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Abstract

We address a fundamental challenge in Nat-
ural Language Generation (NLG) model
evaluation—the design and evaluation of eval-
uation metrics. Recognizing the limitations of
existing automatic metrics and noises from how
current human evaluation was conducted, we
propose METRICEVAL, a framework informed
by measurement theory, the foundation of ed-
ucational test design, for conceptualizing and
evaluating the reliability and validity of NLG
evaluation metrics. The framework formalizes
the source of measurement error and offers sta-
tistical tools for evaluating evaluation metrics
based on empirical data. With our framework,
one can quantify the uncertainty of the metrics
to better interpret the result. To exemplify the
use of our framework in practice, we analyzed
a set of evaluation metrics for summarization
and identified issues related to conflated valid-
ity structure in human-eval and reliability in
LLM-based metrics. Through METRICEVAL !,
we aim to promote the design, evaluation, and
interpretation of valid and reliable metrics to
advance robust and effective NLG models.

1 Introduction

Evaluation metrics provide quantitative assess-
ments to guide model development, benchmark sci-
entific progress, and inform generalizability across
tasks and domains (Novikova et al., 2017). Ef-
fective evaluation metrics can extract valuable sig-
nals and robust evidence from model outputs that
describe model capability, diagnose model fail-
ures, and compare the strengths and weaknesses
of different models, allowing for more informed
decision-making in real-world deployment (Zhou
et al., 2022). Conversely, problematic evaluation
metrics can mislead model diagnoses, development,
and deployment, resulting in downstream harms
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Figure 1: METRICEVAL: A framework that concep-
tualizes and operationalizes four main components of
metric evaluation, in terms of reliability and validity

to individuals and society (Yeo and Chen, 2020;
Sheng et al., 2021).

Designing effective evaluation metrics for nat-
ural language generation (NLG) tasks has long
been challenging due to the complex nature of
language, open-endedness of tasks, multifaceted
and context-dependent definition of language qual-
ity (Nema and Khapra, 2018; Zhou et al., 2022;
Gehrmann et al., 2022; Sai et al., 2022). Most
recently, the NLG evaluation challenge has been
further exacerbated by the emergence of “general-
purpose” large language models (LLMs), further
demanding evaluation methods to capture model
utility for diverse downstream use cases. To ad-
dress these challenges, researchers and practition-
ers have developed various types of NLG evalua-
tion metrics, including word-based metrics (e.g.,
ROUGE, BLEU), embedding-based metrics (e.g.,
BERTScore, MoverScore) and to end-to-end met-
rics (e.g., BLEURT, G-Eval).

With this increasingly rich set of evaluation met-
rics being pursued, we must understand how good
each metric is. While researchers pointed out
shortcomings of popular metrics (e.g., ROUGE),
such as their inability to capture semantic mean-
ings, insensitivity to perturbations, and failure to
reflect real-world performance (Sai et al., 2021; Liu
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et al., 2016; Reiter, 2018; Celikyilmaz et al., 2020;
Kauchak and Barzilay, 2006), there is a lack of
principled approaches to evaluate NLG evaluation
metrics, and to begin with, a lack of clear definition
on what makes a metric good.

Some prior works have attempted to evaluate the
quality of NLG evaluation metrics by their correla-
tions with human judgments (Sai et al., 2021; Fab-
bri et al., 2021; Liu et al., 2016), which are deemed
the gold standard for quality assessment. How-
ever, correlation with human preferences gives lim-
ited quality signals. More problematically, human
evaluation data collection itself currently suffers
from validation, standardization, consistency, and
reproducibility issues (Clark et al., 2021; Howcroft
etal., 2020; Belz et al., 2021; Khashabi et al., 2021).
These issues subsequently undermine their validity
as the foundation for evaluating automatic metrics.

In this paper, we introduce METRICEVAL, a the-
oretical framework to define the desiderata of and
assess evaluation metrics by drawing from measure-
ment theory in educational and psychological test-
ing. Based on two core concepts in measurement
theory that define a “good” metric in testing individ-
ual capabilities—reliability and validity, our frame-
work conceptualizes and operationalizes four key
desiderata: Metric Stability, Metric Consistency,
Metric Construct Validity, and Metric Concurrent
Validity. We further propose a set of statistical
tools to quantify these desiderata to systematically
evaluate evaluation metrics. METRICEVAL enables
quantifying the standard error for each metric on a
specific task which allows meaningful interpreta-
tions of the evaluation results. We demonstrate the
utility of METRICEVAL with a case study of evalu-
ating 16 metrics, including LLM-based metrics, on
a summarization task.

This paper offers three contributions,

e Introduce and transfer metrics evaluation
desiderata and methods from measurement
theory in educational and psychological test-
ing to NLG evaluation.

* Propose METRICEVAL, a theory-driven
framework with a set of statistical tools for
systematically analyzing and evaluating NLG
metrics.

* A case study demonstrating how to apply our
framework and identify issues of evaluation
metrics for a summarization task.

2 Measurement Theory

Originating from educational and psychological
testing, measurement theory aims to inform eval-
uation processes that devise a coherent numerical
representation of individual capabilities—for in-
stance, evaluating a person’s language proficiency
through essay responses to questions. Scores on
these tests have direct consequences for high-stakes
decisions, such as school admissions.

Key to measurement theory is the distinction be-
tween the observed score on a test, e.g., the score
of an examinee’s essay in a language proficiency
exam, and the true score on the general construct
(Cronbach and Meehl, 1955) that the test is theo-
rized to measure, e.g., language proficiency. The
gap between the observed and true scores is re-
ferred to as measurement error (Allen and Yen,
2001). Measurement theory defines two sources of
measurement error, random and systematic. Ran-
dom measurement errors are fluctuations specific
to a time, place, examinee, and exam question that
are transient and balance out to 0 over repeated
measures, and they have direct consequences on
the reliability of the evaluation process. System-
atic errors, on the other hand, are persistent shifts
across one or more time, place, examinee, or exam
questions, and they have direct consequences on
test validity by producing observed scores with sys-
tematic deviations from the true score that the test
purports to measure (e.g., a downward bias if the
rubric on a language proficiency exam looks for
specialized knowledge about a certain subject).

By evaluating and identifying the source of mea-
surement errors, the test designer could iteratively
improve their test design by adding or removing
test items or changing their rubric. The results can
also help the evaluator to interpret a test score with
caution. For example, we can quantify the uncer-
tainty as the standard error for meaningful com-
parison: when the difference between two models’
metric scores on a benchmark does not afford con-
clusions about significant differences, the evaluator
may consider narrowing the confidence interval by
averaging scores from repeated measurements.

In short, as a safeguard to the trustworthiness
of tests, measurement theory offers a conceptual
framework for how the validity and reliability of
a test should be formalized, evaluated, and opti-
mized to reduce measurement error with the aid of
statistical methods and tools.
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2.1 Transferring Measurement Theory to the
Context of NLG

There are obvious analogies between the measure-
ment of human capability and the evaluation of
NLG models. First, NLG evaluation is often per-
formed via benchmarking. A benchmark data set
is similar to an educational test consisting of a tai-
lored collection of test examples, where question-
specific scores are calculated based on predefined
evaluation metrics (similar to scoring rubrics for
human testing) and are aggregated into an overall
score for the model. Second, when evaluating a
model, we similarly hope to derive scores based
on a candidate model’s observed performance on
a benchmark, so as to (1) draw inferences about
unobservable capability in a specific domain (e.g.,
summarization) and (2) provide guidance on the
model’s expected behavior in future tasks of the
domain. Similar to educational testing, the score
is often interpreted and used beyond its nominal
meaning, i.e., implying the model’s general per-
formance beyond the particular benchmark dataset.
As more models are considered “general-purpose”
models, there is an increasing need for measuring
an NLG model’s unobservable capability.

The conceptual and statistical tools provided by
measurement theory can be transferred to assist in
evaluating NLG metrics, specifically to quantify
and identify different sources of measurement er-
rors. Not only can these tools help the community
systematically assess the shortcomings of evalua-
tion metrics and identify misleading ones, but they
also guide the interpretation of their evaluation re-
sults, as well as the re-design of existing metrics
and the development of new ones. In the next sec-
tion, we elaborate on how we transfer these tools
from measurement theory to a framework that de-
fines and assesses the reliability and validity of
NLG evaluation metrics, and how they may help
us interpret and improve NLG evaluation.

3 Metric Evaluation Framework

In this section, we introduce METRICEVAL and its
components that define and assess different aspects
of the “goodness” of NLG evaluation metrics, in-
spired by the core concept of reliability and validity
in measurement theory (See Fig.1). METRICEVAL
aims to evaluate and compare the reliability and
validity of the metrics. For example, to evaluate
a summarization model, one can apply reference-
based metrics (e.g., ROUGE, BertScore), reference-

free metrics (e.g., SUPERT), or human ratings on
specific output quality aspects (e.g., coherence or
relevance) on the same benchmark to draw infer-
ences about model capability. For the remainder of
this section, we will illustrate our framework with
this running example of evaluating summarization
models with diverse metrics.

It is important to note that the quality of evalua-
tion results is also dependent on the chosen dataset
and reference (for reference-based metrics), which,
in NLG evaluation, are concerned with benchmark
designs. Measurement errors may cascade from
those components to the observed score. In this
work, we focus on the metric aspect and answer
questions such as “giving a CNN/Daily Mail bench-
mark, whether using ROUGE or BertScore or hu-
man ratings offer reliable and valid evaluation re-
sults.”. This is an important question given the
far-reaching impact that prevalent benchmarks can
have on the output of the research community.

3.1 Reliability

The reliability of a metric is the extent to which
the result is subject to random measurement error
and thus (in)consistent across repeated measures,
such as different (sub-)datasets within a benchmark
or different raters scoring the model’s output in
human evaluation. Suppose two NLG models are
scored on their performance based on Metric-A
on a summarization benchmark. Researchers and
practitioners often use the scores to draw inferences
about the models’ (relative) performances. When
the two models are reported to differ in their scores
(e.g., Metric-A = .39 vs. .42), a natural question
is how much this reflects actual differences (true
signal) versus fluctuations due to random measure-
ment error (noise). If Metric-A is unreliable, the
measurement error may mislead the comparison.

Sources of random measurement error that im-
pair the reliability of a metric may include:

* Non-deterministic algorithms of some met-
rics may produce score variations on the same
model outputs.

* The subsets of data points (e.g., different gen-
res of articles) included in the benchmark.

* For human evaluations, the variability across
raters, resulting from their subjectivity, incon-
sistency, errors, and so on.

In classical test theory (Spearman, 1904), the
observed metric score of a model (X) is equal to
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the sum of true score 7" and error (£'), which is as-
sumed to be independent of 7" and fluctuates around
0 with variance 0'%. The goal of evaluating a met-
ric’s reliability is hence to quantify the expected
amount of uncertainty in the observed score due to
random measurement error, known as the standard
error of measurement (o g).

Empirical estimation of og is done via the relia-
bility coefficient of a metric, denoted p%- € [0, 1].
Formally, the reliability coefficient is defined as
the proportion of variance in the observed score
explained by the variance in the true score across
NLG models rather than error, or equivalently, the
squared correlation between X and 7"

2 2
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Metrics with higher reliability coefficients are more
desirable. However, in reality, neither 1" nor E is
observed. The reliability coefficient in Equ. 1 can-
not be directly computed and is statistically approx-
imated via several possible estimators.

METRICEVAL proposes to estimate the reliabil-
ity coefficient from both Metric Stability and Met-
ric Consistency. They reflect different reliability
issues that can arise in different types of metrics, as
we elaborate below. By quantifying and identifying
reliability issues, metric developers can improve
the scoring algorithms, and metric users can make
more informed decisions in choosing metrics, inter-
pret performance differences, and adopt mitigation
strategies, e.g., increasing the test set size to miti-
gate consistency issues (Spearman, 1910).

3.1.1 Metric Stability

Metric Stability refers to how a metric score may
fluctuate when evaluated again on the same model
output. While we would expect perfect stability
(i.e., g = 0) for deterministic metrics, such as
ROUGE-1 (Lin, 2004), the stochastic nature of
some metrics (e.g., G-Eval (Liu et al., 2023)) may
produce undesirable fluctuations when evaluating
the same model outputs. As we see increasing
use of automatic evaluation metrics with built-in
stochasticity (e.g., LLM-based metrics), the stabil-
ity of an evaluation metric in producing consistent
scores on an output from one replication to another
will be increasingly relevant.

We propose to quantify metric stability via the
test-retest reliability coefficient: on the output gen-
erated by /N models, we compute the metric score
with the same output twice for each model. Across

different models, the Pearson correlation between
the two sets of scores is the test-retest reliability
coefficient. One can show that this correlation is
an estimate of the reliability coefficient p%, as
defined in Equ. 1. This is because, for the two
metrics scores for a model, X; = T} + Fj and
Xo = 17 + E5, the correlation in the observed
scores, px, X, 18 algebraically equivalent to p%QTl,
under the assumption that each model’s true score
doesn’t change (i.e., 771 = T5) and that the ex-
pected fluctuation in metric evaluation remains the
same (i.e., o, = 0p,) across the two evaluations
(see derivations in Allen and Yen, 2001).

3.1.2 Maetric Consistency

Metric Consistency describes how the metric score
fluctuates within a benchmark dataset, i.e., across
data points. If the metric score computed on each
individual data point (e.g., summarization of a spe-
cific news article) deviates substantially from the
average score across the benchmark dataset (e.g.,
across 100 news articles), the metric score is less
reliable, in that it is more sensitive to perturbations
in the specific data points employed in the bench-
mark dataset. In this case, for a specific model, the
average metric score on any subset of tasks (e.g.,
50 out of 100 news articles) is expected to be sen-
sitive to the choice of included examples, and a
good proportion of difference across two evaluated
models’ average scores would also be attributed to
this noise.Drawn from the estimation of internal
consistency reliability in measurement theory,the
estimation of metric consistency depends on the
degree to which scores from different subsets of
the benchmark dataset agree with one another.

The coefficient a (Cronbach, 1951) provides a
measure of Metric Consistency. Let J denote the
total number of data points in the test dataset, Y;
the observed score (of a model) on the jth data
point alone (e.g., the jth news article), and X =
Z‘j]:l Y; the overall score of the model on the full
test set. Then « provides a lower bound to the true
reliability of X, i.e.,

2 J 2
J | ox — 2j=10y,
= > ,
J—1 ox

(@)

where 0526‘ is the variance of Y; across models.
Equality holds when all the individual data point
scores (Y;s) have equal correlations with the true
score ('I'), which may be violated in practice, lead-
ing to the underestimation of true reliability via the
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coefficient o formula.

3.2 Validity

Validity is another core component of METRICE-
VAL. Metrics with low validity lead to systematic
measurement errors that deviate the observed score
from the true score that the test purports to measure.
In other words, benchmarking is valid only when
the metric scores can inform their intended inter-
pretations (e.g., model capability) and uses (e.g.,
predicting models’ real-world behavior).

Our framework is theoretically grounded in Mes-
sick’s unified theory of test validity (e.g., Messick,
1995), under which the emphasis is given to the
validation of inferences drawn from the test score,
rather than the validation of the test itself. Different
types of validities should be recognized as possible
ways to gather supporting evidence for intended
inferences (interpretations and uses) from the met-
ric score. Our framework conceptualizes two types
of a metric’s validity, concurrent validity, and con-
struct validity (e.g., Allen and Yen, 2001), which
can be applied in different situations—when a vali-
dated reference criterion is available or not—as we
elaborate below.

3.2.1

Metric Concurrent Validity relies on another vali-
dated metric as the reference criterion. This type
of validity is most relevant when evaluating a met-
ric as an alternative to existing ones that may be
expensive and infeasible to acquire in practice. For
example, evaluations by trained human experts are
often challenging at a large scale, motivating the
development of automatic alternatives. One can
conclude that an automatic metric is a valid proxy
if it has high concurrent validity using the expert
valuation results as the reference criterion.

When both the target evaluation metric (X, e.g.,
a new automatic metric) and the reference crite-
rion (Y, e.g., expert evaluation) are continuous,
a straightforward way to quantify concurrent va-
lidity is via their Pearson correlation, pxy, often
referred to as the (criterion-related) validity coeffi-
cient. One should note that measurement error in ei-
ther X or Y is expected to attenuate this correlation
(Spearman, 1910): At the population level, pxy is
bounded above by the square root of the product
of the two scores’ (X and Y)) reliabilities. This
again highlights the importance of safeguarding
the reliability of the evaluation metric, as a noisy
metric with low reliability is expected to yield poor

Metric Concurrent Validity

predictive power on the criterion of interest.

3.2.2 Metric Construct Validity

Construct validity, a term coined by Cronbach and
Meehl (1955), refers to the degree to which the
observed behaviors on the test (e.g., test scores)
can reasonably reflect the intended construct (e.g.,
language proficiency). This notion is directly appli-
cable to evaluation metrics that are explicitly con-
structed to assess specific aspects of a model’s per-
formance or output quality, e.g., human evaluation
(or automatic metrics, if developed specifically)
on summarization, coherence, fluency, consistency,
etc. However, even for metrics of which the in-
tended construct is not explicitly defined, it is still
necessary to understand what underlying dimen-
sions of model capabilities they actually capture.

It is important to note that the underlying con-
struct is often latent and not directly observable to
assess its relation with the measure. Measurement
theory, therefore, provides statistical tools to assess
the construct validity of a measure through its re-
lation with other observable variables (e.g., other
tests purported to reflect the same or different con-
structs). We consider three such aspects of validity
based on the measurement literature:

* Metric Convergent Validity: Whether metrics
of identical or related construct(s) are indeed
related. For example, for the same aspect
of summarization quality (e.g., coherence),
scores provided by different evaluation meth-
ods (e.g., by different raters) should be highly
correlated.

* Metric Divergent Validity: Whether metrics of
unrelated constructs are indeed unrelated. For
example, for distinct aspects of summariza-
tion quality (e.g., coherence and relevance),
scores provided by the same method (e.g.,
by the same rater) should show substantially
lower correlations than those for the same
quality across methods. Low divergent va-
lidity could indicate method bias: e.g., the
observed score depends greatly on the rater’s
subjective tendency rather than the model’s
performance on the rated dimension.

* Metric Factorial Validity: Whether the ob-
served metric scores align with the the-
ory about unobserved factors underlying the
scores. For example, if scores on multiple
evaluation metrics exhibit high correlations,
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this might suggest the presence of a com-
mon underlying factor causing these scores
to move in unison.

We introduce two statistical tools to evaluate these
aspects of construct validity. Specifically, Metric
Convergent Validity and Metric Divergent Validity
can be evaluated through the analysis of a multitrait-
multimethod (MTMM) table, and Metric Factorial
Validity can be evaluated via factor analysis. Note
that these validity evaluation methods will only
inform if there is an underlying construct or how
many of them are being captured. Defining what
these constructs are will require further conceptual-
ization and theorizing.

The MTMM table presents a way to scrutinize
whether observed metric scores act in concert with
theory on what they intend to measure, when two
or more constructs are measured using two or more
methods (Campbell and Fiske, 1959). For exam-
ple, when evaluating a summarization model, re-
searchers may ask several raters to rate the gen-
erated outputs on four “traits” (aspects of output
quality), e.g., coherence, consistency, fluency, and
relevance. In this case, the MTMM table allows
examining whether, across different raters (evalua-
tion methods), the raters’ scores indeed appear to
characterize the model’s performance on four dis-
tinct constructs. By convention, an MTMM table
reports the pairwise correlations of the observed
metric scores across raters and traits on the off-
diagonals and the reliability coefficients of each
score on the diagonals. The analysis of an MTMM
table is exemplified in Sec. 4.1.2.

Factor Analysis examines Metric Factorial Va-
lidity (e.g., Thurstone, 1947) when the observed
metric scores are assumed to measure a smaller
number of unobserved factors. For example, if
scores from multiple evaluation metrics exhibit
high correlations, this might suggest the presence
of a common underlying factor causing these scores
to move in unison. Under a factor analysis model,
the distribution of the observed score on an indica-
tor X, such as a particular evaluation metric, is a
function of a linear combination of the model’s
factor scores on K > 1 general latent factors
(f1,--., frx) and the unique score U; on the indi-
cator j unexplained by the latent factor, including
measurement error, i.e.,

Xi=fOifi+...+Nrfxk+Uj). 3)

f(+) can be the identity function for normally dis-
tributed observed scores, but when scores are or-
dinal (e.g., expert ratings on a 5-point scale) or
skewed, we suggest adopting an ordinal factor
model (Muthén, 1984) where f(-) is a step func-
tion that evaluates whether Equ. 3 exceeds specific
thresholds for each score category on the latent con-
tinuum. Factor analysis can be exploratory or con-
firmatory. In the latter, select loadings (\;;s) are
constrained to 0 to represent the theorized nomolog-
ical network, e.g., an expert rating on consistency
loads on no other dimensions. By establishing the
Metric Factorial Validity through factor analysis,
we could further develop more effective metrics by
answering the following questions:

* Fit indices: For confirmatory factor analysis,
how well does the theorized factorial structure
align with the observed data?

¢ Factor scores: What is an NLG model’s factor
score on a particular dimension?

* Factor loadings: How much does a specific
factor affect an observed metric score?

* Residual correlation: For different evaluation
metrics, are the residuals (unexplained score
variation by the common factors) correlated,
which may suggest additional dimensions?

4 Case Study

To illustrate how to apply METRICEVAL to eval-
uate NLG evaluation metrics, in this section, we
ran a case study on evaluating summarization met-
rics. As noted earlier, our evaluation focuses on the
metrics and the results should be interpreted as de-
pendent on the benchmark dataset used. We leave
it for future research to explore the generalizability
of the results across different benchmark datasets.

4.1 Summarization Metric Evaluation

We analyzed the SummEval dataset (Fabbri et al.,
2021), a benchmark for summarization tasks. The
benchmark contains 1700 summaries generated by
17 models on the CNN/Daily Mail dataset. In this
dataset, each generated summary was rated by three
experts, who provided 5-point-scale ratings on four
dimensions: Coherence, Consistency, Fluency, and
Relevance. We ran 16 types of popular automatic
metrics that include rule-based metrics, embedding-
based metrics, end-to-end metrics, and LLM-based
metrics that are reference-based or reference-free,
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Figure 2: Estimated Metric Stability and Metric Consistency of common summarization metrics.

see Appx.A.1. Since the score distributions on
many evaluation metrics were skewed, we normal-
ized automatic evaluation scores for the subsequent
analyses, see Appx.A.2.

4.1.1 Metric Stability and Consistency

To evaluate an automatic metric’s stability, we com-
puted the metric score twice for each model’s out-
put on each data point, calculated two sets of av-
erage scores for each model, and reported the cor-
relation between the two sets of scores on the 17
models. A metric’s consistency was evaluated via
the coefficient « in Equ. 2. Fig. 2 presents the
Metric Stability and Metric Consistency estimates
of select metrics (full results in Fig. 5 in Appx).
Most metrics achieved high stability. Metrics with
non-deterministic algorithms, such as LLM-based
metrics G-Eval, displayed higher levels of measure-
ment error in terms of Metric Stability. While com-
pared to G-Eval with GPT3.5, G-Eval with GPT-4
yields higher stability. For Metric Consistency, for
the ROUGE family, a longer n-gram makes the
metric less reliable and more prone to potential
data perturbations in the test dataset. Therefore, to
mitigate measurement error, for less stable LLM-
based metrics, the metric user should consider ag-
gregating scores over multiple runs, and for less
consistent metrics such as ROUGE-4, the evalua-
tor should consider using a larger test dataset. To
illustrate, Fig. 3 shows the relationship between
G-Eval metric consistency and test dataset size.
Conventionally, a reliability coefficient above
.9 indicates good reliability. The metric stability
and consistency estimates can help approximate the
standard error of measurement of an average test
dataset metric score (X)), by observing from Equ.

I that o = 0xy/1 — p3%7. For example, the sam-

ple standard deviation in the average test dataset
METEOR score was .38 and the metric consis-
tency estimate was .966, translating to an expected
measurement error due to score variability across
the 100 data points of .38 x /1 —.966 ~ .07. A
METEOR score difference between two models
less than .07 would thus be of limited interest, as
the difference is less than the expected amount of
fluctuation in the score due to measurement error.

4.1.2 Metric Construct Validity

We begin by evaluating the construct validity of
expert ratings in the SummEval dataset. These eval-
uations were conducted in a confirmatory manner,
assuming that the four ratings provided by each ex-
pert on a summarization output’s Coherence, Con-
sistency, Fluency, and Relevance indeed measure
the four distinct dimensions. Tab. 1 presents the
MTMM table for the three expert’s ratings on four
dimensions. Metric Convergent Validity can be ex-
amined by inspecting the bolded entries: Inter-rater
agreements based on Kendall’s 7 on the same di-
mension were high (.40 — .81) in general but lower
for Fluency (.40 — .63). Italic entries can inform
the evaluation of metric divergent validity: Overall,
an expert’s ratings on different dimensions showed
lower correlations than ratings by different experts
on the same dimension, with the exception of Co-
herence and Relevance, which sometimes showed
correlations (underscored, .65 —.71) nearly as high
as those on ratings for Coherence (or Relevance)
across raters (.69 — .81). This may suggest that,
although the expert raters were asked to separately
rate Coherence and Relevance, they might inher-
ently be rating the summarization outputs on the
same underlying characteristic.

Confirmatory factor analysis was further con-
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ducted (see Appx. A.4) to test the observed con-
flated validity structure indicated by the MTMM
analysis. The results show that the four-factor
model fitted the observed data adequately well
(Comparative Fit Index = .999, Tucker-Lewis In-
dex = .999, Root Mean Square Error of Approx-
imation = .047 < .05), supporting the theorized
loading structure, i.e., experts indeed rated on four
factors. However, the estimated factor correlations
suggested high correlations between dimensions,
especially for Coherence and Relevance. This re-
sult supports a conflated validity structure.

Since Coherence and Relevance are distinct by
definition (Fabbri et al., 2021), the conflated valid-
ity structure indicates potential issues in the expert
rating process. Such issues may cascade if new
automatic evaluation metrics were trained or vali-
dated on these expert ratings. In this case, several
remedial steps are advised, including (1) revisiting
the dimensions’ conceptual distinctiveness and, if
needed, revising the theoretical framework; (2) the
human-annotation guidelines could be reviewed;
and (3) the test set could be examined to assess
its ability to distinguish model performance across
dimensions. If these actions are insufficient, we
recommend that the community consider alterna-

tive conceptualizations of summarization quality,
as suggested in recent works (Liu et al., 2022; Clark
et al., 2023).

4.2 Metric Concurrent Validity

For each automatic evaluation metric, we evalu-
ated its concurrent validity: i.e., should the metric
score be used to predict expert rating on a dimen-
sion as a more cost-efficient alternative? Different
from prior studies (Fabbri et al., 2021), we report
Kendall’s 7 between each model’s metric scores
and the factor scores (instead of the raw means)
based on expert ratings on the four dimensions.
The metric concurrent validity coefficients are pre-
sented in Fig. 4 (see full results in Appx Fig. 8).
Although BARTScore and G-Eval were sensitive
to detecting quality signals in all four expert-rated
dimensions, the lack of variance in the validity
coefficients surfaces another issue—their lack of
capability to distinguish different dimensions. For
example, although G-EVAL-4-COH is designed
for Coherence, it strongly correlated with Fluency
(.75) and Relevance (.75). As a reference, its cor-
relation with Coherence was .65, and the corre-
lation between G-EVAL-4-FLU (designed to as-
sess Fluency) and Fluency was only .60. This in-
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COH CON FLU REL

Expert I  Expert2 Expert3 Expert 1 Expert2 Expert3 Expert1 Expert2 Expert3 Expert] Expert2  Expert3
COH  Expertl 0.96 0.79 0.69 0.35 0.57 0.28 0.59 0.26 0.54 0.71 0.56 0.72
Expert2 - 0.98 0.81 0.17 0.41 0.19 0.56 0.21 0.51 0.74 0.65 0.66
Expert3 - - 0.95 0.18 0.42 0.09 0.6 0.34 0.38 0.6 0.6 0.65
CON  Expertl - - - 0.98 0.74 0.79 0.44 0.48 0.46 0.36 0.41 0.33
Expert 2 - - - 0.98 0.68 0.64 0.44 0.6 0.57 0.67 0.55
Expert 3 - - 0.98 0.36 0.34 0.52 0.39 0.43 0.3
FLU  Expert 1 - - 0.97 0.53 0.63 0.65 0.74 0.72
Expert 2 - - 0.96 0.4 0.38 0.41 0.37
Expert 3 - - 0.95 0.63 0.57 0.59
REL  Expert | - - - 0.92 0.79 0.78
Expert 2 - - - 0.98 0.72
Expert 3 - - - 091

Table 1: Multitrait-Multimethod table of expert ratings.
Notes: Diagonal entries are metric consistency coefficients between 0 and 1. Entries in bold are the correlations of ratings
on the same dimension by different experts. Entries in italic are the correlations on different dimensions by the same expert.
Underscored entries coherence and relevance rating correlations by the same expert, which showed strong correlations.

dicates a systematic discrepancy between the G-
EVAL-4-COH score and what it purports to mea-
sure — Coherence instead of Fluency/Relevance.
The MTMM table corroborates this lack of diver-
gent validity for expert-based and G-EVAL met-
rics (Appx. Tab. 2). Correlations in G-EVAL
scores across dimensions frequently exceeded .70
(underscored italic entries), often exceeding the
correlations on the same rated dimension across
methods (bolded). On the contrary, SummaQA
only reacts to Consistency which makes it a more
desirable metric for Consistency even though its
correlation with expert rating was slightly lower
than G-EVAL-4-CON. This might guide the refine-
ment/disambiguation of prompts for LLM-based
evaluations, in search of one that correlates strongly
with the target dimension but is less confounded by
the other nuisance.

4.3 Summary of the Case Study

Our findings indicate that metrics based on LLMs
exhibited lower stability, some below the conven-
tional threshold of .9. In the ROUGE metric fam-
ily, an increase in n-gram length was associated
with decreased metric consistency, heightening sus-
ceptibility to benchmark task perturbations. Both
MTMM and factor analysis identified a confla-
tion between expert ratings of Coherence and Rel-
evance. Lastly, while BARTScore and G-Eval
demonstrated high agreements with expert-rated
dimensions, the lack of variability in metric con-
current validity suggested a lack of differentiation
between theorized dimensions.

5 Related Work

NLG evaluation metrics undergo validation
through various methods. The most widely used
method is examining correlation with human judg-

ments (Sai et al., 2021; Fabbri et al., 2021;
Liu et al., 2016). Beyond correlation, Ni’mah
et al. (2023) proposed a comprehensive framework
checklist, aiming to verify the faithfulness of auto-
matic metrics to human preferences at both aspect
and system levels. Fomicheva and Specia (2019)
analyzed the local dependency between metric and
human judgments and looked into the consistency
of human evaluation. However, the inconsistency
and subjectivity of human judgment, in addition to
the non-transparent and non-standardized annota-
tion process (Sai et al., 2021; Liu et al., 2016; Re-
iter, 2018; Celikyilmaz et al., 2020; Kauchak and
Barzilay, 2006; Sai et al., 2022), create a shaking
foundation. Another approach to evaluating met-
rics is data perturbation and resampling (Caglayan
et al., 2020; Sai et al., 2021; Deutsch et al., 2021).
Such a method can diagnose a metric’s consistency
and robustness across out-of-distribution datasets.
In addition, researchers conducted qualitative anal-
ysis (Zhang et al., 2019; Tao et al., 2018; Hanna and
Bojar, 2021). Although qualitative analyses pro-
vide in-depth insights, they are not scalable and
cost-efficient. Closely aligned with our efforts,
Von Diniken et al. (2022) introduced a theoreti-
cal framework to examine the reliability of binary
metrics.

6 Conclusion

Evaluation metrics inform model capability and
guide model development. Drawing from the core
concept of reliability and validity in measurement
theory, we present METRICEVAL, a framework
that conceptualizes and operationalizes four key
desiderata for NLG metrics. With a collection of
statistical tools, METRICE VAL offers the commu-
nity an effective and principled way to analyze,
evaluate and understand NLG evaluation metrics.
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Limitations

Evaluating evaluation metrics for NLG models
should not be treated as a single-shot task. Instead,
as suggested in Messick’s unified theory of valid-
ity (Messick, 1995), it is essential to continuously
gather cumulative evidence of validity to ensure the
ongoing effectiveness and reliability of the metrics.
The process of accumulating valid evidence is an
iterative and dynamic endeavor that aligns with the
evolving landscape of NLG models and their ap-
plications. Future studies are necessary to collect
other types of evidence, such as a metric’s ability to
predict users’ preferences, to continuously evaluate
the effectiveness of an NLG metric.

Measurement errors may surface and accumulate
at every stage of the evaluation process, including
benchmark design, data collection, etc. To perform
the analysis of evaluation metrics, we have to as-
sume the reliability and validity of the other parts of
the evaluation process. Therefore, the results of the
case study should be interpreted as dependent on
the benchmark used, e.g., CNN/Daily Mail dataset.
Future study is required to study the generalizabil-
ity of the results across different benchmarks.

Our framework does not aim to provide compre-
hensive coverage of all measurement error sources
in NLG evaluation metrics. For example, we did
not discuss predictive validity in our framework de-
spite its importance in education and psychological
testing. We encourage researchers and practitioners
to extend our framework for other types of relia-
bility and validity and build datasets to support
more comprehensive analysis, e.g., a dataset with
the model’s real-world performance, to deepen our
knowledge of NLG metric evaluation.
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A Appendix

A.1 Metrics

Our selection of evaluation methods includes popu-
lar metrics for NLG tasks including both reference-
based and reference-free metrics. Compared to
the original SummEval dataset, we additionally se-
lected end-to-end metrics and recent LLM-based
metrics.

ROUGE (Lin, 2004) evaluates the generated
summary by comparing the number of overlapping
word sequences (n-grams) with a set of reference
summaries.

ROUGE-WE (Ng and Abrecht, 2015) ex-
pands on ROUGE by incorporating soft lexical
matching, which utilizes the cosine similarity of
Word2Vec (Mikolov et al., 2013) embeddings.

S3 (Peyrard et al., 2017) is a model-based met-
ric that combines existing evaluation metrics like
ROUGE, JS-divergence, and ROUGE-WE. It uti-
lizes these metrics as input features to predict the
evaluation score.

BertScore (Zhang et al., 2019) calculates sim-
ilarity scores by aligning the generated and refer-
ence summaries at the token-level. Token align-
ments are determined greedily to maximize the
cosine similarity between contextualized token em-
beddings from BERT (Devlin et al., 2018).

MoverScore (Zhao et al., 2019) quantifies the
semantic distance between a summary and a ref-
erence text by utilizing the Word Mover’s Dis-
tance (Kusner et al., 2015). This distance measure
operates over n-gram embeddings obtained from
BERT representations.
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SummaQA (Scialom et al., 2019) utilizes a
BERT-based question-answering model to respond
to cloze-style questions using generated summaries.
This metric provides both the F1 overlap score and
the confidence of the QA model.

BLANC (Vasilyev et al., 2020) is a reference-
less metric that assesses the performance improve-
ment of a pre-trained language model when pro-
vided with a document summary while performing
language understanding tasks on the original docu-
ment’s text.

SUPERT (Gao et al., 2020) is a reference-less
metric that measures the semantic similarity be-
tween model outputs and pseudo-reference sum-
maries generated by extracting significant sen-
tences from the source documents using soft token
alignment techniques.

BLEU (Papineni et al., 2002) is a metric that fo-
cuses on precision at the corpus level. It calculates
the n-gram overlap between a candidate utterance
and a reference utterance while incorporating a
penalty for brevity.

CHRF (Popovié¢, 2017) measures character-
based n-gram overlap between model outputs and
reference documents.

METEOR (Banerjee and Lavie, 2005) deter-
mines an alignment between candidate and refer-
ence sentences by mapping unigrams in the gener-
ated summary to O or 1 unigrams in the reference,
taking into account stemming, synonyms, and para-
phrases.

CIDer (Vedantam et al., 2015) calculates the co-
occurrence of 1-4 gram units between the candidate
and reference texts, giving less weight to common
n-grams and computing cosine similarity between
the n-grams of the candidate and reference texts.

BARTScore (Yuan et al., 2021) evaluates text
directly based on the probability of being generated
from or generating other outputs. It addresses the
modeling challenge using a pre-trained sequence-
to-sequence (seq2seq) model called BART (Lewis
etal., 2019).

BLEURT (Sellam et al., 2020) is a BERT-based
metric that can model human judgments with a few
thousand training examples, which may introduce
some bias.

G-Eval (Liu et al.,, 2023) is a framework
that leverages LLM with Chain-of-Thoughts
(CoT) (Wei et al., 2022) to evaluate the quality
of generated text. The generated outputs are as-
sessed using a set of prompts along with generated

CoT.

Data Statistics (Grusky et al., 2018) define
three measures of dataset extractiveness: extrac-
tive fragment coverage, density, and compression
ratio. Extractive fragment coverage quantifies the
percentage of words in the summary that are de-
rived from the source article, indicating the degree
to which the summary is a derivative of the original
text. Density represents the average length of the
extractive fragment to which each summary word
belongs. Compression ratio measures the word
ratio between the articles and their summaries.

A.2 Metric Normalization

Initial exploratory analysis revealed that the score
distributions on many evaluation metrics were
skewed. We thus normalized each automatic
evaluation score (via the transformation X ]* =

(% N, Z(X;; < X;))) and subsequently
worked with normalized automatic metric scores,
which approximately followed N (0, 1) distribution
and are more appropriate for correlational analysis

and linear models.

A.3 Metric Stability and Consistency Results

Fig. 5 presents the Metric Stability and Metric
Consistency estimates of all automatic evaluations
and the metric consistency estimates of all expert
and automatic metrics.

A.4 Confirmatory Factor Analysis on Expert
Ratings

Confirmatory factor analysis was further conducted
on the 12 (3x4) expert ratings, assuming that each
rating loads only on the corresponding dimen-
sion. Given that the expert ratings were highly
skewed (see Fig. 6 in Appx.), an ordinal factor
model (Muthén, 1984) was fitted. Judging from
commonly used fit indices (Comparative Fit Index
= .999, Tucker-Lewis Index = .999, Root Mean
Square Error of Approximation = .047 < .05),
the four-factor model fitted the observed data ad-
equately well, supporting the theorized loading
structure, e.g., Experts rated on four factors. Tab
3 in Appx reports the estimated factor loadings
and thresholds of each expert rating, assuming that
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Figure 5: Metric stability and consistency estimates for all expert- and metric-based scores.

the four latent factors each have mean 0 and SD
of 1. Loadings were generally high (adopting the
> .4 convention) but varied across experts and di-
mensions (generally lower for Relevance). Rater
differences were also found in their leniency: For
instance, expert 3 was more likely than experts 1
and 2 to provide a rating of 5 (with lower threshold
estimates for score 5) on output Consistency, but
less likely to do so (with higher threshold estimates)
on Coherence and Relevance. The estimated fac-
tor correlations below suggested high correlations
between dimensions, especially for coherence and
relevance:

Coherence  Consistency  Fluency
Consistency 51 - -
Fluency .56 .68 -
Relevance .86 .64 53

A.5 Multitrait-Multimethod Table for
G-EVAL and expert-based metrics

Table 2 presents the multitrait-multimethod table
on the four dimensions, Coherence, Consistency,
Fluency, and Relevance, for three separate rating
methods: expert-based ratings (average factor score
across three raters), G-EVAL-3.5, and G-EVAL-4.

A.6 Residual Analysis

We further performed principal component analy-
sis on the residuals of the automatic evaluations,

which capture the unexplained variance by the 4
dimensions’ factor scores. Plot of the first two prin-
cipal components is shown in Fig. 7. Here, visual
clusters of evaluation metrics are found, suggest-
ing that select metrics likely tapped on common
additional dimensions. The unexplained residual
variance may guide future investigation on discov-
ering other quality signals in summarization tasks.
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Figure 6: Distribution of 5-point scale expert ratings.
Expert G-EVAL-3.5 G-EVAL-4
Coherence  Consistency  Fluency  Relevance  Coherence  Consistency  Fluency Relevance  Coherence  Consistency  Fluency  Relevance
Coherence .98 0.32 0.46 0.69 0.50 0.32 0.49 0.53 0.65 0.46 0.65 0.60
Expert Consistency 97 0.57 0.46 0.59 0.56 0.54 0.59 0.62 0.72 0.50 0.63
P Fluency 97 0.59 0.63 0.66 0.71 0.75 0.75 0.47 0.60 0.71
Relevance 97 0.60 0.46 0.65 0.63 0.75 0.65 0.72 0.76
Coherence 0.96 0.59 0.87 0.79 0.65 0.54 0.53 0.63
Consistency 0.90 0.60 0.71 0.56 0.51 0.35 0.54
G-EVAL-3.5 Fluency 0.95 0.81 0.66 047 0.51 0.65
Relevance 0.95 0.74 0.57 0.53 0.69
Coherence 0.98 0.69 0.71 0.90
Consistency 0.96 0.54 0.71
G-EVAL-4 Fluency 097 0.69
Relevance 0.96

Table 2: Multitrait-Multimethod table of the pairwise correlations between expert rating factor scores, GPT3.5-based
scores, and GPT4-based scores.

Notes: Entries in bold are the correlations of ratings on the same dimension by different methods. Entries in italic are the
correlations of the ratings on different dimensions using the same method. Except for reliability coefficients, entries over .7 are
underscored. While the cutoff is arbitrary, underscoring is more desirable for bolded entries (indicating good convergent validity)
and less so for italic entries (indicating method bias, worse divergent validity).
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Loading Threshold

coherence consistency  fluency relevance 2 3 4 5

expert_1_coherence 0.90 - - - 203 -1.08 -0.26 0.31
expert_2_coherence 0.88 - - - -1.09 -0.55 -0.12 042
expert_3_coherence 0.76 - - - -1.74  -0.67 0.56 1.37
expert_1_consistency - 0.97 - - =215 -1.56 -1.20  -1.07
expert_2_consistency - 0.98 - - -1.63 -1.36 -1.27  -1.10
expert_3_consistency - 1.00 - - =216 -1.55 -1.33  -1.23
expert_1_fluency - - 0.98 - 260 -1.93 -1.26  -1.02
expert_2_fluency - - 0.88 - =212 -1.74 -1.09  -0.80
expert_3_fluency - - 0.92 - 249 -1.81 -1.35  -1.10
expert_1_relevance - - - 0.79 -225 -1.30 -0.55 045
expert_2_relevance - - - 085 -195 -1.23 -0.65 0.22
expert_3_relevance - - - 0.64 -2.28 -1.19 0.01 1.26

Table 3: Factor loading and score category threshold estimates for the 4-factor confirmatory model of ordinal expert
ratings.
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Figure 7: Plot of the first two principal components of the residuals of the 4-factor model.
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Figure 8: Concurrent validity coefficients of the metric-based scores in predicting the four expert-rated dimensions’
factor scores. Values are based on Kendall’s 7.
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