green to lighten the
PLMs and reduce the memory footprint (Schwartz
et al., 2020).

To achieve this goal, various model compression
methods have been developed, including knowl-
edge distillation (Liu et al., 2019), pruning (Liu
et al., 2018) and etc. Among these methods, quan-
tization has attracted great attention (especially in
the large language model scenarios) (Yao et al.,
2022; Frantar et al., 2022), owing to its impressive
ability to reduce memory footprint and accelerate
inference while maintaining the network structure
(Bai et al., 2021a). However, quantization-aware
training (QAT) usually requires retraining using
the original training data to mitigate performance
degradation. While in some application scenarios,
access to the original training data is oftentimes
not available due to the protection of privacy and
consideration of data security.

In response to this problem, post-training quan-
tization (PTQ) (Bai et al., 2021a) is proposed
to address the training-data access, as it gener-
ally requires no retraining. But most of those
methods would lead to an accuracy drop in low-
precision quantization since they are training-free
and primarily rely on the analysis of weight dis-
tributions. More recently, zero-shot quantization
(ZSQ) (Nagel et al., 2019; Zhuang et al., 2022;
Zhang et al., 2021) shows promising results in the
computer vision community. Specifically, ZSQ per-
forms the quantization process with the synthetic
data generated from a generator. To alleviate the
side effect of inaccurate synthetic data, Choi et al.
(2020) further improve the ZSQ by adaptively tun-
ing the generator with the supervision of adversar-
ial learning. However, it is non-trivial to adopt such
an adversarial-based ZSQ in the NLP field, as ❶

backpropagation on discrete words is not reason-
able, i.e., it seems “unlikely” to pass the gradient
through the text to the generator; ❷ minimizing the
difference between the teacher and (quantized) stu-
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dent models would be prone to over-fitting problem,
leading to poor model generalization.

To address the above issues, we propose a novel
Zero-shot Sharpness-Aware Quantization (namely
ZSAQ) framework to improve the performance and
generalization of the quantized model. Firstly, re-
garding the problem ❶, we design a simple feature
adaptation module to convert the output token rep-
resentations of the generator into the target quan-
tized model’s representation space, thus avoiding
the gradient propagation on the discrete words. Sec-
ondly, for the problem ❷, we are inspired by the
sharpness-aware minimization (SAM) (Foret et al.,
2020) and propose an alternating SAM-SGA algo-
rithm to boost the ZSAQ and improve model gener-
alization. Specifically, on the one hand, SAM-SGA
uses SAM to robustly minimize the divergence of
output distributions between teacher and quantized
student models. On the other hand, it uses stochas-
tic gradient ascent (SGA) to encourage the gen-
erator model to maximize the divergence at each
iteration. By optimizing such a minimax problem,
we can not only train the well-performed with gen-
erative adversarial learning but also improve the
generalization of quantized models.

Theoretically, we provide rigorous analysis for
the SAM-SGA algorithm solving the minimax
optimization (ZSAQ). We show that SAM-SGA
achieves O(1/

√
T ) convergence rate. Furthermore,

our theoretical results are not limited to the single
case but are applicable to a wide range of min-
imax optimization problems in both nonconvex-
strongly-concave and nonconvex-PL conditions.
Empirically, we adopt our ZSAQ framework to
quantize both the discriminative and generative
PLMs, and evaluate 8 language understanding tasks
and 3 language modeling tasks. Extensive experi-
ments demonstrate the effectiveness and versatility
of our approach. More encouragingly, our ZSAQ
brings +6.98 average performance gains in the low-
precision quantization, compared to the baselines.
Extensive analyses show that our framework has
the potential to expand to more large language mod-
els and prove that SAM-SGA indeed brings better
model generalization.

In summary, our contributions are three-fold: (1)
We propose a novel method, zero-shot sharpness-
aware quantization (ZSAQ), which realizes zero-
shot quantization without much accuracy loss. (2)
We provide a theoretical convergence guarantee for
the SAM-SGA algorithm which aims to solve the

minimax optimization problem (ZSAQ). (3) Ex-
tensive experiments show that our SAM-SGA can
bring consistent and significant performance gains,
up to +6.98 average score, on both discriminative
and generative PLMs.

2 Related Works

Compression method for language models. Com-
pression is efficient in reducing computation cost,
memory overhead, and energy consumption as well
as shortens inference time for large neural net-
work models, which is in great need for pre-trained
language models to be deployed in the mobile or
resource-constrained device. Quantization works
by transmitting the models with lower-bit parame-
ters. QAT works by minimizing the rounding error
on the training dataset. FullyQT (Prato et al., 2020)
shows the fully quantized Transformer can avoid
any accuracy loss in translation quality. I-BERT
(Kim et al., 2021) eliminates floating point calcu-
lation in BERT inference and achieves similar ac-
curacy to the full-precision baseline. BinaryBERT
(Bai et al., 2021b) achieves good performance by
ternary weight splitting which avoids the complex
and irregular loss landscape. There are some other
techniques, low-rank factorization (Tahaei et al.,
2021; Edalati et al., 2021; CHen et al., 2020; Reid
et al., 2021), factorizing the weight matrices which
are usually low-rank into several smaller matrices
by means of singular value decomposition. Parame-
ter sharing (Rothe et al., 2020; Takase and Kiyono,
2021; Reid et al., 2021), reduces memory over-
head by reusing the same parameters in multiple
computations. Pruning (Mishra et al., 2021; Guo
et al., 2020; Chen et al., 2020; Xia et al., 2022;
He et al., 2022; Liu et al., 2023a), deletes some
parameters which are "useless" in network under
the same model performance.
Zero-shot quantization. In contrast to QAT, PTQ
relies less on the training data and does not require
end-to-end training (Nagel et al., 2019; Nahshan
et al., 2021; Nagel et al., 2020; Li et al., 2020;
Zhao et al., 2019; Hubara et al., 2020), which can
be zero-shot. Bai et al. (2021a) propose module-
wise quantization error minimization and perform
close to QAT. SmoothQuant (Xiao et al., 2022)
transmits the activation quantization to weights
to smooth the outliers in activation and makes
a large language model implemented efficiently.
Tao et al. (2022) proposes an adaptive quantiza-
tion for different modules and performs compara-
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bly with the full-precision generative pre-trained
language models. GPTQ (Frantar et al., 2022), a
one-shot weight quantization method with approx-
imate second-order information, can efficiently
quantize generative pre-trained transformers with
large amounts of parameters to 3 or 4 bits with neg-
ligible accuracy degradation. Nahshan et al. (2021)
figures out that aggressive quantization can lead
to the steep curvature of the loss landscape, while
they propose a method combining layer-by-layer
quantization and multivariate quadratic optimiza-
tion that can improve accuracy over current PTQ.
NuQmm (Park et al., 2022) uses a non-uniform
quantization method which allows for a trade-off
between accuracy and compression ratio. Another
way to achieve zero-shot is by means of the gener-
ative adversarial technique. (Cai et al., 2020; Liu
et al., 2021b; Choi et al., 2022) has shown promis-
ing performance on small-scale computer vision
tasks, while it has not been applicable to the NLP
realm. To the best of our knowledge, we are the
first to adopt the adversarial learning approach for
quantizing both the discriminative and generative
PLMs in a zero-shot manner and provide its rigor-
ous convergence analysis.

3 Methodology

In this section, we will present our zero-shot
sharpness-aware quantization method.
Network quantization. For a real-valued vector x
which represents the parameter in the pre-trained
full-precision model, we quantize it into x̂ by the
signed symmetric quantization:

x̂ = s
[
clamp

(
⌊x
s
⌉;−2b−1; 2b−1 − 1

)]
, (1)

where s ∈ R+ denotes scale factor and b ∈ Z rep-
resents the bit-width of the quantized version. So
the parameters can be projected to the integer grid:
{−2b−1,−2b−1 + 1, ..., 0, ..., 2b−1 − 1}. And the
default experimental setting is presented in Sec. 5.
Generative adversarial learning. In our paper we
achieve zero-shot by generative adversarial learn-
ing. Specifically, the generator G takes i.i.d. token
samples z as input to produce synthetic data. Then
the generated sentence segments will be fed into
the pre-trained model P and the quantized model
Q. Intuitively we can get the output distributions,
denoted as P(G(z)) and Q(G(z)) respectively.

During the training process of the quantized
model, it aims to simulate the output distribution

MSE 𝒍𝒐𝒔𝒔

GeneratorTokens

Pre-trained Model Quantized Model

Forward Pass Minimize Backward Maximize Backward

Figure 1: An overview of our ZSAQ framework.

of the pre-trained model. So the objective for Q
is to minimize the discrepancy between P(G(z))
and Q(G(z)), denoted as D(P(G(z)),Q(G(z))).
While for the generator G, it tries to maximize the
divergence, so that the quantized model Q can be
trained to confuse even the most strict generator.
We try to balance the trade-off between the genera-
tor G and the quantized model Q so that we can get
a well-performed quantized model without access
to the original training data. The structure of our
method is demonstrated in the Figure 1. And the
objective function of our method is shown below:

min
Q

max
G

Ez∼T D(P(G(z)),Q(G(z))), (2)

where D represents the divergence MSE.
ZSAQ: Zero-shot sharpness-aware quantization.
As shown in Liu et al. (2021a), there is a sharper
loss landscape in the low-precision model than in
the full-precision model. To avoid overfitting prob-
lems caused by the training process, we should
consider the generalization ability of our quantized
models. Inspired by Foret et al. (2020), we pursue
a flatter landscape during the training process of
the quantized model which can guarantee a better
generalization performance. So we can adjust our
objective function as:

min
ω̂

{max
G

{Ez∼T D(P(G(z)),Q(ω̂;G(z)))}

+ S(P;Q(ω̂))}, (3)

where we denote the sharpness function as:

S(P;Q(ω̂)) (4)

≜ max
∥ϵ∥2≤β

Ez∼T D(P(G(z)),Q(ω̂ + ϵ;G(z)))

− Ez∼T D(P(G(z)),Q(ω̂;G(z)))}.
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The sharpness function searches for the sharpest
point among a neighbor centered at ω̂ with a ra-
dius of β, which will represent the worst-case data.
Then our optimization process not only minimizes
the divergence but also the sharpness of the diver-
gence, i.e., getting a quantized model with both
lower divergence and a flatter landscape.

Solving the inner maximization problem to ob-
tain the optimal:

ϵ∗(ω̂)=β
∇ωEz∼T D(P(G(z)),Q(ω̂;G(z)))

∥∇ωEz∼T D(P(G(z)),Q(ω̂;G(z)))∥2
. (5)

Remark. Here we use ω̂ + ϵ as the parameter in
the sharpness function (4) instead of ω̂+ϵ, for the
reason that ϵ may be so small that there will be no
difference adding the perturbation. And this issue
is also illustrated in Liu et al. (2021a).
Algorithm. For the objective function, we train the
generator to maximize the discrepancy between the
pre-trained model and the quantized model:

Ez∼T D(P(G(z)),Q(ω̂;G(z))) (6)

Then we train the quantized model to minimize
both the discrepancy value and the sharpness of
the discrepancy, i.e., the addition of D(P,Q) and
S(P,Q), on the synthetic data produced by the
generator G. While the addition comes out to be:

Ez∼T D(P(G(z)),Q(ω̂ + ϵ∗(ω̂);G(z)))}, (7)

where the optimal ϵ∗(ω̂) is obtained from Eq. (5).
We obtain our final algorithm by applying

stochastic gradient descent on the minimization
objective (7), which turns out to be SAM, and ap-
plying stochastic gradient ascent on the maximiza-
tion objective (6). Generator G is parameterized by
θ, quantized model Q initially quantized from the
pre-trained model P and the quantized parameter
is denoted as ω̂, while the parameters before quan-
tization is denoted as ω. We alternatively update
the parameters ω̂ and θ respectively. The pseudo
code is shown in the Algorithm 1.

4 Optimization

In this part, we will analyse the convergence of
our algorithm to solve this minimax optimization
problem, which can provide a theoretical guarantee
for our method.

First in order to make our theoretical conver-
gence result applicable to a broader variety of such
problems, we replace the detailed loss function

Algorithm 1 SAM-SGA for ZSAQ

Input: generator Gθ, quantized model Q(ω̂), pre-
trained model P , learning rate ηθ and ηω, and
the neighborhood size β for the perturbation

1: Initialize: Q(ω̂0) is quantized from P by
Eq.(1)

2: for t=0,1,...,T do
3: //training quantized model by SAM
4: Compute the optimal perturbation ϵ∗(ω̂) by

Eq.(5);
5: Calculate the gradient and update ωt+1 via

Eq.(7);
6: Quantize ωt+1 to ω̂t+1 by Eq .(1);
7: //training generator by SGA
8: Update θt+1 by Eq.(6);
9: end for

Output: ω̂ uniformly drawn from {ω̂1, ..., ω̂T }.

Ez∼T D(P(Gθ(z)),Q(ω̂;Gθ(z))) with a general
representation f(ω̂,θ) = Eξ[f(ω̂,θ; ξ)], where ξ
follows i.i.d. Then our detailed objective function
(3) can be turned into:

min
ω̂

{max
θ

f(ω̂,θ) + fsharp(ω̂,θ)}, (8)

where f sharp(ω̂,θ) ≜ fSAM (ω̂,θ)−f(ω̂,θ) and
fSAM (ω̂,θ) ≜ max∥ϵ∥2≤β f(ω̂ + ϵ,θ). We can
solve the maximization problem that ϵ∗(ω̂) =

β ∇ω̂f(ω̂,θ)
∥∇ω̂f(ω̂,θ)∥2 . So that we can write fSAM (ω̂,θ)

as f(ω̂ + ϵ∗(ω̂),θ).
Next, we restate the update rule of our Algorithm

1 in our new denotation that:




ωt+1 = ω̂t − ηωgω(ω̂t + β gω(ω̂t,θt)
∥gω(ω̂t,θt)∥2 ,θt)

ω̂t+1 = Quantization(ωt+1)
θt+1 = θt + ηθgθ(ω̂t,θt)

,

where gω and gθ are the approximated gradients
calculated by gω(ω,θ) = 1

M

∑M
i=1Gω(ω,θ; ξi)

and gθ(ω,θ) = 1
M

∑M
i=1Gθ(ω,θ; ξi) respec-

tively. And G ≜ (Gω, Gθ) is the unbiasd gradient
of the function f , i.e., E[G(ω,θ; ξ)] ∈ ∇f(ω,θ).
Remark. Actually function f maps Rd × Rn to R.
The first parameter can be either a floating point
or an integer. It is well-defined for us to represent
f(ω̂, ·) or ∇ωf(ω̂, ·).

Before illustrating the theoretical results, we first
introduce some necessary assumptions and defini-
tions that are used in the analysis.
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Assumption 4.1. f(ω,θ) is differential and l-
Lipschitz smooth:

∥∇ωf(ω1,θ)−∇ωf(ω2,θ)∥ ≤ l∥ω1 − ω2∥, ∀θ
∥∇θf(ω,θ1)−∇θf(ω,θ2)∥ ≤ l∥θ1 − θ2∥, ∀ω

Assumption 4.2. f(ω, ·) satisfies PL condition on
every given ω, i.e. there exists µ > 0 such that
∥∇θf(ω,θ)∥2 ≥ 2µ[maxθ f(ω,θ)− f(ω,θ)].

Assumption 4.3. Parameter θ is restricted in a
convex and bounded set with a diameter of D.

Assumption 4.4. The approximated gradient is
unbiased and has a bounded variance, i.e.,

E[G(ω,θ, ξ)] ∈ ∇f(ω,θ);

E∥G(ω,θ, ξ)−∇f(ω,θ)∥2 ≤ σ2.

Remark. These assumptions are common in the
context of minimax optimization problems and can
be realized in empirical practice.

Lemma 4.1. (Zhu et al., 2020) The quantization
error is bounded by the grain, where d denotes the
dimension of parameter ω:

∥ω̂ − ω∥ ≤
√
d∆.

Remark. The quantization error can be naturally
derived from Eq. (1) and the grain ∆ is decided
by default quantization setting, which will not be
discussed in our paper.

Definition 4.1. Φ(ω) = maxθ f(ω,θ); Φ∗ =
minω Φ(ω). And we define an ϵ-stationary point
when E∥∇Φ(ω)∥2 ≤ ϵ.

Remark. By defining the function Φ, we can sim-
plify our minimax optimization with two opposite
variables into a minimization optimization problem
with a single variable. When the gradient of Φ(ω)
diminishes to zero, we consider our algorithm con-
verges.

Theorem 4.1. Under Assumption 4.1,4.2,4.3,4.4
and restrictions β ≤ ηθ

2l , ηθ = 64κ2ηω, ηω ≤
min{ 1

128κ2l
,
√

M(E[Φ(ω̂0)]−E[Φ∗])
132Tκ4lσ2 }, we have the

convergence bound for our problem:

1

T

T−1∑

t=0

E∥∇Φ(ω̂)∥2 (9)

≤ 2

√
(Φ(ω̂0)− Φ∗)κ4σ2

MT
+O(d∆2).

Remark. Due to the space limitation, the proofs
and strongly-concave case are placed in Appendix
A. Observing the above results, we evaluate the
averaged gradients at the quantized parameter ω̂
and we can draw the conclusion that our averaged
output of the quantized models can converge to an
ϵ-stationary point during O(1/ϵ2) iterations under
the neglect of quantization error d∆2.

5 Experiment

5.1 Setup

Tasks and Models. In this section, we evaluate
our SAM-SGA method on both discriminative (i.e.,
BERT-style) and generative (i.e., GPT-style) lan-
guage models. For discriminative models, we fol-
lowed many prior works (Zhong et al., 2023c,d) and
tested both BERTbase and BERTlarge (Devlin et al.,
2018) on GLUE benchmark (Wang et al., 2018);
and for generative models, we tested the OPT-
family (Zhang et al., 2022) (mainly OPT-350m)
on the GLUE benchmark and several language
modeling tasks, i.e., WikiText2 (Merity et al.) and
Penn Treebank (PTB) (Mikolov and Zweig, 2012)
and WikiText103 (Merity et al.). For evaluation,
we report the performance with Accuracy (“Acc.”)
metric for most tasks, except the Pearson correla-
tion (“Pear.”) for STS-B, the Matthew correlation
(“Mcc.”) for CoLA, the perplexity (PPL) score for
language modeling tasks. We report the averaged
results over 5 random seeds to avoid stochasticity.
The details of all tasks are shown in Appendix A.1.

Implementation Details. Following many previ-
ous studies (Tao et al., 2022; Bai et al., 2021b), we
first fine-tune a full-precision model using the pre-
trained checkpoint from huggingface1 for each task,
and use the fine-tuned model as the full-precision
teacher model. Then, we apply the cutting-edge
PTQ methods, i.e., ZeroQuant (Yao et al., 2022) for
BERT models and GPTQ (Frantar et al., 2022) for
OPT models, to quantize the fine-tuned model and
use the quantized network to initialize the student
model. For the generator model, we directly use
the OPT-350m (Zhang et al., 2022) (without any
further tuning) model2, i.e., the generators are not
trained on any end-task data. All experiments are
conducted on a single NVIDIA A100 (40G) GPU

1https://huggingface.co/models
2Notably, we can use any generative LLMs as the generator

models. In this work, we use the OPT models as they are open-
sourced and cover multiple model scales.
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#Bits CoLA MNLI MRPC QNLI QQP RTE SST2 STSB GLUE
Method

(W-A) Mcc. Acc. Acc. Acc. Pear. Acc. Acc. Acc. Avg. ∆ (↑)

Full-precision W32A32 60.82 83.12 85.05 90.52 89.91 65.34 92.43 88.84 82.00 -

Baseline W8A8 60.07 83.16 84.31 90.41 89.86 64.98 92.66 88.82 81.78 *
QAT-GT W8A8 62.26 83.58 85.29 90.57 89.87 66.79 92.66 88.85 82.48 +0.70
QAT-Rand W8A8 60.06 83.37 84.81 90.52 89.92 65.14 93.00 88.98 81.98 +0.20
SAM-SGA W8A8 63.70 82.93 85.05 90.52 89.93 65.34 92.08 88.96 82.31 +0.81

Baseline W4A8 52.13 77.24 82.60 85.10 86.34 50.90 89.11 84.41 75.98 *
QAT-GT W4A8 57.30 78.22 83.09 86.95 86.41 55.86 90.71 87.34 78.24 +2.26
QAT-Rand W4A8 53.37 76.98 77.94 86.61 86.23 48.38 90.48 86.48 75.81 -0.17
SAM-SGA W4A8 53.01 76.64 83.58 86.12 86.16 64.26 89.68 86.94 78.30 +2.32

Baseline W2A8 0.00 35.47 68.38 49.13 67.29 47.29 77.52 58.43 50.44 *
QAT-GT W2A8 0.00 39.86 69.61 50.59 67.55 47.29 77.64 69.41 52.74 +2.30
QAT-Rand W2A8 0.00 39.26 31.62 49.52 67.93 47.29 76.83 63.11 46.95 -3.49
SAM-SGA W2A8 10.16 36.84 68.38 53.41 89.95 57.76 76.26 66.61 57.42 +6.98

Table 1: Results of BERTbase on the development set of GLUE (Wang et al., 2018) benchmark. “#Bits (W-A)”
denotes the bit-width for weights of Transformer layers and activations.

#Bits CoLA MRPC RTE
Method

(W-A) Mcc. (↑) Acc. (↑) Acc. (↑)

Full-precision W32A32 64.47 86.03 65.71

Baseline W8A8 64.80 86.76 62.45
QAT-GT W8A8 66.61 87.75 65.34
QAT-Rand W8A8 66.86 86.52 65.15
SAM-SGA W8A8 66.08 87.25 66.06

Baseline W4A8 49.11 74.26 47.29
QAT-GT W4A8 50.85 75.73 56.68
QAT-Rand W4A8 45.63 70.34 47.29
SAM-SGA W4A8 52.97 77.70 52.71

Table 2: Results of BERTlarge on parts of tasks of
GLUE (Wang et al., 2018) benchmark.

#Bits PTB WikiText103 WikiText2
Method

(W-A) PPL (↓) PPL (↓) PPL (↓)

Full-precision W32A32 28.58 13.38 19.21

Baseline W8A8 56.02 48.16 55.4
QAT-GT W8A8 50.68 42.15 46.29
QAT-Rand W8A8 54.59 48.69 60.46
SAM-SGA W8A8 46.59 46.56 54.08

Baseline W4A4 60.25 56.16 62.89
QAT-GT W4A4 55.59 42.01 51.72
QAT-Rand W4A4 59.40 55.32 63.63
SAM-SGA W4A4 51.19 54.32 61.22

Table 3: Results of OPT-350m on the dev set of four
language modeling benchmarks.

and the detailed hyper-parameters can be found in
Appendix A.2.

Compared Methods. For reference, we compare
our SAM-SGA method with the following cutting-
edge counterparts:

• Full-precision: we report the results of full-
precision fine-tuned model, i.e., teacher model
in our framework.

• Baseline: we adopt the powerful PTQ meth-
ods i.e., ZeroQuant (Yao et al., 2022) for
BERT models and GPTQ (Frantar et al., 2022)
for OPT models, to quantize the fine-tuned
model, and report the results as the baseline.

• QAT-GT: after obtaining the teacher and stu-
dent models, we use the original training data
to guide the quantization-aware training pro-
cess of student model.

• QAT-Rand: we follow Yao et al. (2022) and
use the random data (using the random integer
number to generate token ids) to perform the
QAT process.

Notably, for each method, we carefully grid-search
the best learning rates from {5e-6, 1e-5, 2e-5, 5e-
5}, and report the best results that are chosen from
the best single run among those learning rates.

5.2 Main Results
We report the results of BERTbase, BERTlarge

and OPT-350m in Table 1, 2 and 3, respectively.
Notably, we use WxAy to represent the x-bit
weight quantization and y-bit activation quantiza-
tion. From the results, we can observe that:

SAM-SGA outperforms the other counterparts
in most settings. As shown in Table 1, our SAM-
SGA outperforms the baseline methods among
all quantization settings by a large margin, i.e.,
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CoLA MNLI MRPC QNLI QQP RTE SST2 STSB GLUE
Method

Mcc. Acc. Acc. Acc. Pear. Acc. Acc. Acc. Avg. ∆ (↑)

Baseline 52.13 77.24 82.60 85.10 86.34 50.90 89.11 84.41 75.98 *

SAM-SGA (Ours) 53.01 76.64 83.58 86.12 86.16 64.26 89.68 86.94 78.30 +2.32
-w/o SGA 45.30 78.06 84.31 85.53 86.05 55.23 89.36 86.59 76.30 -2.00
-w/o SAM 50.74 76.29 82.60 85.74 85.93 63.53 89.44 86.46 77.59 -0.71
-w/o SGA&SAM 43.70 76.02 82.80 85.33 85.56 56.04 89.48 86.11 75.63 -2.67

Table 4: Ablation study of important components of SAM-SGA. Here, we use the BERT-base models quantified
into W4A8 bit-width.

up to +6.98 average score. Specifically, QAT-GT
also achieves remarkable performance gains, ow-
ing to the supervised information from the orig-
inal training data. When using the random data
(“QAT-Rand”), the performance gains brought by
the vanilla QAT process will be much slighter. En-
couragingly, it can be found that ZSAQ performs
better in the lower precision settings, indicating the
potential of validation methods in extreme com-
pression scenarios. These results prove the effec-
tiveness and significance of our data-free method.

SAM-SGA brings the consistent performance
gains among both model sizes. We further adopt
our SAM-SGA to the larger BERT model. Due to
the space limitation, we only report the results of
parts of GLUE benchmarks in Table 2, and provide
the full results in Table 7 of Appendix A.3. It can
be found the similar phenomenon in the BERT-
base experiments. That is, our SAM-SGA brings
the consistent performance gains on both models.

SAM-SGA works well in both BERT-style and
GPT-style models. In addition to the discrimi-
native PLMs, we also verify the effectiveness of
our SAM-SGA on the generative models. The re-
sults of language modeling tasks are in Table 3,
and we can seen that, with the help of SAM-SGA,
OPT-350m achieves much better quantization per-
formance against the baselines. Moreover, we also
evaluate the OPT-350m on the GLUE benchmark.
The contrastive results are listed in Table 8 of Ap-
pendix A.3, illustrating that our method outper-
forms the other methods, which further validates
the effectiveness of our methods for generative
style models.

5.3 Ablation Study

In this part, we 1) first evaluate the impact of im-
portant components of our SAM-SGA, and 2) then
investigate the effect of different generator models.
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Figure 2: Ablation study of different generator models.
We use OPT-family models with different sizes as the
generators.

Impact of important components of SAM-SGA.
There are several important components in our
SAM-SGA framework, i.e., “SGA”: tuning the gen-
erator model with the stochastic gradient ascent,
“SAM”: training the quantized model with SAM
optimizer. Here, we conduct the ablation study
to verify whether these components are necessary.
Specifically, taking the BERT-base model as an
example, we compare our full SAM-SGA method
with the following methods: i) “-w/o SGA”: we
remove the SGA process, i.e., keeping the gener-
ator model fixed; ii) “-w/o SAM”: we replace the
SAM optimizer with the vanilla AdamW optimizer;
3) “-w/o SGA&SAM”: fixed generator model and
base optimizer are used.

As shown in Table 4, we can find that removing
any component will cause the performance degra-
dation, indicating the necessarily of these compo-
nents. More specifically, without the SGA, our
SAM-SGA would perform much worse. One possi-
ble reason is that the quantized model might over-fit
the synthetic data, without the constraint of adver-
sarial training.

Effect of different generator models. Here, we
examine whether our SAM-SGA can still work
well using different generator models. We con-
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#Bits GLUE
Method

(W-A) Avg. ∆ (↑)

Full-precision W32A32 82.00 *

PTQ-vanilla W8A8 79.81 -2.19
PTQ-PEG W8A8 81.06 -0.94
PTQ-Adaround W8A8 82.02 +0.02
SAM-SGA (Ours) W8A8 82.59 +0.59

PTQ-vanilla W4A8 35.07 -46.93
PTQ-PEG W4A8 39.46 -42.54
PTQ-Adaround W4A8 77.49 -4.51
SAM-SGA (Ours) W4A8 78.30 -3.70

Table 5: Comparisons with other zero-shot quantization
methods on the development set of GLUE (Wang et al.,
2018) benchmark. Full results are shown in Table 9.

#Bits PTB WikiText2
Method

(W-A) PPL (↓) PPL (↓)

Full-precison W32A32 24.88 15.52

Baseline W8A8 36.75 24.05
SAM-SGA W8A8 32.66 20.96
∆ (↓) - ↓ 4.09 ↓ 3.09

Baseline W4A4 44.46 27.54
SAM-SGA W4A4 36.62 22.88
∆ (↓) - ↓ 7.84 ↓ 4.66

Table 6: Results of OPT-1.3b on two language modeling
benchmarks. We can find that our SAM-SGA can still
work well in the billion-level model scenarios.

duct the contrastive experiments by varying the
generator model size from 120M to 1.3B, and il-
lustrate the results in Figure 2. As seen, compared
to the baseline, our SAM-SGA consistently brings
improvements across all model sizes, basically in-
dicating that the performance of SAM-SGA is not
very sensitive to the generator model size. More
specifically, the case of OPT-350m performs best,
and we thereby use this setting in our experiment.

5.4 Analysis and Discussion

Here, we conduct extensive analyses to discuss:
1) whether our SAM-SGA outperforms the other
zero-shot quantization counterparts; 2) whether our
SAM-SGA can expand to more larger language
model scenarios, and 3) whether it gains better
model generalization.

Comparisons with other zero-shot quantiza-
tion methods. To better assess the strengths
of our method, we further compare it with
more zero-shot quantization methods, i.e., PTQ-
vanilla (vanilla post-training quantization), PTQ-
PEG (Bondarenko et al., 2021) and PTQ-

(b) BERT-base, W8A8

(a) BERT-base, W4A8

+0.98+1.81

+1.25+3.97

Figure 3: Analysis of task generalization. The model
is fine-tuned on the QNLI task and transferred to four
different tasks. We can see that our method consistently
brings better generalization compared to the baseline.

Adaround (Nagel et al., 2020). Specifically, taking
the BERT-base as an example, we show the con-
trastive results in the W8A8 and W4A8 settings in
Table 5. As seen, our method SAM-SGA outper-
forms the other zero-shot quantization methods by
a clear margin, especially in the low-bit setting.

Scaling to Billion-level large models. Some
readers may concern that whether our method can
be used to quantify the larger language models.
Here, we attempt to expand our method to the
quantization of billion-level models. Specifically,
due to the limited amount of computing resources,
we have tried our best to extend SAM-SGA to a
larger model setting, and lastly choose the OPT-
1.3b for experiments. For reference, we compared
our method with the baseline GPTQ method3.

As shown in Table 6, compared to the baseline,
our SAM-SGA brings the significant and consis-
tent performance improvements among all settings,
i.e., up to +7.84 gains. These results prove that
our method also works well in the larger language
model scenarios.

Does SAM-SGA Bring Better Generalization?
One of our main contributions is that we introduce
the SAM optimizer to improve the generalization
of quantized model. Here, we verify it from two
perspectives: i) measuring the cross-task zero-shot

3Notably, we empirically found that the performance of
GPTQ is very sensitive to the number of input samples (default
is 1), especially in the large model scenarios. Here, we set this
number to 10 to ensure the effectiveness of GPTQ.
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performance, and ii) visualizing the loss landscapes
of quantization models.

Task Generalization. As stated in many previ-
ous studies (Zhong et al., 2023b; Ding et al., 2022),
the performance of out-of-domain (OOD) data is
widely used to verify the model generalization.
Hence, we follow Xu et al. (2021); Zhong et al.
(2022a) and evaluate the performance of quantized
model on several OOD data. In practice, we first
quantize BERT-base models (fine-tuned on QNLI
task) with different methods, including “Baseline”,
“Ours” and its variant “-w/o SAM” (without using
SAM). Then, we inference the quantifized models
on other tasks, i.e., MRPC and RTE. The results are
illustrated in Figure 3. We observe that “Ours” con-
sistently outperforms the other counterparts. To be
more specific, compared with baseline, our SAM-
SGA brings a +2.0 average improvement score on
all tasks, indicating that our SAM-SGA boosts the
performance of PLMs on OOD data.

Visualization of Landscape. To have a close
look, we visualize the loss landscapes of differ-
ent quantized OPT-350m models fine-tuned on the
PTB task. In practice, we follow He et al. (2021);
Zhong et al. (2022a) to plot the 1D loss curve by lin-
ear interpolation between the model weights before
(denoted as θ0) and after (denoted as θ1) tuning, i.e.,
“θ1 + α · (θ1 − θ0)”, where α is a scalar parameter
that is ranged from -1 to 1. The 1D visualization re-
sults are illustrated in Figure 4, and we find that our
optimal setting “Ours” shows a flatter and optimal
property. These results prove that our SAM-SGA
can smooth the loss landscape and improve the
generalization of PLMs effectively.

☞ A Note on More Analyses and Discussions

Notably, in addition to the above results and stud-
ies, we further conduct more in-depth and system-
atic analyses and discussions in Appendix, due
to space limitations. Specifically, we provide 1)
parameter analysis of η, and 2) visualization of
the loss curve of adversarial training stages in Ap-
pendix A.3. Please refer to the Appendix for more
details.

6 Conclusion

In this paper, we propose a novel zero-shot quanti-
zation framework ZSAQ, which effectively realizes
zero-shot quantization without much accuracy drop
and shows promising generalization ability. We
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Figure 4: 1D visualization of loss landscapes of OPT-
350m quantized by different methods. PTB (Mikolov
and Zweig, 2012) is used for evaluation.

provide theoretical analysis for the minimax opti-
mization algorithm under both nonconvex-strongly-
concave and nonconvex-PL conditions, which guar-
antees a convergence rate of O(1/

√
T ) for our

ZSAQ method. Our experiments show outperform-
ing quantization results, up to +6.98 average score,
and validate improved generalization ability.

Limitations

Our work has several potential limitations. First,
given the limited computational budget, we only
validate our SAM-SGA method on the Large and
Base model sizes. It will make our work more con-
vincing if scaling the experiments up to the much
larger model sizes, e.g., LLaMA-65b (Touvron
et al., 2023) and OPT-66b. On the other hand, al-
though our method brings much performance gains
compared to the other PTQ method, it would lead
to more computation overheads. How to accelerate
the process has not been explored in this work.

Ethics Statement

We take ethical considerations very seriously, and
strictly adhere to the EMNLP Ethics Policy. This
paper focuses on zero-shot quantization for current
open-sourced pretrained language models, but not
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publicly available and have been widely adopted
by researchers. Therefore, we believe that this re-
search will not pose ethical issues.
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A Appendix

A.1 Details of Tasks and Datasets
In this work, we conduct extensive experiments on
GLUE benchmark and some widely-used language
modeling tasks. Here, we introduce the descrip-
tions of the used tasks and datasets in detail:

CoLA Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) is a binary single-
sentence classification task to determine whether a
given sentence is linguistically “acceptable”.

MRPC Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a task to predict
whether two sentences are semantically equivalent.

STS-B Semantic Textual Similarity (Cer et al.,
2017) is a task to predict how similar two sentences
are on a 1-5 scale in terms of semantic meaning.

RTE Recognizing Textual Entailment (Giampic-
colo et al., 2007), given a premise and a hypothesis,
is a task to predict whether the premise entails the
hypothesis.

MNLI The Multi-Genre Natural Language In-
ference Corpus (Williams et al., 2018) is a task to
predict whether the premise entails the hypothe-
sis, contradicts the hypothesis, or neither, given a
premise sentence and a hypothesis sentence.

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) is a binary classification task to predict
the sentiment of a given sentence.

QNLI Question Natural Language Inference
is a binary classification task constructed from
SQuAD (Rajpurkar et al., 2016), which aims to
predict whether a context sentence contains the
answer to a question sentence.

QQP The Quora Question Pairs2 dataset is a
collection of question pairs. The task is to deter-
mine whether a pair of questions are semantically
equivalent.

PTB The English Penn Treebank
(PTB) (Mikolov and Zweig, 2012) corpus is
one of the most known and used corpus for the
evaluation of models for sequence labelling, and
is also commonly used for character-level and
word-level Language Modelling.

WikiText2 and WikiText103 Compared to the
preprocessed version of Penn Treebank (PTB),
WikiText-2 (Merity et al.) is over 2 times larger
and WikiText-103 (Merity et al.) is over 110 times
larger. The WikiText datasets are also widely-used
for language modeling. As they are composed of
full articles, the datasets are well suited for models
that can take advantage of long term dependencies.

A.2 Details of Hyper-parameters

BERT and OPT models are obtained from Hug-
gingface4, and we follow the instruction (e.g.,
fine-tuneing hyper-parameters) from Huggingface
Transformer Library5 to fine-tune these models.

For initial post-training quantization of BERT-
based models, we use the ZeroQuant (Yao et al.,
2022) and set 48 groups for group-wise weight
quantization in W8A8 settings, 32 groups for
W4A8 and 16 groups for W2A8. While for OPT-
based models, we use 128 groups in all settings for
GPTQ (Frantar et al., 2022) method.

For our SAM-SGA method, we use 50 iterations
with batch size 32 and sequence length 128 for
BERT models, and we use 100 iterations with batch
size 4 and sequence length 2048 for OPT models.
We grid search the learning rate in range of {1e-6,
5r-6, 1e-5, 2e-5}. All the quantized models are
trained using a single NVIDIA A100 (40G) GPU.

A.3 More Results and Analyses

In this part, we provide more results and analyses to
further investigate the effectiveness of our method.
Specifically, we first perform the parameter analy-
ses on ηθ and ηω, and then visualize the loss curve
of adversarial training stages.

Parameter Analyses of ηθ and ηω. The factors
ηθ and ηω are two important hyper-parameters in
our Algorithm. In this study, we analyze its in-
fluence by evaluating the performance of BERT-
base (W4A8) with different η spanning {5e-6,1e-
5,2e-5,5e-5} on MNLI and QNLI tasks. Figure 5
illustrates the grid-search results. We find that
the results do not exhibit significant fluctuations
while demonstrating stability within a narrow range.
These prove the effectiveness of our method.

Visualization of loss curve of adversarial train-
ing stages. Since adversarial training usually suf-
fers from instability, some readers may concern
about the training stability of our method. To inves-
tigate it, we visualize the loss curve of adversarial
training stages in Figure 6. We can see the stu-
dent_loss decreasing and generator_loss increasing
as time varies and eventually reaching a relatively
stable plateau during the final stage. These results
indicate that the adversarial training is relatively
stable in our SAM-SGA framework.

4https://huggingface.co/models
5https://github.com/huggingface/transformers/

tree/main/examples/pytorch
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Figure 5: Parameter analyses of ηθ and ηω . We report the performance of BERT-base (W4A8) on MNLI and QNLI.

#Bits CoLA MNLI MRPC QNLI QQP RTE SST2 STSB GLUE
Method

(W-A) Mcc. Acc. Acc. Acc. Pear. Acc. Acc. Acc. Avg. ∆ (↑)

Full-precision W32A32 64.47 83.12 86.03 92.37 90.85 65.71 93.35 89.22 83.14 -

Baseline W8A8 64.80 83.33 86.76 92.27 90.79 62.45 93.46 89.12 82.87 -
QAT-GT W8A8 66.61 83.29 87.75 92.54 90.81 65.34 93.23 89.26 83.60 +0.73
QAT-Rand W8A8 66.86 83.01 86.52 92.42 90.76 65.15 93.00 89.18 83.36 +0.49
SAM-SGA W8A8 66.08 83.50 87.25 92.55 90.87 66.06 94.04 89.37 83.72 +0.85

Baseline W4A8 49.11 78.86 74.26 86.86 86.68 47.29 87.73 87.63 74.80 -
QAT-GT W4A8 50.85 79.17 75.73 90.44 87.35 56.68 92.32 88.05 77.57 +2.77
QAT-Rand W4A8 45.63 79.02 70.34 87.26 87.17 47.29 78.84 88.08 72.95 -1.85
SAM-SGA W4A8 52.97 79.19 77.70 90.69 87.20 52.71 90.48 87.72 77.33 +2.53

Table 7: Full comparison results of BERTlarge on the development set of GLUE (Wang et al., 2018) benchmark.

A.4 Convergence Analysis

Before our proof, we give some notations for brief.
ω̃t+1/2 ≜ ω̂t + βgω(ω̂t,θt) like in (Foret et al.,
2020). So the update rule for ω can be rewritten as:
ωt+1 = ω̂t − ηωgω(ω̃t+1/2,θt).

Lemma A.1. Under Assumption 4.4, we can fur-
ther get the evaluation about the approximate func-
tion:

E[g(ω,θ)] ∈ ∇f(ω,θ)

E∥g(ω,θ)−∇f(ω,θ)∥2 ≤ σ2

M

Proof. According to the definition that g(ω,θ) =
1
M

∑M
i=1G(ω,θ, ξi), and ξi is i.i.d. So the expec-

tation of the approximate function g is the same as
G that: E[g(ω,θ)] ∈ ∇f(ω,θ) and

E∥g(ω,θ)−∇f(ω,θ)∥2

= E∥ 1

M

M∑

i=1

G(ω,θ, ξi)−∇f(ω,θ)∥2

=
1

M2

M∑

i=1

E∥G(ω,θ, ξi)−∇f(ω,θ)∥2 ≤ σ2

M

Lemma A.2. We give an estimation that

E∥gω(ω̃t+1/2,θt)∥2

≤(4β2l2+2βl+2)E∥∇ωf(ω̂t,θt)∥2+(5β2l2+2)
σ2

M

Proof. We have the following decomposition:

E∥gω(ω̃t+1/2,θt)∥2

=E∥gω(ω̃t+1/2,θt)−∇ωf(ω̂t,θt)∥2

− E∥∇ωf(ω̂t,θt)∥2
+ 2E⟨gω(ω̃t+1/2,θt),∇ωf(ω̂t,θt)⟩

(10)
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#Bits CoLA MNLI MRPC QNLI QQP RTE SST2 STSB GLUE
Method

(W-A) Mcc. Acc. Acc. Acc. Pear. Acc. Acc. Acc. Avg. ∆ (↑)

Full-precision W32A32 57.51 84.54 83.33 90.30 90.72 69.68 93.23 88.13 82.18 -

Baseline W4A8 55.69 84.03 82.60 89.73 90.25 67.15 92.77 87.93 81.27 *
QAT-GT W4A8 55.94 83.85 83.58 89.85 90.32 68.23 93.12 88.03 81.62 +0.35
QAT-Rand W4A8 55.71 83.75 82.60 89.77 90.17 67.51 92.78 88.03 81.29 +0.02
SAM-SGA W4A8 56.47 83.94 83.33 89.96 90.27 67.87 93.23 88.03 81.64 +0.37

Table 8: Results of OPT-350m on the development set of GLUE (Wang et al., 2018) benchmark. Here, we only
report the results in W4A8 settings, and note that the results in the other low-bit settings are similar.

#Bits CoLA MNLI MRPC QNLI QQP RTE SST2 STSB GLUE
Method

(W-A) Mcc. Acc. Acc. Acc. Pear. Acc. Acc. Acc. Avg.

Full-precision W32A32 60.82 83.12 85.05 90.52 89.91 65.34 92.43 88.84 82.00

PTQ-vanilla W8A8 58.29 82.08 80.64 88.72 87.47 62.82 90.37 88.10 79.81
PTQ-PEG W8A8 57.04 83.15 85.29 89.95 89.36 64.62 90.71 88.34 81.06
PTQ-Adaround W8A8 61.32 83.68 84.07 90.43 89.84 66.06 92.32 88.45 82.02
SAM-SGA W8A8 63.70 82.93 85.05 90.52 89.93 67.51 92.08 88.96 82.59

PTQ-vanilla W4A8 1.88 33.91 31.62 50.06 62.97 52.71 48.62 -1.23 35.07
PTQ-PEG W4A8 0.00 37.91 31.62 50.23 63.18 47.29 73.62 11.83 39.46
PTQ-Adaround W4A8 55.67 72.59 79.90 87.13 86.49 64.62 91.28 82.21 77.49
SAM-SGA W4A8 53.01 76.64 83.58 86.12 86.16 64.26 89.68 86.94 78.30

Table 9: Results of comparisons with other zero-shot quantization methods on the development set of GLUE (Wang
et al., 2018) benchmark.

For the cross-product term, we evaluate it as
follows:

E⟨gω(ω̃t+1/2,θt),∇ωf(ω̂t,θt)⟩
= E⟨gω(ω̃t+1/2,θt)

− gω(ω̂t+β∇ωf(ω̂t,θt),θt),∇ωf(ω̂t,θt)⟩
+ E⟨gω(ω̂t + β∇ωf(ω̂t,θt),θt),∇ωf(ω̂t,θt)⟩
=E⟨∇ωf(ω̂t+β∇ωf(ω̂t,θt),θt),∇ωf(ω̂t,θt)⟩
+E⟨∇ωf(ω̃t+1/2,θt)−∇ωf(ω̂t+β∇ωf(ω̂t,θt),θt),

∇ωf(ω̂t,θt)⟩

≤1

2
E∥∇ωf (̃ωt+1/2,θt)−∇ωf(ω̂t+β∇ωf(ω̂t,θt),θt)∥2

+
1

2
E∥∇ωf(ω̂t,θt)∥2 + E∥∇ωf(ω̂t,θt)∥2

+ E⟨∇ωf(ω̂t+β∇ωf(ω̂t,θt),θt)−∇ωf(ω̂t,θt),

∇ωf(ω̂t,θt)⟩

≤ (βl +
3

2
)E∥∇ωf(ω̂t,θt)∥2 +

β2l2σ2

2M
(11)

And for the first term, we have:

E∥gω(ω̃t+1/2,θt)−∇ωf(ω̂t,θt)∥2

≤ 2E∥gω(ω̃t+1/2,θt)−∇ωf(ω̃t+1/2,θt)∥2

+ 2E∥∇ωf(ω̃t+1/2,θt)−∇ωf(ω̂t,θt)∥2

≤ 2σ2

M
+ 2l2E∥ω̃t+1/2 − ω̂t∥2

≤ 2
σ2

M
(2β2l2 + 1) + 4β2l2E∥∇ωf(ω̂t,θt)∥2

(12)

Combining the above inequalities and we can
get:

E∥gω(ω̃t+1/2,θt)∥2

≤ (4β2l2 + 2βl + 2)E∥∇ωf(ω̂t,θt)∥2

+ (5β2l2 + 2)
σ2

M

(13)
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Figure 6: Visualization of loss curve of adversarial train-
ing stages.

A.5 Strongly Concave Case
Lemma A.3. For the descending relationship of
the function Φ, we have:

E[Φ(ω̂t+1)]

≤ E[Φ(ω̂t)]

−ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))E∥∇Φ(ω̂t)∥2

+[
ηω
2
(1+

1

2
βl)+2κlη2ω(4β

2l2+2βl+2)]E[∥∇Φ(ω̂t)−

∇ωf(ω̂t,θt)∥2] + (5β2l2 + 2)
κlη2ωσ

2

M

+
βlσ2ηω

M
+ (2κl +

8

ηω
)d∆2

Proof. We get the conclusion that Φ(ω) is 2κl-
smooth according to Lemma 4.3 in (Lin et al.,
2020):

Φ(ω̂t+1)

≤Φ(ω̂t)+⟨∇Φ(ω̂t), ω̂t+1−ω̂t⟩+κl∥ω̂t+1−ω̂t∥2

≤Φ(ω̂t)+⟨∇Φ(ω̂t),ωt+1−ω̂t⟩+2κl∥ωt+1−ω̂t∥2

+⟨∇Φ(ω̂t), ω̂t+1−ωt+1⟩+ 2κld∆2

=Φ(ω̂t)−ηω⟨∇Φ(ω̂t),gω (̃ωt+1/2,θt)⟩+2κld∆2

+2κlη2ω∥gω(ω̃t+1/2,θt)∥2

+
ηω
32

∥∇Φ(ωt)∥2 +
8

ηω
d∆2

(14)

Taking expectation conditioned on (ωt,θt) and
we get:

E[Φ(ω̂t+1)|ωt,θt]

≤ Φ(ω̂t)− ηω⟨∇Φ(ω̂t),∇ωf(ω̃t+1/2,θt)⟩
+ 2κlη2ωE[∥gω(ω̃t+1/2,θt)∥2|ωt,θt]

+
ηω
32

E∥∇Φ(ω̂t)∥2 + (2κl +
8

ηω
)d∆2

(15)
We again take expectations on both sides of the

above inequality so we have:

E[Φ(ω̂t+1)]

≤ E[Φ(ω̂t)]− ηωE⟨∇Φ(ω̂t),∇ωf(ω̃t+1/2,θt)⟩
+2κlη2ωE∥gω(ω̃t+1/2,θt)∥2+

ηω
32

E∥∇Φ(ω̂t)∥2

+ (2κl +
8

ηω
)d∆2

(16)
For the second term, we decompose it as follows:

E⟨∇Φ(ω̂t),∇ωf(ω̃t+1/2,θt)⟩
= E⟨∇Φ(ω̂t),

∇ωf(ω̂t,θt)+∇ωf(ω̃t+1/2,θt)−∇ωf(ω̂t,θt)⟩
≥ E⟨∇Φ(ω̂t),∇ωf(ω̂t,θt)⟩
−E∥∇Φ(ω̂t)∥∥∇ωf(ω̃t+1/2,θt)−∇ωf(ω̂t,θt)∥
≥E⟨∇Φ(ω̂t),∇ωf(ω̂t,θt)⟩−βlE∥∇Φ(ω̂t)∥∥gω(ω̂t,θy)∥
≥ E⟨∇Φ(ω̂t),∇Φ(ω̂t)+∇ωf(ω̂t,θt)−∇Φ(ω̂t)⟩
−βlE∥∇Φ(ω̂t)∥(∥∇ωf(ω̂t,θt)∥+∥gω(ω̂t,θt)−∇ωf(ω̂t,θt)∥)

≥ E∥∇Φ(ω̂t)∥2 −
1

2
E∥∇Φ(ω̂t)∥2

− 1

2
E∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥2

−βlE∥∇Φ(ω̂t)∥∥∇ωf(ω̂t,θt)∥−
1

2
βlE∥∇Φ(ω̂t)∥2

− 1

2
βlE∥gω(ω̂t,θt)−∇ωf(ω̂t,θt)∥2

≥ 1−βl
2

E∥∇Φ(ω̂t)∥2−
1

2
E∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥2

− βlE∥∇Φ(ω̂t)∥∥∇ωf(ω̂t,θt)∥ −
βlσ2

2M
(17)

We continue estimating the last term in above
inequality (17):

E∥∇Φ(ω̂t)∥∥∇ωf(ω̂t,θt)∥
=E∥∇Φ(ω̂t)∥∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)+∇Φ(ω̂t)∥
≤E∥∇Φ(ω̂t)∥2+E∥∇Φ(ω̂t)∥∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥
(i)

≤E∥∇Φ(ω̂t)∥2+E∥∇Φ(ω̂t)∥2+
1

4
E∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥2

(18)
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where the last inequality (i) is due to Young’s in-
equality.

Combining inequality (17) with (18), we can
get:

E⟨∇Φ(ω̂t),∇ωf(ω̃t+1/2,θt)⟩

≥1−βl
2

E∥∇Φ(ω̂t)∥2−
1

2
E∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥2

−2βlE∥∇Φ(ω̂t)∥2−
βl

4
E∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥2−

βlσ2

2M

=
1

2
(1−5βl)E∥∇Φ(ω̂t)∥2−

1

2
(1+

1

2
βl)E[∥∇Φ(ω̂t)−

∇ωf(ω̂t,θt)∥2]−
βlσ2

2M
(19)

Finally, we combine inequality (16) with Lemma
A.2 and inequality (19):

E[Φ(ω̂t+1)]

≤ E[Φ(ω̂t)]−
ηω
2
(1− 5βl)E∥∇Φ(ω̂t)∥2

+
ηω
2
(1 +

1

2
βl)E∥∇Φ(ω̂t)−∇ωf(ω̂t,θt)∥2

+ 2κlη2ω((4β
2l2 + 2βl + 2)E∥∇ωf(ω̂t,θt)∥2

+ (5β2l2 + 2)
σ2

M
) +

βlσ2ηω
M

+
ηω
32

E∥∇Φ(ω̂t)∥2 + (2κl +
8

ηω
)d∆2

(i)

≤ E[Φ(ω̂t)]

−ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))E∥∇Φ(ω̂t)∥2

+[
ηω
2
(1+

1

2
βl)+2κlη2ω(4β

2l2+2βl+2)]E[∥∇Φ(ω̂t)−

∇ωf(ω̂t,θt)∥2] + (5β2l2 + 2)
κlη2ωσ

2

M

+
βlσ2ηω

M
+ (2κl +

8

ηω
)d∆2

(20)
where the last inequality (i) uses the Cauchy-

Schwarz inequality that ∥∇ωf(ω̂t,θt)∥2 ≤
2∥∇Φ(ω̂t)∥2+2∥∇ωf(ω̂t,θt)−∇Φ(ω̂t)∥2.

Lemma A.4. When we require the learning rate
satisfy: ηω(2βl+1) ≤ 1

16κ2l
and ηθ = 1

2l , we have
the evaluation about the error term:

E∥θ∗(ω̂t+1)− θt+1∥2

≤ λt+1D2

+4(4κ−1)κ2η2ω(4β2l2+2βl+2)
t∑

j=0

λt−jE∥∇Φ(ω̂j)∥2

+ ((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)

σ2

M

t∑

j=0

λj

+ 2(4κ− 1)κ2d∆2
t∑

j=0

λj

where λ = 1 − 1
4κ + 4(4κ − 1)κ2l2η2ω(4β

2l2 +
2βl + 2).
Proof.

E∥θ∗(ω̂t+1)− θt+1∥2

= E∥θ∗(ω̂t+1)− θ∗(ω̂t) + θt+1 − θ∗(ω̂t)∥2

≤ (4κ− 1)E∥θ∗(ω̂t+1)− θ∗(ω̂t)∥2

+ (1 +
1

4κ− 2
)E∥θt+1 − θ∗(ω̂t)∥2

(21)
where the inequality is due to Young’s inequality.

We then continue to decompose the second term
as follows according to the update rule and take
expectaion:

E∥θt+1 − θ∗(ω̂t)∥2

= E∥PΘ(θt + ηθgθ(ω̂t,θt))− θ∗(ω̂t)∥2

≤ E∥θt − θ∗(ω̂t)∥2 + η2θE∥gθ(ω̂t,θt)∥2
+ 2ηθE⟨θt − θ∗(ω̂t), gθ(ω̂t,θt)⟩

≤ E∥θt − θ∗(ω̂t)∥2 + η2θE∥∇θf(ω̂t,θt)∥2

+ 2ηθE⟨θt − θ∗(ω̂t),∇θf(ω̂t,θt)⟩+
η2θσ

2

M
(22)

Using the property of µ-strong concavity of func-
tion f on variable θ, we can get:

f(ω̂t,θt)−f(ω̂t,θ
∗(ω̂t))−⟨θt−θ∗(ω̂t),∇θf(ω̂t,θt)⟩

≥ µ

2
∥θ∗(ω̂t)− θt∥2

(23)
So the original inequality (22) above can be

turned into:

E∥θt+1 − θ∗(ω̂t)∥2

≤(1−µηθ)E∥θt−θ∗(ω̂t)∥2+η2θE∥∇θf(ω̂t,θt)∥2

+ 2ηθE[f(ω̂t,θt)− f(ω̂t,θ
∗(ω̂t))] +

η2θσ
2

M
(24)

Since f(ω, ·) is l-smooth and µ-strongly con-
cave, we have:

f(ω̂t,θt)−f(ω̂t,θ
∗(ω̂t))+

1

2l
∥∇θf(ω̂t,θt)−∇θf(ω̂t,θ

∗(ω̂t))∥2

≤ ⟨∇θf(ω̂t,θ
∗(ω̂t)),θt − θ∗(ω̂t)⟩

(25)
On the other hand, we can get the following

inequality according to optimal condition:

⟨∇θf(ω̂t,θ
∗(ω̂t)),θ − θ∗(ω̂t)⟩ ≤ 0; ∀θ ∈ Θ

(26)
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Combining above two inequalities (25)(26), we
have:

f(ω̂t,θt)− f(ω̂t,θ
∗(ω̂t))

≤ − 1

2l
∥∇θf(ω̂t,θt)−∇θf(ω̂t,θ

∗(ω̂t))∥2
(27)

Putting pieces (24) and (27) together and on the
occasion that ηθ = 1

2l we can get:

E∥θt+1 − θ∗(ω̂t)∥2

≤ (1− 1

2κ
)E∥θt − θ∗(ω̂t)∥2 +

η2θσ
2

M

(28)

Then we return to the inequality (21), we can
get:

E∥θ∗(ω̂t+1)− θt+1∥2

≤ (4κ− 1)E∥θ∗(ω̂t+1)− θ∗(ω̂t)∥2

+ (1 +
1

4κ− 2
)(1− 1

2κ
)E∥θt − θ∗(ω̂t)∥2

+ (1 +
1

4κ− 2
)
η2θσ

2

M
(i)

≤ (1− 1

4κ
)E∥θ∗(ω̂t)− θt∥2

+ (4κ− 1)κ2E∥ω̂t+1 − ω̂t∥2 +
(4κ− 1)η2θσ

2

(4κ− 2)M

(ii)

≤ (1− 1

4κ
)E∥θ∗(ωt)− θt∥2

+2(4κ−1)κ2η2ω((4β
2l2+2βl+2)E∥∇ωf(ω̂t,θt)∥2

+ (5β2l2 + 2)
σ2

M
)+

(4κ− 1)η2θσ
2

(4κ− 2)M

+ 2(4κ− 1)κ2d∆2

(iii)

≤ [1− 1

4κ
+ 4(4κ−1)κ2l2η2ω(4β

2l2+2βl + 2)]

· E∥θ∗(ω̂t)− θt∥2

+ 4(4κ−1)κ2η2ω(4β
2l2 + 2βl + 2)E∥∇Φ(ω̂t)∥2

+((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)

σ2

M

+ 2(4κ− 1)κ2d∆2

(29)
where inequality (i) is due to the κ-Lipschitz of

θ∗(·) according to the Lemma 4.3 in (Lin et al.,
2020); inequality (ii) follows from the decomposi-
tion that ω̂t+1 − ω̂t = ω̂t+1 − ωt+1 + ωt+1 − ω̂t

and the update rule of parameter ω, together with
Lemma 4.1,A.2; finally inequality (iii) is decom-
posed by ∥∇ωf(ω̂t,θt)∥2 ≤ 2∥∇ωf(ω̂t,θt) −
∇Φ(ω̂t)∥2+2∥∇Φ(ω̂t)∥2 ≤ 2l2∥θ∗(ω̂t)−θt∥2+
2∥∇Φ(ω̂t)∥2(the second inequality here uses the

property that ∇Φ(·) = ∇ωf(·,θ∗(·)) which we
refer to Lemma 4.3 in (Lin et al., 2020)).

We then simplify the recurrence relation of
∥θ∗(ω̂t+1)− θt+1∥2. We denote the coefficient of
E∥θ∗(ω̂t)− θt∥2 as λ, i.g. λ = 1− 1

4κ + 4(4κ−
1)κ2l2η2ω(4β

2l2 + 2βl + 2)

Then we repeat the recurrence relation and we
can get:

E∥θ∗(ω̂t+1)− θt+1∥2

≤ λE∥θ∗(ω̂t)− θt∥2

+4(4κ−1)κ2η2ω(4β
2l2+2βl+2)E∥∇Φ(ω̂t)∥2

+((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)

σ2

M

+ 2(4κ− 1)κ2d∆2

≤ λ2E∥θ∗(ω̂t−1)− θt−1∥2

+ 4(4κ− 1)κ2η2ω(4β
2l2 + 2βl + 2)

· [λE∥∇Φ(ω̂t−1)∥2 + E∥∇Φ(ω̂t)∥2]

+ ((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)
σ2

M
(λ+1)

+ 2(4κ− 1)κ2d∆2(λ+ 1)

≤ ...

≤ λt+1E∥θ∗(ω̂0)− θ0∥2

+4(4κ−1)κ2η2ω(4β2l2+2βl+2)

t∑

j=0

λt−jE∥∇Φ(ω̂j)∥2

+ ((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)

σ2

M

t∑

j=0

λj

+ 2(4κ− 1)κ2d∆2
t∑

j=0

λj

≤ λt+1D2

+4(4κ−1)κ2η2ω(4β2l2+2βl+2)

t∑

j=0

λt−jE∥∇Φ(ω̂j)∥2

+ ((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)

σ2

M

t∑

j=0

λj

+ 2(4κ− 1)κ2d∆2
t∑

j=0

λj

(30)
where the last inequality is due to Assumption

4.3.

Theorem A.1. Under Assumption 4.1,4.2,4.3,4.4
and restrictions ηω(2βl + 1) ≤ 1

16κ2l
and ηθ =
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1
2l ,κ ≥ 2, βl ≤ 1

140 , when f is µ-strongly-concave
the parameter θ, we have:

1

T + 1

T∑

t=0

E∥∇Φ(ω̂t)∥2

≤ E[Φ(ω̂0)]− E[Φ(ω̂T+1)]

(T + 1)ηω96
+

576κl2D2

7(T + 1)

+ (720κ4η2ωl
2 + 210κlηω)

σ2

M
+ (96κ+

1

2
)
σ2

M

+ (480κ2l2 +
192κl

ηω
+

768

η2ω
)d∆2

(31)

Proof. We then back to Lemma A.3 and try to make
use of Lemma A.4:

E[Φ(ω̂t+1)]

≤ E[Φ(ω̂t)]

−ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))E∥∇Φ(ω̂t)∥2

+l2[
ηω
2
(1+

1

2
βl)+2κlη2ω(4β

2l2+2βl+2)]E[∥θ∗(ω̂t)−

θt∥2] + (5β2l2 + 2)
κlη2ωσ

2

M

+
βlσ2ηω

M
+ (2κl +

8

ηω
)d∆2

where we use the property that ∇Φ(·) =
∇ωf(·,θ∗(·)).

Then we use Lemma A.4, we can get:

E[Φ(ω̂t+1)]

≤ E[Φ(ω̂t)]

− ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))E∥∇Φ(ω̂t)∥2

+
ηω
2
l2[1+

1

2
βl+4κlηω(4β

2l2+2βl+2)]λtD2

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

·4(4κ−1)κ2η2ω(4β2l2+2βl+2)

t−1∑

j=0

λt−1−jE∥∇Φ(ω̂j)∥2

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

·((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1

4κ−2
η2θ)

σ2

M

t−1∑

j=0

λj

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

+ 2(4κ− 1)κ2d∆2
t∑

j=0

λj

+ (5β2l2+2)
κlη2ωσ

2

M
+
βlσ2ηω

M
+(2κl+

8

ηω
)d∆2

(32)

We then repeat the inequality (32) above from
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t = T to t = 0, we have:

E[Φ(ω̂T+1)]

≤ E[Φ(ω̂0)]

−ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))

T∑

t=0

E∥∇Φ(ω̂t)∥2

+
ηω
2
l2[1+

1

2
βl+4κlηω(4β

2l2+2βl+2)]D2
T∑

t=0

λt

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

· 4(4κ− 1)κ2η2ω(4β
2l2 + 2βl + 2)

·
T−1∑

t=0

t−1∑

j=0

λt−1−jE∥∇Φ(ω̂j)∥2

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

· ((4κ− 1)κ2η2ω(5β
2l2 + 2) +

4κ− 1

4κ− 2
η2θ)

· σ
2

M

T−1∑

t=0

t−1∑

j=0

λj

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

· 2(4κ− 1)κ2d∆2
T−1∑

t=0

t−1∑

j=0

λj

+((5β2l2+2)
κlη2ωσ

2

M
+
βlσ2ηω
M

+(2κl+
8

ηω
)d∆2)(T+1)

(33)
Since the parameters satisfy: ηω(2βl + 1) ≤
1

16κ2l
, we can evaluate that λ = 1 − 1

4κ +
2(4κ − 1)κ2l2η2ω(4β

2l2 + 2βl + 2) ≤ 1 − 1
4κ +

1
16κ = 1 − 3

16κ . Therefore the summation can be
bounded:

∑T
t=0 λ

t ≤ ∑T
t=0(1− 3

16κ)
t ≤ 16κ

3 .
So the above inequality can be turned to:

E[Φ(ω̂T+1)]

≤ E[Φ(ω̂0)]

−ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))

T∑

t=0

E∥∇Φ(ω̂t)∥2

+
ηω
2
l2[1+

1

2
βl+4κlηω(4β

2l2+2βl+2)]D2 16κ

3

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

·4(4κ−1)κ2η2ω(4β2l2+2βl+2)
16κ

3

T∑

t=0

E∥∇Φ(ω̂t)∥2

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

·((4κ−1)κ2η2ω(5β2l2+2)+
4κ−1
4κ−2η

2
θ)
σ2

M

16κ

3
(T+1)

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

· 2(4κ− 1)κ2d∆2 16κ

3
(T+1)

+((5β2l2+2)
κlη2ωσ

2

M
+
βlσ2ηω
M

+(2κl+
8

ηω
)d∆2)(T+1)

≤ E[Φ(ω̂0)]

−ηω
2
(
15

16
−5βl−4κlηω(4β2l2+2βl+2))

T∑

t=0

E∥∇Φ(ω̂t)∥2

+
ηω
2
l2[1+

1

2
βl+4κlηω(4β

2l2+2βl+2)]D2 16κ

3

+
ηω
6
[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

·
T∑

t=0

E∥∇Φ(ω̂t)∥2

+
ηω
2
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

· 2(4κ− 1)κ2d∆2 16κ

3
(T+1)

+((5β2l2+2)
κlη2ωσ

2

M
+
βlσ2ηω
M

+(2κl+
8

ηω
)d∆2)(T+1)

≤ E[Φ(ω̂0)]

− ηω
6
(
13

16
−16βl−20κlηω(4β2l2+2βl+2))

·
T∑

t=0

E∥∇Φ(ω̂t)∥2

+
8κηω
3

l2D2[1+
1

2
βl+4κlηω(4β

2l2+2βl+2)]

+
8κηω
3

l2[1 +
1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

·((4κ−1)κ2η2ω(5β
2l2+2)+

4κ−1

4κ−2
η2θ)

σ2

M
(T+1)

+
16κηω

3
l2[1 +

1

2
βl + 4κlηω(4β

2l2 + 2βl + 2)]

· (4κ− 1)κ2d∆2(T+1)

+((5β2l2+2)
κlη2ωσ

2

M
+
βlσ2ηω
M

+(2κl+
8

ηω
)d∆2)(T+1)

≤ E[Φ(ω̂0)]−
ηω
96

T∑

t=0

E∥∇Φ(ω̂t)∥2+
6

7
κηωl

2D2

+(
360

49
κ4η3ωl

2+κηω)
σ2

M
(T+1)+

240

49
κ2ηωl

2d∆2(T+1)

+(
15

7

κlη2ωσ
2

M
+
ηω
140

σ2

M
+(2κl+

8

ηω
)d∆2)(T+1)

on the condition that: κ ≥ 2, βl ≤ 1
140 So we

can get the average sum of E∥∇Φ(ω̂t)∥2 bounded
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by:

1

T + 1

T∑

t=0

E∥∇Φ(ω̂t)∥2

≤ E[Φ(ω̂0)]− E[Φ(ω̂T+1)]

(T + 1)ηω96
+

576κl2D2

7(T + 1)

+ (720κ4η2ωl
2 + 210κlηω)

σ2

M
+ (96κ+

1

2
)
σ2

M

+ (480κ2l2 +
192κl

ηω
+

768

η2ω
)d∆2

(34)

So the bound for the algorithm to get an ϵ-
stationary point is

O(
κ2∆Φ + κD2

ϵ2
max{1, κσ

2

ϵ2
})

A.6 PL Condition

First we construct a potential function in the same
way as (Yang et al., 2022):

Vt = V (ω̂t,θt) = Φ(ω̂t) + α[Φ(ω̂t)− f(ω̂t,θt)]

where α > 0 is a preset parameter. Then we come
to evaluate the descending relationship of the po-
tential function Vt.

Theorem A.2. Under Assumption 4.1,4.2,4.3,4.4
and restrictions α = 1

16 , βl ≤ 1
16 , ηω(2βl +

1)2κl ≤ 1
64 , κ2ηωl ≤ 1

128 and ηθ = 64κ2ηω,
when f satisfies µ-PL condition on parameter θ,
we have:

1

T

T−1∑

t=0

E∥∇Φ(ω̂t)∥2

≤ O(
Φ(ω̂0)− Φ∗

ηωT
)+O(

ηωκ
4σ2

M
)+O((ηθ+

1

ηω
)d∆2)

(35)

Proof. We get the conclusion that Φ(ω) is L-
smooth according to Lemma A.5 in (Nouiehed
et al., 2019), where L = l + lκ

2 . And we can
get the descending relationship of E[Φ(ω̂t)] in the

same way as Lemma A.3:

E[Φ(ω̂t+1)]

≤ E[Φ(ω̂t)]

−ηω
2
(
15

16
−5βl−2Lηω(4β2l2+2βl+2))E∥∇Φ(ω̂t)∥2

+[
ηω
2
(1+

1

2
βl)+Lη2ω(4β

2l2+2βl+2)]E[∥∇Φ(ω̂t)−

∇ωf(ω̂t,θt)∥2] + (5β2l2 + 2)
Lη2ωσ

2

2M

+
βlσ2ηω

M
+ (L+

8

ηω
)d∆2

(36)
And then using the smoothness of the variables

ω and θ respectively, we can get:

f(ω̂t+1,θt)− f(ω̂t,θt)

≥ ⟨∇ωf(ω̂t,θt), ω̂t+1−ω̂t⟩−
l

2
∥ω̂t+1−ω̂t∥2

f(ω̂t+1,θt+1)− f(ω̂t+1,θt)

≥ ⟨∇θf(ω̂t+1,θt),θt+1−θt⟩ −
l

2
∥θt+1−θt∥2

Taking expectations respectively we can get:

E[f(ω̂t+1,θt)]

≥ E[f(ω̂t,θt)]−ηωE⟨∇ωf(ω̂t,θt),∇ωf (̃ωt+1/2,θt)⟩
− lη2ωE∥gω(ω̃t+1/2,θt)∥2−2ld∆2

− ηω
32

E∥∇ωf(ω̂t,θt)∥2 −
8

ηω
d∆2

≥E[f(ω̂t,θt)]−ηωE∥∇ωf(ω̂t,θt)∥2−
ηω
2
E∥∇ωf(ω̂t,θt)∥2

− ηω
2
E∥∇ωf(ω̃t+1/2,θt)−∇ωf(ω̂t,θt)∥2

− lη2ωE∥gω(ω̃t+1/2,θt)∥2 − 2ld∆2

− ηω
32

E∥∇ωf(ω̂t,θt)∥2 −
8

ηω
d∆2

≥ E[f(ω̂t,θt)]−
49ηω
32

E∥∇ωf(ω̂t,θt)∥2

− l2β2ηω
2

E∥gω(ω̂t,θt)∥2−lη2ωE∥gω (̃ωt+1/2,θt)∥2

− (2l +
8

ηω
)d∆2

≥E[f(ω̂t,θt)]−(
49ηω
32

+
l2β2ηω

2
+lη2ω(4β

2l2+2βl+2))

·E∥∇ωf(ω̂t,θt)∥2−(
l2β2ηω

2
+lη2ω(5β

2l2+2))
σ2

M

− (2l +
8

ηω
)d∆2

(37)
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E[f(ω̂t+1,θt+1)]

≥E[f(ω̂t+1,θt)]+ηθE⟨∇θf(ω̂t+1,θt),∇θf(ω̂t,θt)⟩

− lη2θ
2

E∥gθ(ω̂t,θt)∥2

≥ E[f(ω̂t+1,θt)] +
ηθ
2
E∥∇θf(ω̂t,θt)∥2

− ηθ
2
E∥∇θf(ω̂t+1,θt)−∇θf(ω̂t,θt)∥2

− lη2θ
2

E∥gθ(ω̂t,θt)∥2

≥ E[f(ω̂t+1,θt)] +
ηθ
2
E∥∇θf(ω̂t,θt)∥2

−l2η2ωηθE∥gω(ω̃t+1/2,θt)∥2−
lη2θ
2

E∥gθ(ω̂t,θt)∥2

− l2ηθd∆
2

≥ E[f(ω̂t+1,θt)]+(
ηθ
2
− lη2θ

2
)E∥∇θf(ω̂t,θt)∥2

− (l2η2ωηθ(4β
2l2 + 2βl + 2))E∥∇ωf(ω̂t,θt)∥2

− (
lη2θ
2
+l2η2ωηθ(5β

2l2 + 2))
σ2

M
− l2ηθd∆

2

(38)

Combining the above inequalities we can get the
descending relationship of the potential function:

E[Vt+1]− E[Vt]

= (1 + α)(E[Φ(ω̂t+1)]− E[Φ(ω̂t)])

− α(E[f(ω̂t+1,θt+1)]− E[f(ω̂t,θt)])

≤(1+α){−ηω
2
(
15

16
−5βl−2Lηω(4β2l2+2βl+2))

·E∥∇Φ(ω̂t)∥2+[
ηω
2
(1+

1

2
βl)+Lη2ω(4β

2l2+2βl+2)]

·E[∥∇Φ(ω̂t)−∇ωf(ω̂t,θt)∥2]+(5β2l2+2)
Lη2ωσ

2

2M

+
βlσ2ηω

M
+ (L+

8

ηω
)d∆2}

−α{−(
49ηω
32

+
l2β2ηω

2
+lη2ω(4β

2l2+2βl+2))

·E∥∇ωf(ω̂t,θt)∥2 −(
l2β2ηω

2
+lη2ω(5β

2l2+2))
σ2

M

− (2l +
8

ηω
)d∆2

+ (
ηθ
2

− lη2θ
2

)E∥∇θf(ω̂t,θt)∥2

− (l2η2ωηθ(4β
2l2 + 2βl + 2))E∥∇ωf(ω̂t,θt)∥2

− (
lη2θ
2

+ l2η2ωηθ(5β
2l2 + 2))

σ2

M
−l2ηθd∆

2}

=−ηω
2
(1+α)(

15

16
−5βl−2Lηω(4β2l2+2βl+2))

·E∥∇Φ(ω̂t)∥2+(1+α)(
ηω
2
(1+

1

2
βl)+Lη2ω(4β

2l2+2βl+2))

· E∥∇Φ(ω̂t)−∇ωf(ω̂t,θt)∥2

+α[(
49ηω
32

+
l2β2ηω

2
+lη2ω(4β

2l2+2βl+2))

+ l2η2ωηθ(4β
2l2+2βl+2)]E∥∇ωf(ω̂t,θt)∥2

− α(
ηθ
2
− lη2θ

2
)E∥∇θf(ω̂t,θt)∥2

+[(1+α)(5β2l2+2)
Lη2ω
2

+α(
l2β2ηω

2
+lη2ω(5β

2l2+2))

+ α(
lη2θ
2

+
l2η2ωηθ

2
(5β2l2 + 2))]

σ2

M

+ ((1+α)(L+
8

ηω
)+α(2l +

8

ηω
)+αl2ηθ)d∆

2

≤−{ηω
2
(1+α)(

15

16
−5βl−2Lηω(4β

2l2+2βl+2))

− 2α[(
49ηω
32

+
l2β2ηω

2
+ lη2ω(4β

2l2 + 2βl + 2))

+ l2η2ωηθ(4β
2l2 + 2βl + 2)]}E∥∇Φ(ω̂t)∥2

+{(1+α)(
ηω
2
(1+

1

2
βl)+Lη2ω(4β

2l2+2βl+2))

+ 2α[(
49ηω
32

+
l2β2ηω

2
+ lη2ω(4β

2l2 + 2βl + 2))

+l2η2ωηθ(4β
2l2+2βl+2)]}E∥∇Φ(ω̂t)−∇ωf(ω̂t,θt)∥2

−α(
ηθ
2
−lη2θ

2
)E∥∇θf(ω̂t,θt)∥2+[(1+α)(5β2l2+2)

Lη2ω
2

+ α(
l2β2ηω

2
+ lη2ω(5β

2l2 + 2))

+ α(
lη2θ
2

+
l2η2ωηθ

2
(5β2l2 + 2))]

σ2

M

+ ((1+α)(L+
8

ηω
)+α(2l +

8

ηω
)+αl2ηθ)d∆

2

Since we have the following property according
to Lemma:

∥∇Φ(ω̂t)−∇ωf(ω̂t,θt)∥ ≤ l∥θ∗(ω̂t)− θt∥
≤ κ∥∇θf(ω̂t,θt)∥

So we can further the above inequality as fol-
lows:

E[Vt+1]− E[Vt]

≤−{ηω
2
(1+α)(

15

16
−5βl−2Lηω(4β

2l2+2βl+2))

− 2α[(
49ηω
32

+
l2β2ηω

2
+ lη2ω(4β

2l2 + 2βl + 2))

+ l2η2ωηθ(4β
2l2 + 2βl + 2)]}E∥∇Φ(ω̂t)∥2

− {α(ηθ
2

− lη2θ
2

)− κ2[(1 + α)(
ηω
2
(1 +

1

2
βl)

+ Lη2ω(4β
2l2 + 2βl + 2))+2α[(

49ηω
32

+
l2β2ηω

2
+ lη2ω(4β

2l2+2βl+2))
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+l2η2ωηθ(2β
2l2+βl+1)]]}

· E∥∇θf(ω̂t,θt)∥2 + [(1 + α)(5β2l2 + 2)
Lη2ω
2

+ α(
l2β2ηω

2
+ lη2ω(5β

2l2 + 2))

+ α(
lη2θ
2

+
l2η2ωηθ

2
(5β2l2 + 2))]

σ2

M

+ ((1+α)(L+
8

ηω
)+α(2l +

8

ηω
)+αl2ηθ)d∆

2

Then we require the parameters satisfy: α = 1
16 ,

βl ≤ 1
16 , ηω(2βl + 1)2κl ≤ 1

64 , κ2ηωl ≤ 1
128 and

ηθ = 64κ2ηω
So the inequality can be further simplified as:

E[Vt+1]− E[Vt]

≤ −ηω
16

E∥∇Φ(ω̂t)∥2 −
7

32
ηωκ

2E∥∇θf(ω̂t,θt)∥2

+
ηωκ

4

64

σ2

M
+ (

l2ηθ
16

+
17

ηω
)d∆2

(39)
Telescoping the above inequality we can get:

1

T

T−1∑

t=0

E∥∇Φ(ω̂t)∥2

≤ O(
Φ(ω̂0)− Φ∗

ηωT
)+O(

ηωκ
4σ2

M
)+O((ηθ+

1

ηω
)d∆2)

(40)
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