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Abstract

Biases in the dataset often enable the model
to achieve high performance on in-distribution
data, while poorly performing on out-of-
distribution data. To mitigate the detrimental
effect of the bias on the networks, previous
works have proposed debiasing methods that
down-weight the biased examples identified by
an auxiliary model, which is trained with ex-
plicit bias labels. However, finding a type of
bias in datasets is a costly process. Therefore,
recent studies have attempted to make the aux-
iliary model biased without the guidance (or
annotation) of bias labels, by constraining the
model’s training environment or the capabil-
ity of the model itself. Despite the promising
debiasing results of recent works, the multi-
class learning objective, which has been naively
used to train the auxiliary model, may harm the
bias mitigation effect due to its regularization
effect and competitive nature across classes.
As an alternative, we propose a new debiasing
framework that introduces binary classifiers be-
tween the auxiliary model and the main model,
coined bias experts. Specifically, each bias ex-
pert is trained on a binary classification task
derived from the multi-class classification task
via the One-vs-Rest approach. Experimental
results demonstrate that our proposed strategy
improves the bias identification ability of the
auxiliary model. Consequently, our debiased
model consistently outperforms the state-of-
the-art on various challenge datasets.!

1 Introduction

Deep neural networks achieve state-of-the-art per-

formances on a variety of multi-class classifica-

tion tasks, including image classification (He et al.,

2016) and natural language inference (Devlin et al.,

2019). However, they are often biased towards spu-

rious correlations between inputs and labels, which
*These authors contributed equally to this work.

'Our code is available at https://github.com/jej127/
Bias-Experts.
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Figure 1: Comparison between (a) existing debiasing
methods and (b) our proposed framework. (a): identify
biased examples by using an auxiliary model trained
with the multi-class learning objective, the same as the
main model. (b): introduce intermediate binary classi-
fiers, called bias experts, between the auxiliary model
and the main model.
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work well on a specific data distribution (Ribeiro
et al., 2016; Zhu et al., 2017; Gururangan et al.,
2018; McCoy et al., 2019). For instance, in nat-
ural language inference (NLI) tasks, neural net-
works are more likely to predict examples con-
taining negation words as the contradiction class
(Gururangan et al., 2018; Poliak et al., 2018). Ulti-
mately, this unintended usage of bias results in poor
model performance on out-of-distribution data or
bias-conflicting? examples, where spurious corre-
lations do not exist. Therefore, it is important to
develop debiasing methods.

Previous works have addressed the issue by guid-
ing the main model to down-weight biased exam-
ples during training, which are identified by aux-
iliary models. The auxiliary models are models
that intentionally learn bias features by utilizing hu-
man supervision (Kim et al., 2019; Schuster et al.,
2019; Clark et al., 2019; Mahabadi et al., 2020) or

*Bias-conflicting examples indicate examples that cannot
be correctly predicted by solely relying on biases.

11053

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 11053—-11066
December 6-10, 2023 ©2023 Association for Computational Linguistics


https://github.com/jej127/Bias-Experts
https://github.com/jej127/Bias-Experts

prior knowledge about dataset biases (Bahng et al.,
2020). However, acquiring human supervision or
prior knowledge about biases in myriad datasets is
a dauntingly laborious and costly process. Recent
studies have therefore shifted towards training the
auxiliary models without human guidance (or bias
labels). These studies attempt to make the auxil-
iary model biased by limiting the model capacity
(Sanh et al., 2021), training for fewer epochs (Liu
et al., 2021), restricting accessible data (Utama
et al., 2020b; Kim et al., 2022), or using GCE loss
(Nam et al., 2020).

Despite promising results, they still have room
for further improvement. Specifically, the multi-
class learning objective (e.g., softmax cross-
entropy), which previous works have naively used
to train the auxiliary model, may harm the bias iden-
tification ability of the model from a few aspects:
a regularization effect and a competitive nature
across classes. Feldman et al. (2019) have demon-
strated that the multi-class learning objective has a
regularization effect that prevents the model from
overfitting on the training data. This is generally
desirable for training the model, but not for train-
ing the auxiliary model that needs to be overfitted
to bias features. Since the softmax normalization
results in the sum of all the class logits equal to one,
lowering the prediction confidence in one class nec-
essarily increases the prediction confidence in the
other classes (Wen et al., 2022). It can easily lead
to overconfident predictions and may cause the aux-
iliary model to misidentify unbiased examples as
biased examples.

To address the aforementioned problem, we pro-
pose a novel debiasing framework that introduces
bias experts between the auxiliary model and the
main model. As shown in Figure 1, the bias expert
is a binary classifier that identifies biased exam-
ples within a specific class rather than multiple
classes. In practice, we first cast the multi-class
classification task into multiple individual binary
classification tasks via the One-vs-Rest approach
(Rifkin and Klautau, 2004), which encourages the
model to individually learn the bias attributes of the
target class without the influence of other classes.
In addition, our framework motivated by Nam et al.
(2020) highlights biased examples of target classes
that the auxiliary model deems "easy", allowing
bias experts to focus more on learning the bias at-
tributes of the class in charge. Finally, we train the
main model by reweighting the loss of the exam-

ples with bias experts.

We validate the effectiveness of the proposed
framework on various challenging datasets. Experi-
ment results show that our framework significantly
improves performance on all datasets. The contri-
butions of this paper are as follows:

* We show that the multi-class learning objec-
tive may harm the bias identification ability of
the auxiliary model.

* We propose a novel debiasing approach
based on bias experts to improve the out-of-
distribution performance of existing debiasing
methods.

* Through various empirical evaluations, we
show that introducing bias experts improves
debiasing performance.

2 Motivation

In this section, we describe our empirical obser-
vations on the existing debiasing approach. These
observations serve as intuitions for designing and
understanding our bias experts. We first provide
a description of the experimental setup in Section
2.1. Then we provide our empirical observations in
Section 2.2.

2.1 Setup

Consider a training dataset D of a task where each
input x € X is classified to a label y € ). Then
each input x can be represented by a set of at-
tributes A, = {ai,...,ar}. The set A, includes
target attributes a; € 7', which are expected to be
learned to perform the target task. It also includes
bias attributes ap € B, which have a high correla-
tion with y within a data distribution D, but such
correlation does not hold in other distributions.

In debiasing methods, the auxiliary model as-
signs different weights to biased examples and bias-
conflicting examples. These works classify exam-
ples that can be correctly predicted based solely
on ap, as biased examples and regard examples that
do not fall into this category as bias-conflicting
examples. To achieve this, an intentionally biased
classifier f : X — ) is employed as the aux-
iliary model. They identify biased examples by
f», which primarily rely on bias attributes ap, and
down-weight them when training the main model
fa : X — Y. Namely, they consider examples that
are correctly predicted by f; as biased examples,
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Figure 2: The process of a neural network learning on the biased datasets. For each dataset, the left and the right
plots correspond to the result on biased and bias-conflicting example groups. Confidence refers to the average
prediction probability of the correct class on the examples.

and down-weight their importance when training
the main model.

2.2 Observations

In the aforementioned setup, we observe the mod-
els trained with two types of objective functions:
multi-class learning objective and binary learning
objective. The observations are made on the MNLI
and FEVER datasets, which are widely studied in
this area.

Bias attributes are learned slower Our first ob-
servation is that a model trained with the multi-
class learning objective learns bias attributes more
slowly. As shown in Figure 2, confidence on bi-
ased examples of the model trained with the multi-
class learning objective increases more slowly than
those trained with the binary learning objective.
Moreover, even after convergence, it shows lower
confidence on biased examples.

Target attributes are learned faster The sec-
ond observation is that the model trained with the
multi-class learning objective learns the target at-
tributes faster. Figure 2 reports the average con-
fidence of models on bias-conflicting examples.
To predict bias-conflicting examples correctly, the
models have to leverage a; rather than a;. As seen
in the figure, the confidence on bias-conflicting ex-
amples of the model trained with the multi-class
learning objective starts to increase ahead of the
model trained on the binary learning objective. In
addition, the degree of confidence increment is also
larger in the multi-class learning objective.

Multi-class learning objective is sub-optimal
From these observations, we argue that the multi-
class learning objective is sub-optimal to training
the auxiliary model. Existing debiasing methods
typically train the auxiliary model with the multi-
class learning objective and consider examples that

the auxiliary model correctly predicts with high
confidence as biased examples. Therefore, it should
be able to have high confidence on biased examples
and low confidence on bias-conflicting examples.
But, as we observed before, the model trained with
the multi-class learning objective shows the oppo-
site tendency. These observations have interesting
connections with those of Feldman et al. (2019).
They analyze that multi-class classification reduces
overfitting due to remaining uncertainties across
multiple classes. Looking at this from the perspec-
tive of a biased model, it is similar to our results in
that the multi-class learning objective can hinder
the auxiliary model from learning bias attributes in
biased examples.

3 Proposed method

Based on our observation in Section 2, we pro-
pose a novel debiasing framework, introducing
bias experts between the auxiliary model and the
main model to improve bias mitigation methods.
It first splits the k-class classification dataset D =
Ule D; into multiple binary classification datasets
Bl,BQ, ...,Bk, where Dz = {(l’,y)|y = ’L'}, Bl =
{(z,1y=)|(xz,y) € D)}, and 1 is an indicator
function. Then for each i € {1, ..., k}, we train the
bias expert f : X — {0, 1} on B;, with a weighted
loss £; to amplify the bias of fbi. While we need
to train more bias experts as the number of classes
(i.e., k) increases, most NLU tasks have a mod-
erate number of classes’. Therefore, our method
is applicable across various tasks, including NLI,
paraphrase identification, sentiment analysis, and
topic classification. Finally, we train the debiased
model f; by reweighting the loss of each exam-
ple with {f{, ..., f¥}. The overall process of our

3For instance, there are typically 2-3 classes in NLI, 2
classes in paraphrase identification, 2-5 classes in sentiment
analysis, and 4-20 classes in topic classification.
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Figure 3: The overall pipeline of our method. Each bias expert is trained by assigning high weights to biased
examples belonging to the target class and bias-conflicting examples not belonging to the target class. As a result,
each bias expert focuses on biased examples of its target class.

framework is illustrated conceptually in Figure 3.

3.1 One-vs-Rest

In Section 2, we observe that the multi-class learn-
ing objective impedes the auxiliary model from
being biased. Thus, we introduce a One-vs-Rest
(OVR, also called One-vs-All) approach to train the
auxiliary model on the binary learning objective.

The OvR is an approach in machine learning
to making binary classification algorithms (e.g.,
logistic regression model) capable of working
on multi-class classification dataset D by split-
ting D into multiple binary datasets B1, Bo, ..., By.
For example, the MNLI dataset, which includes
“contradiction”, “entailment” and “neutral” classes,
is divided into the following three binary classifi-
cation datasets (target vs non-target) through the
OVR approach:

¢ 31: Contradiction vs Non-Contradiction
* By: Entailment vs Non-Entailment
¢ BB3: Neutral vs Non-Neutral

This strategy enables the model to individually
learn the bias attributes of the target class without
the competition across different classes, which is
caused by the softmax normalization.

3.2 Training bias experts

In this work, we define the bias expert f; to be
a binary classifier that identifies biased examples
within a specific class. We expect f; to learn the
bias attributes of the target class and identify bi-
ased examples by relying on them. Specifically, the

bias expert is required to predict only the biased
examples of the target class as the target class with
high confidence, while, on bias-conflicting exam-
ples, the bias expert is required to predict with low
confidence. However, by increasing the weight of
all easy examples, the bias expert can learn the
bias attributes of the non-target class and predict
bias-conflicting examples as the target class with
high confidence, which is not in line with our ex-
pectations. For example, in the case of the MNLI,
the bias-conflicting example of a neutral class with
neither lexical overlap nor negation words can be
identified as biased with high confidence®.

To discourage bias experts from learning bias
attributes of non-target classes, we assign large
weight to bias-conflicting examples of non-target
classes. Therefore, inspired by Zhang and Sabuncu
(2018) and Nam et al. (2020), we train bias experts
by down-weighting the loss of biased examples in
the non-target class based on the confidence of the
auxiliary model as follows:

[0 (2
Enon-target,i = Z (1 Qx,y) log(cl O(fb (w)))a
D7

6]

where i is the target class, g, , denotes the
weight of the example (x,y), and o(-) is the sig-
moid activation function. « is a hyperparameter
that controls the degree of amplification. At the
same time, we down-weight bias-conflicting exam-

(z,y)€D§

*Lexical overlap and the presence of negation words are
the bias attributes of entailment and contradiction classes,
respectively.
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ples of the target class:
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We expect that these losses encourage bias ex-
perts to learn the bias attributes of the target class
rather than those of the non-target class. Thus, we
minimize them over k bias experts:

L(0p) =

| =

k
Z()\lﬁtarget,i + )\2£n0n-target,i)a (3)
i=1

where A\; and Ay are the hyperparameters that con-
trol the class imbalance aroused by OvR. At this
time, backpropagation is not performed for the aux-
iliary model.

3.3 Training debiased model

We train a debiased model f; using product-of-
experts (PoE) which is widely used in NLU debi-
asing research (Clark et al., 2019; Mahabadi et al.,
2020; Sanh et al., 2021). In PoE, f, is trained in an
ensemble by combining the softmax outputs of fy
and fp. The ensemble loss for each example is:

L(04) = —y - log softmax(log pg + log pp). (4)

With this loss function, examples that bias experts
predict correctly are down-weighted, thereby dis-
couraging fy from learning attributes exploited by
bias experts. Since we use multiple bias experts, we
apply softmax to the final outputs of bias experts
and use this as p,. During the training, we freeze
the parameters of fj.

4 Experiments

4.1 Evaluation Tasks

We evaluate our model and baselines on three natu-
ral language understanding tasks that have out-of-
distribution evaluation sets: natural language infer-
ence, fact verification, and paraphrase identifica-
tion. We use accuracy as the performance metric
for each task. The detailed information for each
task is as follows:

Natural language inference Natural language
inference (NLI) is the task of determining whether
a premise entails, contradicts, or is neutral to a
hypothesis given a sentence pair. We train our pro-
posed model and baselines on the MNLI training

set (Williams et al., 2018). For evaluation, we eval-
uate the in-distribution performance of the mod-
els on the MNLI validation set and the out-of-
distribution performance on HANS (McCoy et al.,
2019), an evaluation set designed to determine
whether models have adopted three predefined syn-
tactic heuristics such as lexical overlap.

Fact verification Fact verification involves de-
termining if the evidence supports or refutes a
claim, or if it lacks sufficient information. We train
our proposed model and baselines on the FEVER
training set (Thorne et al., 2018). For evaluation,
we evaluate the in-distribution performance of the
models on the FEVER validation set and the out-
of-distribution performance on FEVER Symmetric
(Schuster et al., 2019), an evaluation set designed
to test whether models rely on spurious cues in
claims.

Paraphrase identification Paraphrase identifica-
tion is the task of detecting whether a given pair
of questions is semantically equivalent. We use the
QQP’ dataset and divide this dataset into training
and validation sets so that the validation set con-
tains Sk examples, following Udomcharoenchaikit
et al. (2022). We train our proposed model and
baselines on the resulting QQP training set. For
evaluation, we evaluate the in-distribution perfor-
mance of the models on the QQP validation set
and the out-of-distribution performance on PAWS
(Zhang et al., 2019) to test whether models learn to
exploit lexical overlap bias.

4.2 Baselines

We compare multiple baselines, which are gener-
ally classified into two categories:

Methods using prior knowledge of bias: In
such methods, auxiliary models are trained by us-
ing the hand-crafted features which indicate how
words in one sentence are shared with another sen-
tence (Clark et al., 2019; Mahabadi et al., 2020;
Utama et al., 2020a), or whether a certain n-gram
occurs in a sentence (Schuster et al., 2019).

Methods without targeting a specific bias: This
group of methods forces auxiliary models to learn
bias attributes either by reducing the training
dataset size (Utama et al., 2020b), or restricting
the model capacity (Sanh et al., 2021; Ghaddar
et al., 2021), without targeting a specific bias type.

5https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Method Known MNLI FEVER QQP
biases | dev  HANS Gap| dev symm. Gap|dev PAWS Gap
BERT-base (Devlin et al., 2019) 84.5 624 22.1/85.6 63.1 22.5|91.0 33.5 57.5
Reweighting (Clark et al., 2019) v 835 692 143 - - - - - -
Reweighting (Schuster et al., 2019) v - - - |84.6 665 18.1| - - -
PoE (Clark et al., 2019) v 829 679 15.0| - - - - - -
Conf-reg (Utama et al., 2020a) v 1843 69.1 15.7|86.4 66.2 20.2| - - -
Reweighting (Utama et al., 2020b) 82.3 69.7 12.6|87.1 655 21.6(852 574 27.8
PoE (Utama et al., 2020b) 81.9 66.8 15.1/85.9 65.8 20.1|86.1 56.3 29.8
PoE (Sanh et al., 2021) 833 679 154|84.8 657 19.1/88.0 464 41.6
Conf-reg (Utama et al., 2020b) 843 67.1 17.2(87.6 66.0 21.6/89.0 43.0 46.0
Self-Debiasing (Ghaddar et al., 2021) 83.2 71.2 12.0| - - - 190.2 46.5 43.7
Bias Experts (ours) 82.7 72.6 10.1|85.6 68.1 17.5/86.8 58.1 28.7

Table 1: Performances of models evaluated on MNLI, FEVER, QQP, and their corresponding challenge test sets.
We also report the difference between in- and out-of-distribution performances as Gap. The results of baselines
using prior knowledge of biases are from the original paper. We mark the best and the second-best performance in

bold and underline, respectively.

4.3 Implementation details

In all tasks, we employ the BERT-base model with
110M parameters for the main model and use the
BERT-tiny (Turc et al., 2019) model with 4M pa-
rameters for the auxiliary model and the bias ex-
perts®. We use AdamW as the optimizer for both
the main model and the biased model, with a batch
size of 32 and 3 epochs of training. In order to train
the main model, we use a coefficient of 0.3 for the
cross-entropy loss and a coefficient of 1.0 for the
PoE loss, following Sanh et al. (2021). For the NLI
task, we set the learning rate to 3e-5 and « to 0.2.
For the fact verification task, we set the learning
rate to 2e-5 and the « to 0.01. For the paraphrase
identification task, we set the learning rate to 2e-5
and the o to 0.3.

4.4 Main results

We report experimental results on three natural lan-
guage understanding tasks in Table 1. Each result is
the average of the scores across 5 different runs. We
observe that our model consistently outperforms
the state-of-the-art on three out-of-distribution eval-
uation sets. Specifically, our model shows a perfor-
mance improvement of 1.4%p, 2.1%p, and 0.7%p
in HANS, FEVER Symmetric, and PAWS over the
best-performing model, respectively. These results
indicate that our framework is effective in identify-
ing biased examples regardless of the type of the
dataset. In addition, the gap between in- and out-
of-distribution performances of our model is much

6https ://github.com/huggingface/transformers

. . MNLI HANS
Ablative Setting Ent NEnt Avg
Bias Experts (ours) 82.7 193.5 51.8 72.6
(1) w/o Amp. 82.8 194.9 45.0 70.0
(2) w/o OVR 83.0 |94.4 42.7 68.5
(3) w/o Amp. and OVR | 83.1 |94.5 41.4 679

Table 2: Ablation studies using accuracy on MNLI and
HANS. We mark the best performance in bold.

smaller than the other methods, suggesting that
our framework achieves more out-of-distribution
performance gains with less in-distribution perfor-
mance losses. On the other hand, we can observe
that the proposed framework shows the lowest per-
formance improvement in PAWS, the challenge test
set of QQP. This is because only bias amplification
affects the performance improvement since QQP is
originally a binary problem.

4.5 Ablation study

Effect of each module in our method We com-
pare different ablative settings of our method to
demonstrate the effect of each part in our method.
(1) w/o Amp. denotes omitting bias amplification
of biased models by setting « = 0 in Eq. 1 and
Eq. 2, (2) w/o OVR denotes that we train the main
model with an ensemble prediction of three auxil-
iary models trained with the multi-class learning
objective, (3) w/o Amp. and OvR denotes that we
remove both bias amplification and OvR approach.

Table 2 indicates that all the components are
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Figure 4: Performances of main models evaluated on
MNLI and HANS with different c.

important in the improvement of debiasing perfor-
mance. Amplifying the target class bias of bias
experts (w/o Amp.) is crucial to boost the out-of-
distribution performance, indicating that focusing
on learning biased examples of the target class
improves the bias experts’ ability to identify bi-
ased examples. In addition, omitting the OVR ap-
proach (w/o OvR) further decreases the perfor-
mance, which suggests that training bias experts
with the binary learning objective is key to im-
proving the performance of bias experts. Further-
more, using both OvR and Amp. causes larger im-
provement in out-of-distribution performance com-
pared to using one of them. These results show that
the two components work complementary to each
other, improving different aspects of bias experts.
Additional results on the fact verification task are
provided in Appendix A.6.

Degree of bias amplification We vary the degree
of bias amplification for the target class (i.e., «)
and compare the performances of the correspond-
ing main models. Figure 4 shows the results. We
first observe that debiasing with a = 0 shows the
lowest accuracy. This indicates that bias amplifica-
tion helps bias experts focus on the target class bias,
leading to better out-of-distribution performances
of the main model. On the other hand, as o exceeds
0.2, both in-distribution and out-of-distribution per-
formances start to decrease. We speculate that this
is because the main model receives a smaller gra-
dient update as « increases. This indicates that we
should train the bias experts either by using a mod-
erate level of « or by increasing the learning rate.

Method MNLI | HANS
BERT-base 84.5 62.4
PoE (Utama et al., 2020b) 81.9 66.8
PoE (Sanh et al., 2021) 83.3 67.9
PoE + Ours (T" = 2k) 83.8 68.0
PoE + Ours (T = 10k) 83.3 71.0
Bias Experts (ours) 82.7 72.6

Table 3: Trade-off results between in- and out-of-
distribution performances evaluated on MNLI and
HANS. T' denotes the number of training steps for bias
experts. We mark the best and the second-best perfor-
mance in bold and underline, respectively.

4.6 In- and Out-of-distribution Performances
Trade-off

To verify that our method achieves a better trade-off
between in- and out-of-distribution performances
than baselines, we conduct an analysis by tuning
the number of training steps for bias experts. The
intuition behind tuning the number of training steps
is that the biased models with smaller training steps
are likely to less focus on bias attributes, resulting
in a main model with higher in-distribution per-
formance, compared to the setting where biased
models are fully fine-tuned (e.g., for 3 epochs as in
Section 4.3). The results are presented in Table 3.
By comparing the results of PoE + Ours (1" = 2k)
in row 4 with those of Sanh et al. (2021) in row 3,
where 71" denotes the number of training steps for
bias experts, we can see that our model can achieve
the similar out-of-distribution performance gain in
HANS with the smaller in-distribution performance
degradation in MNLI. In addition, the comparison
results between PoE + Ours (1" = 10k) in row 5
and the method in Sanh et al. (2021) demonstrate
that our model improves the out-of-distribution per-
formance while preserving the in-distribution per-
formance. These results indicate that our method
facilitates a better balance between in- and out-of-
distribution performances.

4.7 Analysis on Model Confidence

To further investigate the effectiveness of our bias
experts, we use the kernel density estimation to
draw the distributions of model confidence on two
groups of examples: biased and bias-conflicting ex-
amples. Specifically, we experiment on the MNLI
training set and compare our bias experts with the
weak learner used in Sanh et al. (2021). The result
is illustrated in Figure 5. It is observed that our bias
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Method Ent NEnt

Lexical Subseq Const | Lexical Subseq Const
BERT-base 99.5 99.2 99.4 52.4 10.0 17.8
PoE (Sanh et al., 2021) | 90.2 97.0 96.3 66.0 18.0 40.1
Bias Experts (ours) 88.4 96.6 95.5 83.7 26.4 45.2

Table 4: Performances of main models evaluated on HANS for each heuristic. The columns Lexical, Subseq, and
Const mean lexical overlap, subsequence, and constituency, respectively. We mark the best performance in bold.

Method BAR | NICO
ERM 353 42.6
ReBias (Bahng et al., 2020) | 37.0 45.2
LfF (Nam et al., 2020) 48.2 40.2
LWBC (Kim et al., 2022) 62.0 52.8
Bias Experts (ours) 64.2 54.1

Table 5: Performances of models evaluated on BAR and
NICO. We compare our method with baselines that do
not use bias labels. We mark the best and the second-
best performance in bold and underline, respectively.

experts show higher confidence on biased examples
and lower confidence on bias-conflicting examples
on average, compared to the weak learner in Sanh
et al. (2021). This indicates that the bias experts
identify biased and bias-conflicting examples more
precisely than the biased model applied in the pre-
vious work. As a result, we can observe in Table
4 that the main model trained in an ensemble with
the bias experts achieves significant improvement
over the baselines on the non-entailment subset of
HANS, for all three heuristics, with only a small
degradation on the entailment subset of HANS.

4.8 Experiment on Image Classification

We conduct experiments on computer vision tasks
to verify that our framework is model-agnostic, and
can be applied to other debiasing algorithms. For
computer vision tasks, we apply bias experts to the
bias committee algorithm (Kim et al., 2022). We
experiment on two image classification datasets:
1) Biased Action Recognition (BAR): a real-world
image dataset crafted to contain examples with spu-
rious correlations between human action and place,
and 2) NICO: a real-world dataset for simulating
out-of-distribution image classification scenarios.
We compare our model with baselines without ex-
plicit supervision on bias: ReBias (Bahng et al.,
2020), LfF (Nam et al., 2020), and LWBC (Kim
et al., 2022). Table 5 shows the results on both
datasets. Our model achieves performance improve-
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Figure 5: The kernel density estimation of models’ con-
fidence on (a) biased examples and (b) bias-conflicting
examples in MNLI. The weak learner is the auxiliary
model used in Sanh et al. (2021). Each plot includes
dashed lines representing the average confidence of each
model.

ments of 2.2%p and 1.3%p in BAR and NICO
over LWBC, respectively. The results show that our
framework can be used complementary with other
debiasing algorithms in computer vision tasks.

5 Related Work

5.1 Debiasing with prior knowledge of bias

Earlier bias mitigation methods typically combine
human prior knowledge with data-driven training.
They define a specific bias type in advance and train
the auxiliary model to learn the predefined bias
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type. For example, the auxiliary model is trained
to learn a word overlap bias or a hypothesis-only
bias (He et al., 2019; Mahabadi et al., 2020) in
NLI, a question-only bias (Cadene et al., 2019)
in VQA, and a texture bias (Bahng et al., 2020)
in image classification. Then, the auxiliary model
reduces the importance of biased examples when
training the main model by reweighting examples
(Schuster et al., 2019), regularizing the main model
confidence (Utama et al., 2020a; Mahabadi et al.,
2020), or combining with the main model in the
PoE manner (Clark et al., 2019). As a result, the
main model focuses more on bias-conflicting ex-
amples in which exploiting solely bias attributes is
not sufficient to make correct predictions. While
these methods provide a remarkable improvement
in the out-of-distribution performance, manually
identifying all bias types in tremendous datasets is
a time-consuming and costly process.

5.2 Debiasing without targeting a specific bias

To address these limitations, several attempts were
conducted to train the auxiliary model without hu-
man intervention. These works force the auxiliary
model to learn the bias attributes in datasets by
restricting the size of training data (Utama et al.,
2020b), limiting the capacity of the model (Bras
et al., 2020; Clark et al., 2020; Sanh et al., 2021;
Yaghoobzadeh et al., 2021; Ghaddar et al., 2021),
training the model with GCE loss (Nam et al.,
2020), or reducing the training epochs (Liu et al.,
2021). Then, they consider the examples for which
the auxiliary model struggles to predict the cor-
rect class as bias-conflicting ones and assign large
weights to them when training the main model.
Recently, to further improve debiasing methods,
Kim et al. (2022) use the consensus of multiple
auxiliary models to identify biased examples and
determine their weights, Ahn et al. (2023) use the
norm of the sample gradient to determine the im-
portance of each sample, Lee et al. (2021) augment
bias-conflicting features with feature-mixing tech-
niques, and Lee et al. (2023) propose a method
which removes the bias-conflicting examples from
a training set to amplify bias for a biased model.
Lyu et al. (2023) take a contrastive learning ap-
proach to mitigate bias features and incorporate the
dynamic effects of biases. Although these prior ef-
forts achieve promising results, to our knowledge,
none of them attempted to improve the effective-
ness of debiasing methods by tackling a detrimental

effect of the multi-class learning objective on the
bias identification ability of an auxiliary model.

6 Conclusion

We have proposed a novel framework that intro-
duces a binary classifier between the main model
and the auxiliary model, called bias experts, for
improving the bias mitigation method. The main
intuition of this work is to mitigate the incorrect
bias identification caused by the naive application
of the multi-class learning objective to train the
auxiliary model. We train our bias experts via the
One-vs-Rest approach, pushing each bias expert
to focus more on the biased examples in its tar-
get class. Through various experiments and abla-
tion studies, we demonstrate our framework effec-
tively alleviates the aforementioned problem and
improves existing bias mitigation methods.

Limitations

Although we have demonstrated the efficacy of our
method in improving bias mitigation, there are two
limitations that should be addressed in the future:

(1) Since we have to train individual binary clas-
sifiers for each class, a limitation of our work is
that it may lead to large memory usage as the num-
ber of classes increases. However, to the best of
our knowledge, most NLU tasks consist of only
a moderate number of classes. For example, we
found that there are typically 2-3 classes in NLI, 2
classes in paraphrase identification, 2-5 classes in
sentiment analysis, and 4-20 classes in topic classi-
fication. In addition, our work has validated wide
applicability in datasets with a moderate number
of classes across various NLU and image classi-
fication tasks. In the future, we plan to alleviate
this limitation by exploring the way to adopt the
parameter-efficient fine-tuning method for training
bias experts.

(2) We introduce hyperparameters in our work,
which could be problematic in debiasing works
since most out-of-distribution datasets do not pro-
vide a validation set for tuning hyperparameters, as
noted by Utama et al. (2020a). With this in mind,
we have sought to minimize the number of hyper-
parameters additionally introduced in our work.
Specifically, there are three additionally introduced
hyperparameters, A1, A2, and «. Following Wen
etal. (2022), weset \; = (k—1)/kand A\ = 1/k,
where k£ denotes the number of classes. Thus, Ay
and \g are not involved in the tuning process. In
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addition, compared with previous works, the per-
formance of the proposed method is less sensitive
to the hyperparameter . Specifically, in HANS,
the performance of our method varies with a vari-
ance of 0.99, depending on the value of . This
variance is lower than 1.10 - 8.80, the variances
of performance observed in prior works (Utama
et al., 2020b; Sanh et al., 2021; Kim et al., 2022;
Lyu et al., 2023). In the future, we plan to investi-
gate how to tune hyperparameters without leaking
information about the bias.

Ethics Statement

We acknowledge that the high out-of-distribution
performance of our method is achieved at the ex-
pense of the in-distribution performance (i.e., at the
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is that errors in the majority group could increase
in applications such as toxicity classification, fa-
cial recognition, and medical imaging, potentially
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in such a majority group.
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A Appendix

A.1 Dataset Statistics

Table 6 shows data statistics for the datasets used
in our experiments.

Dataset #samples #classes
MNLI 401k 3
ID FEVER 258k 3
QQP 399k 2
HANS 30k 2
OOD FEVER Symm. 712 3
PAWS 677 2

Table 6: Detailed dataset statistics. ID and OOD denote
in-distribution and out-of-distribution data, respectively.

A.2 Details of Preliminary Experiments

In this section, we present the details of the pre-
liminary experiments discussed in Section 2. We
collect biased/bias-conflicting examples from the
training set of MNLI and FEVER. For MNLI, we
select examples where all the hypothesis words oc-
cur in the premise in terms of exact match. Among
those selected examples, we classify examples with
the entailment class as biased and others as bias-
conflicting. For FEVER, we select examples where
any of the Top-10 LMI-ranked bigrams, listed in
Schuster et al. (2019), appear in the claim also in
terms of exact match. We then classify the exam-
ples with the refute class as biased and others as
bias-conflicting.

A.3 Effect of merging method

We use as many bias experts as the number of
classes in multi-class classification, thus we need
to merge their predictions into one probability dis-
tribution to train the main model in a POE manner.
We consider two different strategies for merging
predictions from different bias experts: (1) softmax
and (2) softplus. From Table 7, we observe that
both strategies show higher out-of-distribution per-
formances compared to the vanilla PoE baseline.
In particular, merging with softmax outperforms
merging with softplus: 72.6% vs 69.6% on HANS.
This suggests that applying softmax is best suited
for our debiasing method.

A.4 Handling class imbalance

The OVR approach we introduced causes an im-
balance between classes because it classifies all

MNLI HANS

Merging Method Ent NEnt Ave

PoE (Sanh et al., 2021) 83.1 94.5 414 67.9
PoE (Utama et al., 2020b)| 81.9 {90.9 42.8 66.8
(1) Softmax 82.7 193.5 51.8 72.6
(2) Softplus 82.7 194.0 45.2 69.6

Table 7: Performances of main models evaluated on
MNLI and HANS with different strategies for merging
expert predictions. We mark the best performance in
bold.

. MNLI HANS
Balancing Method Ent NEnt Avg
(1) Reweighting 82.7 |93.5 51.8 72.6
(2) Over-sampling 82.7 |95.3 46.6 71.0
(3) Under-sampling | 81.7 |94.5 48.0 71.2
(4) w/o Balancing 82.7 (946 442 69.4

Table 8: Performances of main models evaluated on
MNLI and HANS with different strategies for balanc-
ing positive/negative samples. We mark the best perfor-
mance in bold.

classes except the target class as a non-target class.
In this analysis, to alleviate this problem, we com-
pare three widely used strategies for mitigating the
imbalance class problem: (1) reweighting, (2) over-
sampling, and (3) under-sampling. Table 8 shows
the accuracy of the main models on MNLI and
HANS. All three methods, the reweighting, over-
sampling, and under-sampling methods show better
performance than the method without applying the
imbalance mitigation method (i.e., w/o Balancing).
Also, when using reweighting, the performance of
the main model is the highest.

A.5 Qualitative Results

Table 9 illustrates examples to show how our pro-
posed framework improves the identification per-
formance of biased examples. The examples show
that bias experts trained with the binary learning
objective make predictions with higher confidence,
compared to the weak learner in Sanh et al. (2021),
the biased model trained with the multi-class learn-
ing objective. This indicates that each bias expert
individually learns the bias attributes (e.g., high
lexical overlap, or the presence of negation words
such as "no" and "never") of the target class without
being affected by the confidence of other classes.
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Bias
Attribute

Premise

Hypothesis

Weak  Bias

Class Learner Experts

We have Kroger but not a

We have a Kroger but no

Contradiction 18.9% 7.2%

Entailment 75.6%

91.4%

Lexical |> <2885 Skages. Neutral 55%  1.4%
overlap And no surprise, the bugger Contradiction 28.9% 17.2%
was already insi’de. The bugger was inside. | Entailment 66.2% 81.5%

Neutral 49% 1.3%

I didn’t hear what Mr. Inglethorp never said ConFradlctlon 04.2% 83.6%

Mr. Inglethorp replied. anything back. Entailment >:3% - 1.6%

Presence Neutral 30.5% 14.8%
of Negation That’s the only way to keep |There’s no way to keep ConFradlctlon 05.4% 86.2%
you from being punished. |you from being punished. Entailment 29.7% 12.7%

Neutral 49% 1.1%

Table 9: Qualitative comparison of the models’ confidence. We compare our bias experts with the weak learner used

in Sanh et al. (2021). The bold class denotes the true label.

Ablative Setting FEVER
dev symm.
Bias Experts (ours) 85.6 68.1
(1) w/o Amp. 85.1 66.9
(2) w/o OVR 84.9 66.0
(3) w/o Amp. and OVR  |84.8 65.7

Table 10: Ablation studies using accuracy on FEVER
and FEVER Symmetric. We mark the best performance
in bold.

A.6 Additional Ablation on Fact Verification

To further study the efficacy of each component in
our method, we conduct additional ablation stud-
ies on FEVER and FEVER Symmetric datasets.
The results are shown in Table 10, and the abla-
tive settings are the same as those in Section 4.5.
As shown in the table, using both OvR and Amp.
obtains the best out-of-distribution performance,
demonstrating the importance of both components.
In addition, OvR contributes more to improving
the out-of-distribution performance, compared to
bias amplification. These results are consistent with
those reported in Table 2.
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