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Abstract

The dual-encoder has become the de facto ar-
chitecture for dense retrieval. Typically, it com-
putes the latent representations of the query and
document independently, thus failing to fully
capture the interactions between the query and
document. To alleviate this, recent research
has focused on obtaining query-informed doc-
ument representations. During training, it ex-
pands the document with a real query, but dur-
ing inference, it replaces the real query with
a generated one. This inconsistency between
training and inference causes the dense retrieval
model to prioritize query information while dis-
regarding the document when computing the
document representation. Consequently, it per-
forms even worse than the vanilla dense re-
trieval model because its performance heavily
relies on the relevance between the generated
queries and the real query. In this paper, we
propose a curriculum sampling strategy that
utilizes pseudo queries during training and pro-
gressively enhances the relevance between the
generated query and the real query. By doing
so, the retrieval model learns to extend its atten-
tion from the document alone to both the docu-
ment and query, resulting in high-quality query-
informed document representations. Experi-
mental results on both in-domain and out-of-
domain datasets demonstrate that our approach
outperforms previous dense retrieval models.

1 Introduction

Text retrieval aims to find the relevant documents
for a given query from a large collection of doc-
uments, playing an indispensable role in open-
domain question answering (Chen et al., 2017),
fact verification (Thorne et al., 2018) and retrieval-
augmented generation (Lewis et al., 2020; He et al.,
2022). At the early stage, sparse retrieval methods
such as TF-IDF or BM25 dominated passage re-
trieval by relying mainly on lexical term matching
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to compute relevance between the query and docu-
ment. Recently, there has been a surge of research
interest in neural network-based dense retrieval
(Karpukhin et al., 2020; Xiong et al., 2021). Dif-
ferent from sparse retrieval, dense retrieval resorts
to neural encoders to compute the dense represen-
tations of the query and document. This enables
dense retrieval to infer the relevance between them
at the semantic level rather than the surface level,
thus circumventing the term mismatch problem
suffered by the sparse retrieval models.

In recent years, the dual-encoder architecture has
been a standard workhorse for dense retrieval. One
major disadvantage of this architecture is that it
can only partially extract the interactions between
the query and document, since it encodes them sep-
arately. By comparison, the cross-encoder archi-
tecture can effectively capture the deep correlation
between them by taking the concatenation of the
query and document as input. By directly concate-
nating the query and document, the cross-encoder
gains an advantage in capturing interactions, but
also loses the advantage of pre-computing docu-
ment representations during inference. Therefore,
cross-encoder cannot wholly replace dual-encoder.

To enhance the retrieval models’ ability to cap-
ture interactions between queries and documents
while maintaining retrieval efficiency, previous
work mainly focuses on generating query-informed
document representations. One approach, known
as late interaction (Khattab and Zaharia, 2020), in-
volves encoding the query and document indepen-
dently in the early layers, while the later layers
model their interactions. Late interaction combines
dual-encoder and cross-encoder, making a trade-off
between retrieval efficiency and performance. On
the other hand, Li et al. (2022) proposed a promis-
ing retrieval architecture, dual-cross-encoder. As
shown in Figure 1 (c), this architecture computes
the query-related document representation by ex-
panding the document with a real or pseudo query.
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Compared with late interaction, dual-cross-
encoder (i.e., dense retrieval with document ex-
pansion) gets the query-related document represen-
tation without sacrificing the retrieval efficiency
at inference. However, there exists a discrepancy
between training and inference in the current dual-
cross-encoder retriever. Specifically, during train-
ing, the document is expanded using a real query,
whereas during inference, the document is enriched
with a generated query. This discrepancy causes the
learned retriever overly focus on the query, yet ne-
glect the document, when computing the document
representation. During inference, if the generated
query q′ significantly differs from the user-input
query q, the query-related document representation
will be misled by q′, thus degrading the perfor-
mance. That is why the dual-cross-encoder even
underperforms the vanilla dual-encoder. To ad-
dress this issue, Li et al. (2022) proposed a solu-
tion by computing multiview document represen-
tations using different generated queries for each
document. While multiview document representa-
tions improve retrieval performance, they come at
the cost of significantly increased retrieval latency,
which scales linearly with the number of views.

In this paper, we propose CAPSTONE, a
curriculum sampling for dense retrieval with
document expansion, to bridge the gap between
training and inference for dual-cross-encoder. Our
motivation is to expect the dual-cross-encoder re-
trieval model can utilize both the document d and
pseudo query q′ to compute the query-informed
document representation. To achieve this, we train
the dual-cross-encoder retriever by gradually in-
creasing the relevance of the pseudo query q′ to
the gold query q. Specifically, at the early training
stage, a pseudo query q′ irrelevant to q is selected,
causing the retriever to solely rely on the docu-
ment. As we progress to the late training stage,
a highly related pseudo query q′ is chosen, allow-
ing the retriever to learn to augment the document
representation with the pseudo query. By doing
so, we alleviate the discrepancy between training
and inference. During inference, if the user-input
query q is similar to the pseudo query q′, then q′
will contribute more to making the target document
d be retrieved. Otherwise, the retrieval model will
mainly rely on the relevance between q and d.

To summarize, the main contributions of this pa-
per are as follows: (1) We propose a curriculum
learning approach to bridge the gap between train-

ing and inference for dense retrieval with document
expansion, further improving the query-informed
document representation1. (2) We propose to com-
pute the typical document representation rather
than using multiview document representations at
inference, which balances the retrieval efficiency
and performance. (3) To verify the effectiveness,
we apply our proposed approach to two different
dense retrieval models, DPR (Karpukhin et al.,
2020) and coCondenser, and conduct extensive
experiments on three in-domain retrieval datasets,
and the zero-shot BEIR benchmark. Experimental
results show our proposed approach brings substan-
tial gains over competitive baselines. (4) To the
best of our knowledge, this is the first time that doc-
ument expansion is successfully applied to dense
retrieval without incurring extra retrieval latency.

2 Preliminary

In this section, we introduce the definition of text
retrieval and three architectures for dense retrieval.

Task Description. Text retrieval is meant to
find the most relevant M documents D+ =
{d+1 , d+2 , . . . , d+M} for the given query q from a
large corpus D = {d1, d2, . . . , dN} with N docu-
ments (M ≪ N ).

Dual-Encoder Architecture. Dual-encoder
(DE) is the typical dense retrieval architecture.
As shown in Figure 1 (a), it consists of a query
encoder Eq and a document encoder Ed, which
encode the query q and document d into dense
vectors Eq(q) and Ed(d), respectively. Previous
works usually initialize the encoders with BERT
and use the [CLS] vector at the last layer as the
dense representation. The similarity score between
q and d is measured with the inner product of their
vectors:

sim(q, d) = Eq(q)
TEd(d). (1)

Cross-Encoder Architecture. Since DE models
q and d separately, it is not good at capturing the rel-
evance between them. To capture the interactions
between them, cross-encoder (CE) directly takes
the concatenation of q and d as input, as shown in
Figure 1 (b). It first computes the dense represen-
tation E(q + d) for them and then uses the fully

1Our code is available at: https://github.com/
microsoft/SimXNS/CAPSTONE.
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Figure 1: Illustration of the dual-encoder, cross-encoder and dual-cross-encoder architectures. q and q′ denote the
gold query and generated query for the document d. ‘+’ is the concatenation operation.

connected layers (FCL) to compute the similarity
score:

sim(q, d) = FCL(E(d+ q)), (2)

where ‘+’ is the concatenation operation.

Dual-Cross-Encoder Architecture. Although
CE can extract more fine-grained relevance be-
tween q and d, it is not suitable for retrieval. To
combine the advantages of DE and CE, Li et al.
(2022) proposed dual-cross-encoder (DCE). As
shown in Figure 1 (c), DCE also consists of a query
encoder and a document encoder. The only differ-
ence between DE and DCE is that the document
encoder of DCE takes the document and the gener-
ated query q′ as input during inference. Therefore,
DCE can be regarded as DE with document expan-
sion. Similar to DE, DCE computes the similarity
score between q and d with the inner product:

sim(q, d) = Eq(q)
TEd(d+ q′). (3)

3 Methodology

In Section 3.1, we first identify the discrepancy
between training and inference of DCE. Then, we
introduce how to bridge the gap with curriculum
learning in Section 3.2. Finally, we will show our
proposed inference method in Section 3.3.

3.1 Discrepancy in Training and Inference
The training objective of DE is to learn dense rep-
resentations of queries and documents to maximize
the similarity score between the query and positive
document. The training loss is defined as follows:

L(q, d+, D−)

= −log
esim(q,d+)

esim(q,d+) +
∑

d−∈D−
esim(q,d−)

,

q
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Figure 2: Comparison of different document expansion
methods when training DCE, where the left is the vanilla
method and the right is our proposed method. d is
the positive document for q. d1, . . . , dk are the hard
negatives. dk+1, . . . , dn are the in-batch negatives. q′

and q′i are the generated query for d and di.

where D− is the set of negative documents, con-
taining hard negatives and in-batch negatives.

During training, DCE expands the positive doc-
ument d and hard negatives with the gold query
q (e.g., replacing d with d + q). For ease of un-
derstanding, we show how to construct positive,
hard negatives and in-batch negatives in the left of
Figure 2. As shown in this figure, DCE can filter
out all in-batch negatives by solely relying on the
query information from the expanded document,
since it only needs to observe whether the input
query appears in the expanded document. The uti-
lization of document information is necessary only
for distinguishing the positive from the hard nega-
tives. Consequently, the learned representation of
the expanded document has a strong bias toward
the query, while almost neglecting the document.

At inference, DCE enriches the document with
the generated query q′ rather than the user-input
query q. When q and q′ are different types of
queries for the target document d, q or Eq(q) will
be far from q′ or Ed(q

′). As the retrieval model
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Figure 3: The query selection process based on cur-
riculum learning in each training iteration. We first
compute the relevance score M(q, q′i) between the gen-
erated query q′i and the gold query q, and then sort the
generated queries in ascending order according to their
relevance scores to q. Next, we divide them into K
groups. At the i-th training iteration, we randomly sam-
ple one generated query from the i-th group, and then
use the sampled query to update the dual-cross encoder.

overly relies on the query part when computing the
document representation, Ed(d+ q′) will be close
to Ed(q

′). Based on these, we can easily infer that
Ed(d+ q′) is far away from Eq(q), making it more
difficult to retrieve the target document d. As a re-
sult, the dense retriever with document expansion
even underperforms its counterpart without using
document expansion. We attribute the performance
degradation to the discrepancy between training
and inference.

3.2 Bridging the Gap with Curriculum
Sampling

To bridge the gap between training and inference,
we propose to expand the document with its gener-
ated query during training. We show the training
process of our proposed method in the right of Fig-
ure 2. Although this idea is simple and intuitive, it
brings a significant advantage: the retriever cannot
take a shortcut during training, where the retriever
cannot exclude in-batch negatives by simply check-
ing whether the user-input query appears in the
expanded document.

However, this is not the end of the story. If the
generated query q′ used to expand d is irrelevant to
the gold query q, the document retriever of DCE
will ignore q′, which means DCE will degenerate
into DE. On the other hand, if q′ and q are similar,
we will encounter the abovementioned problem
(DCE will overly depend on q′). We expect the
dense retriever with document expansion can use

Ed(di + q1
i )

Eq(q)
⋯

E(di)

E(d1)

⋯

E(dN)

⋯

AverageRetrieve Ed(di + q2
i )

Ed(di + qS
i )

Figure 4: The overview of the retrieval stage. di is the
i− th document, and N refers to the size of the external
corpus. qji means the j-th generated query for di.

both the document and the generated query during
training, so that the learned document representa-
tion contains the information of both parts.

To fulfill this goal, we further propose the cur-
riculum sampling. To be concrete, at the early
training stage, the selected q′ has low correlations
with q, forcing the retriever to use the document.
As the training goes on, we select q′ with gradually
increased relevance to q, encouraging the retriever
to use the query. Driven by this motivation, we
first generate some queries for each document d.
Then, we compute the relevance score between the
generated query q′i and the gold query q with an
automatic evaluation metric M (i.e., ROUGE-L2 ).
After that, we sort the generated queries in ascend-
ing order according to their relevance scores to q
and divide them into K groups. We summarize the
curriculum sampling in Figure 3.

3.3 Inference

Before retrieving, we first generate S queries for
each document with the generator. Next, we con-
catenate a document with one generated query and
compute its latent representation with the document
encoder. Then, we will get S different representa-
tions for each document.

Corpus Expansion. Following Li et al. (2022),
we keep S representations for each document, so
the original corpus will be expanded to S times.
When a query comes, we need to retrieve the rele-
vant documents from the expanded corpus, which
increases the retrieval latency by S times.

Computing the Typical Representation of Dif-
ferent Views. To avoid increasing the retrieval
latency, we can retain a single representation for
each document. The easiest way is to set S to 1.
However, we found that the retrieval performance

2The evaluation code for ROUGE-L is available at: https:
//huggingface.co/spaces/evaluate-metric/rouge.
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Datasets Train Dev Test #Passage
MS-MARCO 502,939 6,980 - 8,841,823
TREC-19 - - 43 8,841,823
TREC-20 - - 54 8,841,823

Table 1: Basic statistics of retrieval datasets. #Passage
is the number of unique passages in the retrieval corpus.

is positively correlated to the number of views, S.
This is because a larger value of S increases the
probability of the user-input query being relevant
to one of the generated queries. Therefore, set-
ting S to 1 will degrade the retrieval performance
compared with expanding the corpus.

Given this, we propose to compute the typical
representation for a document by averaging all S
different views. This approach allows us to main-
tain only one representation for each document. As
shown in Figure 4, our proposed method does not
bring additional retrieval latency3, yet it performs
much better than simply setting S to 1 (please refer
to Section 4.3 for more details).

4 Experiments

4.1 Experimental Setups

Datasets. We conduct experiments on three pas-
sage retrieval datasets: MS-MARCO passage rank-
ing (Bajaj et al., 2016), TREC Deep Learning
(DL) Track 2019 (Craswell et al., 2020) and 2020
(Craswell et al., 2021). MS-MARCO collects real
user queries from Bing search and passages from
web collection. TREC DL tracks share the same
retrieval corpus with MS-MARCO and provide an-
other two annotated test sets. We train our models
on the MS-MARCO train set, and then evaluate
them on the MS-MARCO development set4, TREC
DL 19 and 20 test sets. Table 1 shows the statis-
tics of these datasets. We evaluate the zero-shot
retrieval performance on BEIR benchmark (Thakur
et al., 2021), which contains 18 datasets across
different domains.

Evaluation Metrics. Following previous work,
we use MRR@10, Recall@50, and Recall@1000
to evaluate the retrieval performance on MS-
MARCO, where MRR@10 is the most important
metric. We resort to nDCG@10 for TREC DL

3We can pre-generate queries and pre-compute document
representations. Therefore, the retrieval latency mentioned in
this paper does not encompass these pre-processing steps.

4The MS-MARCO test set is not publicly available.

tracks and BEIR benchmark5.

Implementation Details. We set the maximum
document length to be 144 tokens, and the maxi-
mum query length to be 32 tokens. All models are
optimized using the AdamW optimizer (Loshchilov
and Hutter, 2019) with the learning rate of 5×10−6,
and a linear learning rate schedule with 10% warm-
up steps for around three epochs. Every training
batch contains 64 queries, and each query is ac-
companied by one positive and 31 hard negative
documents. Following Gao and Callan (2022), we
train our proposed model for two stages and initial-
ize the retriever with coCondenser at each stage.
At the first training stage, the hard negatives are
sampled from the official BM25 hard negatives, but
at the second training stage, the hard negatives are
sampled from the mined hard negatives. For each
training stage, we evaluate the last model training
checkpoint on the retrieval datasets.

The query generator is built upon the seq2seq
architecture (Sutskever et al., 2014; He and Yiu,
2022), designed to take a passage as its input and
has been specifically trained to create synthetic
queries that correspond to the provided passage.
Nogueira and Lin (2019) initialized the query gen-
erator with the T5-base model. They trained it on
the MS-MARCO dataset and generated 80 queries
for each passage within MS-MARCO. Following
Li et al. (2022), we use the queries6 released by
Nogueira and Lin (2019) to expand the passages in
the MS-MARCO dataset. In parallel, for BEIR,
we use the query generator7 fine-tuned on MS-
MARCO to generate 5 queries for each document
within the BEIR benchmark. During the query
generation process, we employ the top-k sampling
approach with k set to 10, and we limit the maxi-
mum length of the synthetic queries to 64 tokens.

During training, we implement our proposed cur-
riculum sampling with all 80 queries and divide
them into K groups, but at inference, we resort to
the first 10 (i.e., S = 10) and first 5 (i.e., S = 5)
queries to compute the typical document represen-
tation for MS-MARCO and BEIR benchmark, re-
spectively. At the first training stage, we set K to
3, and at the second training stage, we set K to 4.

5The official evaluation toolkit is available at https://
github.com/beir-cellar/beir.

6https://git.uwaterloo.ca/jimmylin/
doc2query-data/raw/master/T5-passage/predicted_
queries_topk_sampling.zip

7https://huggingface.co/castorini/
doc2query-t5-base-msmarco
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Models MS-MARCO TREC DL 19 TREC DL 20
MRR@10 R@50 R@1000 nDCG@10 nDCG@10

Sparse retrieval
BM25 (Yang et al., 2017) 18.5 58.5 85.7 51.2 47.7
DeepCT (Dai and Callan, 2019) 24.3 69.0 91.0 57.2 -
DocT5Query (Nogueira and Lin, 2019) 27.7 75.6 94.7 64.2 -
Dense retrieval
DPR (Karpukhin et al., 2020) 31.4 - 95.3 59.0 62.1
ANCE (Xiong et al., 2021) 33.0 - 95.9 64.5 64.6
SEED (Lu et al., 2021) 33.9 - 96.1 - -
STAR (Zhan et al., 2021) 34.7 - - 68.3 -
TAS-B (Hofstätter et al., 2021) 34.0 - 97.5 71.2 69.3
RocketQA (Qu et al., 2021) 37.0 85.5 97.9 - -
COIL (Gao et al., 2021) 35.5 - 96.3 70.4 -
ColBERT (Khattab and Zaharia, 2020) 36.0 82.9 96.8 - -
DCE (Li et al., 2022) 36.0 - 96.4 68.3 68.9
RetroMAE (Xiao et al., 2022) 35.0 - 97.6 - -
Condenser (Gao and Callan, 2021) 36.6 - 97.4 69.8 -
coCondenser (Gao and Callan, 2022)* 37.9 86.3 98.4 70.7 69.8
CAPSTONE 38.6 86.6 98.6 71.1 70.3

Table 2: Passage retrieval results on MS-Marco Dev, and TREC datasets. Results with * are from our reproduction.

During inference, we pre-compute representations
for all documents in the retrieval corpus, and build
IndexFlatIP indexes for document representations
with the FAISS library (Johnson et al., 2019) to
accelerate retrieval.

We implement all models with the HuggingFace
Transformers library (Wolf et al., 2019) and con-
duct all experiments on 8 NVIDIA Tesla V100
GPUs with 32 GB memory. We also use the gradi-
ent checkpointing technology (Chen et al., 2016)
to reduce the memory of deep neural models, and
mixed precision training8 to speed up training.

4.2 Experimental Results

In-domain Performance. Table 2 shows the per-
formance of our proposed model and baselines on
MS-MARCO, TREC-2019 and TREC-2020. Since
we initialize our model, CAPSTONE, with coCon-
denser, coCondenser is the main comparison model.
From Table 2, we can see our proposed model im-
proves coCondenser by a large margin, increasing
by 0.7 points in MRR@10 on MS-MARCO, 0.4
points on TREC DL 19 and 0.5 points on TREC
DL 20 datasets. These improvements verify the
effectiveness of our proposed curriculum learning
and typical representation strategy.

Zero-shot Performance. To test the out-of-
domain generalization capabilities, we first use the
T5-base model (Nogueira and Lin, 2019) trained
on MS-MARCO to generate 5 queries for each doc-
ument of BEIR benchmark, and then evaluate our

8https://github.com/NVIDIA/apex

model, CAPSTONE, fine-tuned with MS-MARCO
on the BEIR benchmark. During evaluation, we
compute the typical representation for each doc-
ument with S = 5. As shown in Table 3, CAP-
STONE performs much better than all baselines in
the average performance. Compared with its coun-
terpart without document expansion (i.e., coCon-
denser), our model achieves improvements on 11
out of 18 datasets and increases nDCG@10 by 0.6
points in the average performance. These improve-
ments demonstrate that our approach generalizes
well on diverse domains under zero-shot settings.

4.3 Ablation Study and Analysis
To analyze our method more directly, experiments
in this section are based on the vanilla DPR initial-
ized with the ERNIE-2.0-base model (Sun et al.,
2020) without using dense retrieval pre-training
strategies, if there is no particular statement.

Corpus Expansion vs. Document Expansion.
In this paper, we append only one query to a doc-
ument both at training and inference. As stated
in 3.3, corpus expansion will enlarge the original
corpus to S times during inference. In contrast,
document expansion for sparse retrieval (Nogueira
and Lin, 2019) appends multiple generated queries
to a document at inference, thus without bringing
extra retrieval latency. Since document expansion9

has shown effectiveness in sparse retrieval, it is
very intuitive to consider whether it is effective
for dense retrieval. To answer this question, we

9In this section, document expansion means expanding a
document with multiple queries.
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Dataset BERT LaPraDoR SimCSE DiffCSE SEED Condenser coCondenser* CAPSTONE
TREC-COVID 64.9 49.5 52.4 49.2 61.2 75.4 74.0 77.9

BioASQ 26.2 23.9 26.4 25.8 29.7 31.7 34.1 34.3
NFCorpus 25.7 28.3 25.0 25.9 25.6 27.8 32.4 33.0

NQ 43.8 41.5 41.2 41.2 42.5 45.9 50.5 50.5
HotpotQA 47.8 48.8 50.2 49.9 52.8 53.7 56.4 56.7
FiQA-2018 23.7 26.6 24.0 22.9 24.4 26.1 30.0 30.4

Signal-1M (RT) 21.6 24.5 26.4 26.0 24.6 25.8 24.7 23.1
TREC-NEWS 36.2 20.6 36.8 36.3 33.5 35.3 39.1 40.3

Robust04 36.4 31.0 35.3 34.3 34.8 35.2 40.3 40.7
ArguAna 35.7 50.3 43.6 46.8 34.7 37.5 40.9 39.2

Touche-2020 27.0 17.8 17.8 16.8 18.0 22.3 27.0 31.0
CQADupStack 28.4 32.6 29.5 30.5 28.5 31.6 30.0 30.0

Quora 78.2 84.3 84.8 85.0 84.9 85.5 84.3 83.8
DBPedia 29.8 32.8 30.4 30.3 32.4 33.1 37.2 38.0

SCIDOCS 11.5 14.5 12.5 12.5 11.7 13.6 14.3 14.3
FEVER 68.4 51.8 65.1 64.1 65.3 68.2 72.4 72.7

Climate-FEVER 20.5 17.2 22.2 20.0 17.6 19.9 19.4 19.3
SciFact 50.4 48.3 54.5 52.3 55.6 57.0 58.3 60.5

Avg. Performance 37.6 35.8 37.7 37.2 37.7 40.3 42.7 43.3

Table 3: Zero-shot dense retrieval performances on BEIR benchmark (measured with nDCG@10). Results with *
are from our reproduction.
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Figure 5: Results of DPR with corpus, document, and
asymmetric expansion on the dev set of MS-Marco.

conduct experiments on DPR with three different
settings: (1) corpus expansion; (2) document ex-
pansion; (3) asymmetric expansion, which appends
one query to a document at training, but appends
S queries to a document at inference. As shown
in Figure 5, unlike corpus expansion, using more
queries does not bring clear improvements for doc-
ument and asymmetric expansion, but sometimes
damages their performances. To explain this, we
illustrate document expansion and corpus expan-
sion in Figure 6. Document expansion models the
target document and all queries together, where the
irrelevant queries acting like noise will corrupt the
document representation. By comparison, corpus
expansion nicely bypasses this problem by model-
ing different queries independently.

Effect of Query Selection Strategies. To demon-
strate the advantage of our proposed curriculum
sampling, we expand the positive and negative doc-

di q1
i

di q2
i

di qS
i

…

di q1
i q2

i qS
i

…

q
Retrieve

Retrieve
q

Document

Expansion

Corpus

Expansion

q1
i q2

i qS
i

…> > >
Relevance 

to query q

Figure 6: Illustration of document expansion and corpus
expansion at inference. For simplicity, only the positive
document di of the query q is shown.

uments with different query selection strategies: (1)
gold, meaning using the gold query (i.e., strategy
used by the vanilla DCE (Li et al., 2022)); (2) ran-
dom, meaning randomly sampling a query from
the generated queries; (3) top-k and (4) bottom-
k meaning sampling a query from the top-k and
bottom-k sorted queries, respectively.

From Figure 7, we observe that: (1) DPR trained
with the gold query performs worst among all
strategies, even worse than the vanilla DPR (DPR
w/o query) when S < 8. As we have stated above,
expanding the document with the gold query during
training will make the retriever pay more attention
to the query while ignoring the document. At infer-
ence, when the provided queries are limited (i.e.,
S is small), it is unlikely to find a query similar to
the user-input query. However, as S increases, the
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Figure 7: Comparison of different query selection strate-
gies. During training, we first expand the document
with a query selected from the generated queries us-
ing a specific strategy, and then train DPR with the
expanded document. During inference, we evaluate
the well-trained DPR retrievers with corpus expansion
(solid lines) and the typical representation (dotted lines)
on the dev set of MS-Marco, where the solid and dotted
lines with the same color are results for the same DPR.

probability of finding a query similar to the user-
input query also increases. (2) DPR trained with
the top-1 query performs much better than DPR
trained with the gold query, since it slightly shifts
its attention from the query to the document. How-
ever, it still cannot exceed DPR w/o query when
S = 1, indicating that it fails to fully utilize the doc-
ument like DPR. (3) If the document is expanded
with a weakly related (bottom-1) or random query
at training, DPR with both settings will outperform
DPR w/o query when S = 1. These two strate-
gies enable DPR to mine query information with-
out sacrificing document information. However,
their performances are not strongly positively cor-
related with S like the top-1 strategies, indicating it
does not fully use the query information. (4) DPR
with the curriculum strategy outperforms DPR w/o
query when S = 1, and its performance linearly in-
creases with S, verifying this strategy enables DPR
to utilize both the document and query to model
the query-informed document representation.

Effect of the Typical Representation. Although
corpus expansion makes the retrieval performance
of our proposed curriculum sampling improve with
the increase of S (see the solid red line in Figure
7), the retrieval latency also increases linearly. To
alleviate this, we propose to use the average of dif-
ferent document views as the typical representation.
Among all strategies (see the dotted lines in the

Variants MRR@10 R@1000
DPR 34.26 97.02
CAPSTONE+DPR w/ S = 1 35.15 97.19
CAPSTONE+DPR w/ average 35.66 97.28
CAPSTONE+DPR w/ max 35.45 97.25
CAPSTONE+DPR w/ median 35.64 97.20

Table 4: Results of CAPSTONE initialized with DPR
using different pooling methods to compute the typical
representation on the dev set of MS-Marco.

Models BM25 Negatives Mined Negatives
MRR@10 R@1000 MRR@10 R@1000

DPR 34.26 97.02 36.44 97.65
CAPSTONE+DPR 35.66 97.28 37.28 97.82
coCondenser 35.91 98.21 37.94 98.41
CAPSTONE+coCondenser 36.75 98.21 38.65 98.60

Table 5: Performance of CAPSTONE initialized with
DPR and coCondenser at the two training stages on the
dev set of MS-Marco.

Figure 7), our proposed curriculum sampling per-
forms best, which again verifies the effectiveness
of curriculum sampling. In addition, the retrieval
performance of typical representations outperforms
its counterpart using corpus expansion with S = 1
for all query selection strategies. More importantly,
for the curriculum learning strategy, the typical rep-
resentation enhances the vanilla DPR by 1.2 on
MRR10, and is even on par with its counterpart
using corpus expansion with S = 3, but there still
exists a clear performance gap between the typical
representation and corpus expansion with S = 10.
Therefore, the typical representation balances the
retrieval efficiency and performance.

Comparison of Methods for Computing the Typ-
ical Representation. We consider three different
pooling methods to compute the typical document
representation: taking the average/max/median
pooling of different document views. From Table
4, we observe that (1) DPR with S = 1 improves
DPR by 0.9 on MRR@10; (2) DPR with the typical
representation brings an extra 0.5 improvements on
MRR@10; (3) There is no significant difference in
the results of the three pooling methods. Given the
simplicity, we use the average pooling to compute
the typical representation.

Multi-stage Retrieval Performance. To further
verify the effectiveness of our proposed approach,
we apply our proposed approach to DPR and co-
Condenser. From Table 5, we observe that our ap-
proach brings clear improvements to DPR with 1.4
and 0.8 increases on MRR@10 at the two training
stages, respectively. In addition, we witness similar
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improvements on coCondenser, proving that our
approach does not depend on retrieval models and
is applicable to different retrieval models.

5 Related Work

5.1 Dense Retrieval

In recent years, with the development of large-
scale pre-trained language models, such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), we witness the research interest in infor-
mation retrieval shifting from the traditional sparse
retrieval to neural dense retrieval. Karpukhin et al.
(2020); Xiong et al. (2021) proposed dense pas-
sage retriever (DPR), which uses two neural en-
coders initialized with BERT to model the query
and document, independently. The subsequent
works follow this dual-encoder framework. One
line of work improves dense retrieval by mining
hard negatives, where they select the top-ranked
documents retrieved by the recent retriever as hard
negatives and then re-train the retriever with the
newly mined hard negatives (Xiong et al., 2021;
Qu et al., 2021). However, the mined hard nega-
tives are highly likely to contain false negatives,
harming the performance. To mitigate this, follow-
ing studies denoise the mined hard negatives with
re-rankers (Qu et al., 2021; Ren et al., 2021; Zhang
et al., 2022). Another kind of work focuses on
pre-training to make the pre-trained models more
suitable for dense retrieval, such as Condenser (Gao
and Callan, 2021), coCondenser (Gao and Callan,
2022) and SIMLM (Wang et al., 2022).

Dense retrieval models typically depend on ex-
tensive supervised data, comprising pairs of queries
and positive documents. To address the challenge
of limited training data, Ma et al. (2021); Sun et al.
(2021) proposed to train a query generator on high-
resource information retrieval data, and then used
the query generator to generate synthetic queries
for low-source target domains. Additionally, Dai
et al. (2023) harnessed large language models in
zero/few settings to produce synthetic queries for
documents in target domains, eliminating the need
for training a general query generator. In contrast
to these approaches, our work leverages synthetic
queries for document expansion.

5.2 Query Expansion

Query expansion enriches the query with various
heuristically discovered relevant contexts. For ex-
ample, GAR (Mao et al., 2021) expands the query

by adding relevant contexts, including the answer,
the sentence containing the answer, and the title
of a passage where the answer belongs. However,
query expansion will increase the retrieval latency
during inference, since the generation model is re-
quired to generate these relevant contexts for query
expansion. Therefore, we mainly focus on docu-
ment expansion in this work.

5.3 Document Expansion

Document expansion augments the document with
generated queries, which the document might an-
swer. Compared with query expansion, document
expansion can be conducted prior to indexing with-
out incurring extra retrieval latency. Document
expansion has shown its effectiveness on sparse re-
trieval models (Nogueira et al., 2019; Nogueira and
Lin, 2019), yet how to apply it to dense retrieval
models is still under-explored. Li et al. (2022)
first applied document expansion to dense retrieval
models. However, their models suffer from the dis-
crepancy between training and inference, thus even
degrading the vanilla dense retrieval models under
the single-view document representation settings.
To mitigate this discrepancy, we propose a curricu-
lum learning approach, which successfully applies
document expansion to dense retrieval models.

6 Conclusion

This work proposes the curriculum sampling for
dense retrieval with document expansion, which
enables dense retrieval models to learn much better
query-related document representations. In addi-
tion, we propose to compute the typical representa-
tion of different document views, which balances
inference efficiency and effectiveness. Our experi-
mental results on the in- and out-of-domain datasets
verify the effectiveness of the curriculum sampling
and typical representation.

7 Limitations

There are two possible limitations of this work. The
first limitation is that we need to generate synthetic
queries for each document in the retrieval corpus,
which is very time-consuming. Luckily, this pro-
cess does not bring extra delay to retrieval. In addi-
tion, limited by sufficient computational resources,
we only verify the effectiveness of our method on
vanilla DPR and coCondenser. In the future, we
plan to apply our approach to other dense retrieval
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models and verify the effectiveness of our method
on these models.
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