
Editing Large Language Models: Problems, Methods, and Opportunities

Yunzhi Yao♣♠∗, Peng Wang♣♠∗, Bozhong Tian♣♠, Siyuan Cheng♣♠, Zhoubo Li♣♠,
Shumin Deng♡, Huajun Chen♣♠♢, Ningyu Zhang♣♠†,

♣ Zhejiang University ♠ Zhejiang University - Ant Group Joint Laboratory of Knowledge Graph
♢Donghai Laboratory ♡ National University of Singapore, NUS-NCS Joint Lab, Singapore

{yyztodd,peng2001,tbozhong,sycheng,zhoubo.li}@zju.edu.cn
{huajunsir,zhangningyu}@zju.edu.cn,shumin@nus.edu.sg

Abstract

Despite the ability to train capable LLMs, the
methodology for maintaining their relevancy
and rectifying errors remains elusive. To this
end, the past few years have witnessed a surge
in techniques for editing LLMs, the objective
of which is to efficiently alter the behavior of
LLMs within a specific domain without nega-
tively impacting performance across other in-
puts. This paper embarks on a deep exploration
of the problems, methods, and opportunities re-
lated to model editing for LLMs. In particular,
we provide an exhaustive overview of the task
definition and challenges associated with model
editing, along with an in-depth empirical anal-
ysis of the most progressive methods currently
at our disposal. We also build a new bench-
mark dataset to facilitate a more robust eval-
uation and pinpoint enduring issues intrinsic
to existing techniques. Our objective is to pro-
vide valuable insights into the effectiveness and
feasibility of each editing technique, thereby
assisting the community in making informed
decisions on the selection of the most appropri-
ate method for a specific task or context1.

1 Introduction

Large language models (LLMs) have demonstrated
a remarkable capacity for understanding and gener-
ating human-like text (Brown et al., 2020; OpenAI,
2023; Anil et al., 2023; Touvron et al., 2023; Qiao
et al., 2022; Zhao et al., 2023). Despite the profi-
ciency in training LLMs, the strategies for ensuring
their relevance and fixing their bugs remain unclear.
Ideally, as the world’s state evolves, we aim to
update LLMs in a way that sidesteps the computa-
tional burden associated with training a wholly new
model. As shown in Figure 1, to address this issue,
the concept of model editing has been proposed

∗Equal contribution.
†Corresponding author.

1Code and datasets are available at https://github.com/
zjunlp/EasyEdit.

LLMs

Who is the president of the US?xe :

Joe Biden
Donald Trump

Joe Biden
Donald Trump

LLMs

; ye : Joe Biden

xe xe

Model Editing

fθe
fθ

Figure 1: Model editing to fix and update LLMs.

(Sinitsin et al., 2020; De Cao et al., 2021), enabling
data-efficient alterations to the behavior of models,
specifically within a designated realm of interest,
while ensuring no adverse impact on other inputs.

Currently, numerous works on model editing for
LLMs (De Cao et al., 2021; Meng et al., 2022,
2023; Sinitsin et al., 2020; Huang et al., 2023) have
made strides in various editing tasks and settings.
As illustrated in Figure 2, these works manipulate
the model’s output for specific cases by either in-
tegrating an auxiliary network with the original
unchanged model or altering the model parameters
responsible for the undesirable output. Despite the
wide range of model editing techniques present in
the literature, a comprehensive comparative anal-
ysis, assessing these methods in uniform experi-
mental conditions, is notably lacking. This absence
of direct comparison impairs our ability to discern
the relative merits and demerits of each approach,
consequently hindering our comprehension of their
adaptability across different problem domains.

To confront this issue, the present study endeav-
ors to establish a standard problem definition ac-
companied by a meticulous appraisal of these meth-
ods (§2, §3). We conduct experiments under reg-
ulated conditions, fostering an impartial compar-
ison of their respective strengths and weaknesses
(§4). We initially use two popular model editing
datasets, ZsRE (Levy et al., 2017) and COUN-
TERFACT (Meng et al., 2022), and two structurally

https://github.com/zjunlp/EasyEdit
https://github.com/zjunlp/EasyEdit


different language models, T5 (Raffel et al., 2020a)
(encoder-decoder) and GPT-J (Wang and Komat-
suzaki, 2021a) (decoder only), as our base mod-
els. We also evaluate the performance of larger
models, OPT-13B (Zhang et al., 2022a) and GPT-
NEOX-20B (Black et al., 2022). Beyond basic edit
settings, we assess performance for batch and se-
quential editing. While we observe that current
methods have demonstrated considerable capacity
in factual model editing tasks, we reconsider the
current evaluation and create a more encompassing
evaluation dataset (§5): portability (robust gen-
eralization capabilities), locality (side effect), and
efficiency (time and memory usage). We find cur-
rent model editing methods are somewhat limited
on these levels, thereby constraining their practical
application, and deserve more research in the future.
Through systematic evaluation, we aim to provide
valuable insights on each model editing technique’s
effectiveness, aiding researchers in choosing the
appropriate method for specific tasks. By system-
atically evaluating their performance, we aim to
impart valuable insights into the effectiveness and
feasibility of each model editing technique, ulti-
mately assisting the research community in mak-
ing informed decisions when selecting a method
for a specific task or context. It’s also noticeable,
through the creation of a more encompassing eval-
uation dataset (S5), that existing approaches fall
short in some terms.

2 Problems Definition

Model editing, as elucidated by Mitchell et al.
(2022b), aims to adjust an initial base model’s (fθ,
θ signifies the model’s parameters) behavior on the
particular edit descriptor (xe, ye) efficiently with-
out influencing the model behavior on other sam-
ples. The ultimate goal is to create an edited model,
denoted fθe . which succinctly encapsulates the in-
tended modifications in the model’s performance
Specifically, the basic model fθ is represented by a
function f : X 7→ Y that associates an input x with
its corresponding prediction y. Given an edit de-
scriptor comprising the edit input xe and edit label
ye such that fθ(xe) ̸= ye, the post-edit model fθe
is designed to produce the expected output, where
fθe(xe) = ye.

The model editing process generally impacts the
predictions for a broad set of inputs that are closely
associated with the edit example. This collection of
inputs is called the editing scope. A successful edit

should adjust the model’s behavior for examples
within the editing scope while leaving its perfor-
mance for out-of-scope examples unaltered.

fθe(x) =

{
ye if x ∈ I(xe, ye)

fθ(x) if x ∈ O(xe, ye)
(1)

The in-scope I(xe, ye) usually encompasses xe
along with its equivalence neighborhood N(xe, ye),
which includes related input/output pairs. In con-
trast, the out-of-scope O(xe, ye) consists of inputs
that are unrelated to the edit example. The post-edit
model fe should satisfy the following three proper-
ties: reliability, generalization, and locality.

Reliability Previous works (Huang et al., 2023;
De Cao et al., 2021; Meng et al., 2022) define a
reliable edit when the post-edit model fθe gives the
target answer for the case (xe, ye) to be edited. The
reliability is measured as the average accuracy of
the edit case:

Ex′
e,y

′
e∼{(xe,ye)}1

{
argmaxy fθe

(
y | x′e

)
= y′e

}
(2)

Generalization The post-edit model fθe should
also edit the equivalent neighbour N (xe, ye) (e.g.,
rephrased sentences). It is evaluated by the aver-
age accuracy of the model fθe on examples drawn
uniformly from the equivalence neighborhood:

Ex′
e,y

′
e∼N(xe,ye)1

{
argmaxy fθe

(
y | x′e

)
= y′e

}
(3)

Locality also noted as Specificity in some work.
Editing should be implemented locally, which
means the post-edit model fθe should not change
the output of the irrelevant examples in the out-of-
scope O(xe, ye). Hence, the locality is evaluated
by the rate at which the post-edit model fθe’s pre-
dictions are unchanged as the pre-edit fθ model:

Ex′
e,y

′
e∼O(xe,ye)1

{
fθe

(
y | x′e

)
= fθ

(
y | x′e

)}
(4)

3 Current Methods

Current model editing methods for LLMs can be
categorized into two main paradigms as shown in
Figure 2: modifying the model’s parameters or pre-
serving the model’s parameters. More comparisons
can be seen in Table 6.



Large Language Models

(a) Preserve Models’ Parameters

Fix Error Neurons 

Who is the current 
president of the US?

Donald Trump

Post-Edit

GPT

(b) Modify Models’ Parameters

Additional Parameters

Locate and Edit

Hyper Editor Δ
LLMs➕Δ

LLaMA
Bert

OPT

Pre-Edit

Find Error Neurons

Memory Based

Meta-learning

θ

Pre-Edit θ

θe

 The current president of 
the US is Joe Biden

Post-Edit θe

Retrieve

LLMs

Update addition parameter

Figure 2: An overview of two paradigms of model editing for LLMs.

3.1 Methods for Preserving LLMs’ Parameters

Memory-based Model This kind of method
stores all edit examples explicitly in memory and
employs a retriever to extract the most relevant
edit facts for each new input to guide the model to
generate the edited fact. SERAC (Mitchell et al.,
2022b) presents an approach that adopts a distinct
counterfactual model while leaving the original
model unchanged. Specifically, it employs a scope
classifier to compute the likelihood of new input
falling within the purview of stored edit examples.
If the input matches any cached edit in memory,
the counterfactual model’s prediction is based on
the input and the most probable edit. Otherwise, if
the input is out-of-scope for all edits, the original
model’s prediction is given. Additionally, recent
research demonstrates that LLMs possess robust
capabilities for in-context learning. Instead of re-
sorting to an extra model trained with new facts, the
model itself can generate outputs corresponding to
the provided knowledge given a refined knowledge
context as a prompt. This kind of method edits the
language model by prompting the model with the
edited fact and retrieved edit demonstrations from
the edit memory and includes the following work:
MemPrompt (Madaan et al., 2022),IKE (Zheng
et al., 2023) and MeLLo (Zhong et al., 2023).

Additional Parameters This paradigm intro-
duces extra trainable parameters within the lan-
guage models. These parameters are trained on
a modified knowledge dataset while the original

model parameters remain static. T-Patcher (Huang
et al., 2023) integrates one neuron(patch) for one
mistake in the last layer of the Feed-Forward Net-
work (FFN) of the model, which takes effect only
when encountering its corresponding mistake. Ca-
liNET (Dong et al., 2022) incorporates several neu-
rons for multiple edit cases. Differently, GRACE
(Hartvigsen et al., 2022) maintains a discrete code-
book as an Adapter, adding and updating elements
over time to edit a model’s predictions.

3.2 Methods for Modifying LLMs’ Parameters

This paradigm would update part of the parameter
θ, it applies an update ∆ matrix to edit the model.

Locate-Then-Edit This paradigm initially identi-
fies parameters corresponding to specific knowl-
edge and modifies them through direct updates
to the target parameters. The Knowledge Neu-
ron (KN) method (Dai et al., 2022) introduces a
knowledge attribution technique to pinpoint the
“knowledge neuron” (a key-value pair in the FFN
matrix) that embodies the knowledge and then up-
dates these neurons. ROME (Meng et al., 2022)
applies causal mediation analysis to locate the edit-
ing area. Instead of modifying the knowledge neu-
rons in the FFN, ROME alters the entire matrix.
ROME views model editing as the least squares
with a linear equality constraint and uses the La-
grange multiplier to solve it. However, KN and
ROME can only edit one factual association at a
time. To this end, MEMIT (Meng et al., 2023) ex-



DataSet Model Metric FT-L SERAC IKE CaliNet T-Patcher KE MEND KN ROME MEMIT

ZsRE

T5-XL
Reliability 20.71 99.80 67.00 5.17 30.52 3.00 78.80 22.51 - -

Generalization 19.68 99.66 67.11 4.81 30.53 5.40 89.80 22.70 - -
Locality 89.01 98.13 63.60 72.47 77.10 96.43 98.45 16.43 - -

GPT-J
Reliability 54.70 90.16 99.96 22.72 97.12 6.60 98.15 11.34 99.18 99.23

Generalization 49.20 89.96 99.87 0.12 94.95 7.80 97.66 9.40 94.90 87.16
Locality 37.24 99.90 59.21 12.03 96.24 94.18 97.39 90.03 99.19 99.62

COUNTERFACT

T5-XL
Reliability 33.57 99.89 97.77 7.76 80.26 1.00 81.40 47.86 - -

Generalization 23.54 98.71 82.99 7.57 21.73 1.40 93.40 46.78 - -
Locality 72.72 99.93 37.76 27.75 85.09 96.28 91.58 57.10 - -

GPT-J
Reliability 99.90 99.78 99.61 43.58 100.00 13.40 73.80 1.66 99.80 99.90

Generalization 97.53 99.41 72.67 0.66 83.98 11.00 74.20 1.38 86.63 73.13
Locality 1.02 98.89 35.57 2.69 8.37 94.38 93.75 58.28 93.61 97.17

Table 1: Results of existing methods on three metrics of the dataset. The settings for these models and datasets are
the same with Meng et al. (2022). ‘-’ refers to the results that the methods empirically fail to edit LLMs.

pands on the setup of ROME, realizing the situation
of synchronous editing for multiple cases. Based
on MEMIT, PMET (Li et al., 2023a) involves the
attention value to get a better performance.

Meta-learning Meta-learning methods employ
a hyper network to learn the necessary ∆ for edit-
ing the LLMs. Knowledge Editor (KE) (De Cao
et al., 2021) leverages a hypernetwork (specifically,
a bidirectional-LSTM) to predict the weight up-
date for each data point, thereby enabling the con-
strained optimization of editing target knowledge
without disrupting others. However, this approach
falls short when it comes to editing LLMs. To
overcome this limitation, Model Editor Networks
with Gradient Decomposition (MEND) (Mitchell
et al., 2022a) learns to transform the gradient of
fine-tuned language models by employing a low-
rank decomposition of gradients, which can be ap-
plied to LLMs with better performance.

4 Preliminary Experiments

Considering the abundance of studies and datasets
centered on factual knowledge, we use it as our pri-
mary comparison foundation. Our initial controlled
experiments, conducted using two prominent fac-
tual knowledge datasets (Table 1), facilitate a direct
comparison of methods, highlighting their unique
strengths and limitations (Wang et al., 2023b).

4.1 Experiment Setting

We use two prominent model editing datasets:
ZsRE and COUNTERFACT, with their details avail-
able in Appendix B. Previous studies typically used
smaller language models (<1B) and demonstrated
the effectiveness of current editing methods on
smaller models like BERT (Devlin et al., 2019).

However, whether these methods work for larger
models is still unexplored. Hence, considering the
editing task and future developments, we focus on
generation-based models and choose larger ones:
T5-XL (3B) and GPT-J (6B), representing both
encoder-decoder and decoder-only structures.

We’ve selected influential works from each
method type. Alongside existing model editing
techniques, we additionally examined the results of
fine-tuning, an elementary approach for model up-
dating. To avoid the computational cost of retrain-
ing all layers, we employed methodology proposed
by Meng et al. (2022), fine-tuning layers identified
by ROME and we denoted it as FT-L. This strategy
ensures a fair comparison with other direct editing
methods, bolstering our analysis’s validity. More
details can be found in Appendix A.

4.2 Experiment Results

Basic Model Table 1 reveals SERAC and
ROME’s superior performance on the ZsRE and
COUNTERFACT datasets, with SERAC exceeding
90% on several metrics. While MEMIT lacks its
generalization, it excels in reliability and locality.
KE, CaliNET, and KN perform poorly, with accept-
able performance in smaller models, but mediocrity
in larger ones. MEND performs well on the two
datasets, achieving over 80% in the results on T5,
although not as impressive as ROME and SERAC.
The performance of the T-Patcher model fluctuates
across different model architectures and sizes. For
instance, it underperforms on T5-XL for the ZsRE
dataset, while it performs perfectly on GPT-J. In
the case of the COUNTERFACT dataset, T-Patcher
achieves satisfactory reliability and locality on T5
but lacks generalization. Conversely, on GPT-J,
the model excels in reliability and generalization



FT-L SERAC MEND MEMIT
0

100
Reliability

FT-L SERAC MEND MEMIT

Generalization

FT-L SERAC MEND MEMIT

Locality Batch Number
1
10
100
1000

Figure 3: Batch Editing performance against batch number. We test batch numbers in [1,10,100,1000] for MEMIT.
Due to the huge memory usage for FT, SERAC and MEND, we didn’t test batch 1000 for these methods.

but underperforms in the locality. This instability
can be attributed to the model architecture since
T-Patcher adds a neuron to the final decoder layer
for T5; however, the encoder may still retain the
original knowledge. FT-L performs less impres-
sively than ROME on PLMs, even when modifying
the same position. It shows underwhelming perfor-
mance on the ZsRE dataset but equals ROME in
reliability and generalization with the COUNTER-
FACT dataset on GPT-J. Yet, its low locality score
suggests potential impacts on unrelated knowledge
areas. IKE demonstrates good reliability but strug-
gles with locality, as prepended prompts might af-
fect unrelated inputs. Its generalization capabil-
ity could also improve. The in-context learning
method may struggle with context mediation fail-
ure (Hernandez et al., 2023), as pre-trained lan-
guage models may not consistently generate text
aligned with the prompt.

Model Scaling We conduct experiments with
larger models, testing IKE, ROME, and MEMIT
on OPT-13B and GPT-NEOX-20B due to computa-
tional constraints. The results (Table 2) surprisingly
show ROME and MEMIT performing well on the
GPT-NEOX-20B model but failing on OPT-13B.
This is due to both methods relying on a matrix
inversion operation. However, in the OPT-13B
model, the matrix is not invertible. We even em-
pirically find that approximating the solution with
least squares yields unsatisfactory results. We think
this is the limitation of ROME and MEMIT as they
are based on the strong assumption that matrices
are non-degenerate and may not be applied to dif-
ferent models. MEMIT performs worse due to its
reliance on multi-layer matrix computations, and
its reliability and generalization declined more than
ROME’s for larger models. IKE’s performance is
affected by the in-context learning ability of the
model itself. The results of OPT are even worse
than the results of GPT-J, which may be attributed
to OPT’s own in-context learning ability. Addition-

Method ZSRE COUNTERFACT

Reliability Generalization Locality Reliability Generalization Locality

OPT-13B

ROME 22.23 6.08 99.74 36.85 2.86 95.46
MEMIT 7.95 2.87 92.61 4.95 0.36 93.28
IKE 69.97 69.93 64.83 49.71 34.98 53.08

GPT-NEOX-20B

ROME 99.34 95.49 99.79 99.80 85.45 94.54
MEMIT 77.30 71.44 99.67 87.22 70.26 96.48
IKE 100.00 99.95 59.69 98.64 67.67 43.03

Table 2: Current methods’ results of current datasets on
OPT-13B and GPT-NEOX-20B.

ally, as the model size increases, its performance in
both generalization and locality diminishes.

Batch Editing We conduct further batch editing
analysis, given that many studies often limit up-
dates to a few dozen facts or focus only on single-
edit cases. However, it’s often necessary to modify
the model with multiple knowledge pieces simulta-
neously. We focused on batch-editing-supportive
methods (FT, SERAC, MEND, and MEMIT) and
displayed their performance in Figure 3. Notably,
MEMIT supports massive knowledge editing for
LLMs, allowing hundreds or even thousands of si-
multaneous edits with minimal time and memory
costs. Its performance across reliability and gen-
eralization remains robust up to 1000 edits, but lo-
cality decreases at this level. While FT-L, SERAC,
and MEND also support batch editing, they require
significant memory for handling more cases, ex-
ceeding our current capabilities. Thus, we limited
tests to 100 edits. SERAC can conduct batch ed-
its perfectly up to 100 edits. MEND and FT-L
performance in batch edits is not as strong, with
the model’s performance rapidly declining as the
number of edits increases.

Sequential Editing Note that the default evalua-
tion procedure is to update a single model knowl-
edge, evaluate the new model, and then roll back
the update before repeating the process for each
test point. In practical scenarios, models should
retain previous changes while conducting new ed-



100 101 102 103

0

25

50

75

100

ZSRE - Reliability

100 101 102 103

CounterFact - Reliability

100 101 102 103

0

25

50

75

100

ZSRE - Generalization

100 101 102 103

CounterFact - Generalization

100 101 102 103

0

25

50

75

100

ZSRE - Locality

100 101 102 103

CounterFact - Locality

SERAC
T-Patcher

MEND
ROME

MEMIT

Figure 4: Sequential Editing performance against data
stream size (log-scale).

its. Thus, the ability to carry out successive edits
is a vital feature for model editing (Huang et al.,
2023). We evaluate approaches with strong single-
edit performance for sequential editing and report
the results in Figure 4. Methods that freeze the
model’s parameters, like SERAC and T-Patcher,
generally show stable performance in sequential
editing. However, those altering the model’s param-
eters struggle. ROME performs well up to n = 10,
then degrades at n = 100. MEMIT’s performance
also decreases over 100 edits, but less drastically
than ROME. Similarly, MEND performs well at
n = 1 but significantly declines at n = 10. As
the editing process continues, these models increas-
ingly deviate from their original state, resulting in
suboptimal performance.

5 Comprehensive Study

Considering the above points, we contend that pre-
vious evaluation metrics may not fully assess model
editing capabilities. Therefore, we propose more
comprehensive evaluations regarding portability,
locality, and efficiency.

5.1 Portability - Robust Generalization

Several studies evaluate generalization using sam-
ples generated through back translation (De Cao
et al., 2021). However, these paraphrased sentences
often involve only minor wording changes and
don’t reflect substantial factual modifications. As
stated in Jacques Thibodeau (2022), it’s crucial to
verify if these methods can handle the implications
of an edit for realistic applications. As a result, we
introduce a new evaluation metric called Portabil-
ity to gauge the effectiveness of model editing in
transferring knowledge to related content, termed
robust generalization. Hence we consider three as-
pects: (1) Subject Replace: As most rephrased
sentences keep subject descriptions but rephrase
the relation more, we test generalization by replac-
ing the subject in the question with an alias or syn-
onym. This tests whether the model can generalize
the edited attribute to other descriptions of the same
subject. (2) Reversed Relation: When the target of
a subject and relation is edited, the attribute of the
target entity also changes. We test the model’s abil-
ity to handle this by filtering for suitable relations
such as one-to-one and asking it the reverse ques-
tion to check if the target entity is also updated. (3)
One-hop: Modified knowledge should be usable
by the edited language model for downstream tasks.
For example, if we change the answer to the ques-
tion “What university did Watts Humphrey attend?”
from “Trinity College” to “University of Michi-
gan”, the model should then answer “Ann Arbor
in Michigan State” instead of “Dublin in Ireland”
when asked, “Which city did Watts Humphrey live
in during his university studies?” We thus construct
a reasoning dataset to evaluate the post-edit models’
abilities to use the edited knowledge.

We incorporate a new part, P (xe, ye), into the
existing dataset ZsRE, and Portability is calculated
as the average accuracy of the edited model (fθe)
when applied to reasoning examples in P (xe, ye):

Ex′
e,y

′
e∼P (xe,ye)1

{
argmaxy fθe

(
y | x′e

)
= y′e

}
(5)

Dataset Construction As to the one-hop dataset,
in the original edit, we alter the answer from o to
o∗ for a subject s. We then prompt the model to
generate a linked triple (o∗, r∗, o

′∗). Subsequently,
GPT-4 creates a question and answer based on this
triple and s. Notably, if the model can answer
this new question, it would imply that it has pre-
existing knowledge of the triple (o∗, r∗, o

′∗). We



Subject- Reverse- One-
Method Replace Relation hop

GPT-J-6B

FT-L 72.96 8.05 1.34
SERAC 17.79 1.30 5.53
T-Patcher 96.65 33.62 3.10
MEND 42.45 0.00 11.34
ROME 37.42 46.42 50.91
MEMIT 27.73 47.67 52.74
IKE 88.77 92.96 55.38

GPT-NEOX-20B

ROME 44.57 48.99 51.03
MEMIT 30.98 49.19 49.58
IKE 85.54 96.46 58.97

Table 3: Portability results on various model editing
methods. The example for each assessment type can be
found in Table7 at Appendix B.

filter out unknown triples by asking the model to
predict o

′∗ from o∗ and r∗. If successful, it’s in-
ferred the model has prior knowledge. Finally, Hu-
man evaluators verify the triple’s accuracy and the
question’s fluency. Additional details, such as the
demonstrations we used and other parts of dataset
construction, can be found in the Appendix B.

Results We conduct experiments based on the
newly proposed evaluation metric and datasets, pre-
senting the results in Table 3. As demonstrated
by the Table, the performance of current model
editing methods regarding portability is somewhat
suboptimal. SERAC, despite showing impecca-
ble results on previous metrics, scores less than
20% accuracy across all three portability aspects.
The bottleneck of SERAC lies in the accuracy of
the classifier and the capabilities of the additional
model. As to the subject replace scenario, includ-
ing SERAC, MEND, ROME, and MEMIT, can
only adapt to a specific subject entity expression
but cannot generalize to the concept of the subject
entity. However, FT-L, IKE, and T-patcher demon-
strate great performance when facing the substi-
tuted subject. Regarding the reversed relation, our
results indicate that current editing methods mainly
edit one-direction relations, with IKE as the notable
exception, achieving over 90% on both GPT-J and
GPT-NEOX-20B. Other methods alter the subject
entities’ attributes while leaving the object entity
unaffected. In the one-hop reasoning setting, most
of the editing methods struggle to transfer the al-
tered knowledge to related facts. Unexpectedly,
ROME, MEMIT, and IKE exhibit relatively com-

Other- Distract- Other-
Method Attribution Neighbor Task

FT-L 12.88 9.48 49.56
MEND 73.50 32.96 48.86
SERAC 99.50 39.18 74.84
T-Patcher 91.51 17.56 75.03
ROME 78.94 50.35 52.12
MEMIT 86.78 60.47 74.62
IKE 84.13 66.04 75.33

Table 4: Locality results on various model editing meth-
ods for GPT-J. Examples of each type can be seen in
Tabel 9 at Appendix B.

mendable performance on portability (exceeding
50%). They are capable of not only editing the
original cases but also modifying facts correlated
with them in some respect. To summarize, IKE ex-
hibits relatively good performance across the three
scenarios in our evaluations. However, it is clear
that current model editing techniques continue to
face challenges in managing the ramifications of
an edit - that is, ensuring that changes to knowl-
edge are coherently and consistently reflected in
related contexts. This area, indeed, calls for further
investigation and innovation in future research.

5.2 Locality - Side Effect of Model Editing
In the preceding section, COUNTERFACT and
ZsRE evaluate model editing’s locality from differ-
ent perspectives. COUNTERFACT employs triples
from the same distribution as the target knowl-
edge, while ZsRE utilizes questions from the dis-
tinct Natural Questions dataset. Notably, some
methods, such as T-Patcher, exhibit differing per-
formances on these two datasets. This highlights
that the impact of model editing on the language
model is multifaceted, necessitating a thorough
and comprehensive evaluation to fully appreciate
its effects. To thoroughly examine the potential
side effects of model editing, we propose evalua-
tions at three different levels: (1) Other Relations:
Although Meng et al. (2022) introduced the con-
cept of essence, they did not explicitly evaluate it.
We argue that other attributes of the subject that
have been updated should remain unchanged after
editing. (2) Distract Neighbourhood: Hoelscher-
Obermaier et al. (2023a) find that if we concate-
nate the edited cases before other unrelated input,
the model tends to be swayed by the edited fact
and continue to produce results aligned with the
edited cases. (3) Other Tasks: Building upon Skill
Neuron’s assertion (Wang et al., 2022) that feed-



Editor COUNTERFACT ZsRE

FT-L 35.94s 58.86s
SERAC 5.31s 6.51s
CaliNet 1.88s 1.93s
T-Patcher 1864.74s 1825.15s
KE 2.20s 2.21s
MEND 0.51s 0.52s
KN 225.43s 173.57s
ROME 147.2s 183.0s
MEMIT 143.2s 145.6s

Table 5: Wall clock time for each edit method conduct-
ing 10 edits on GPT-J using one 2×V100 (32G). The
calculation of this time involves measuring the duration
from providing the edited case to obtaining the post-
edited model.

forward networks in large language models (LLMs)
possess task-specific knowledge capabilities, we
introduce a new challenge to assess whether model
editing might negatively impact performance on
other tasks. Construction of the dataset details can
be found in Appendix B.3.

Results Table 4 presents our results. Notably,
current editing methods excel in the other attri-
butions aspect, indicating that they only modify
the target characteristic without affecting other at-
tributes. However, they generally perform poorly
in Distract-Neighbor settings, as reflected in the
performance drop compared to the results in Ta-
ble 1. An exception is IKE, whose performance
remains relatively stable due to the fact that it inher-
ently requires the edited fact to be concatenated be-
fore the input. As for the commonsense reasoning
tasks, parameter-preserving methods largely main-
tain their performance on other tasks. Conversely,
methods that alter parameters tend to negatively in-
fluence performance, with the exception of MEMIT.
Despite changing parameters, MEMIT maintains
strong performance in commonsense tasks, demon-
strating its commendable locality.

5.3 Efficiency

Model editing should minimize the time and mem-
ory required for conducting edits without compro-
mising the model’s performance.

Time Analysis Table 5 illustrates the time re-
quired for different model editing techniques from
providing the edited case to obtaining the post-
edited model. We observe that once the hyper-
network is trained, KE and MEND perform the
editing process at a considerably fast pace. Like-

0 10 20 30 40 50 60

MEMIT

ROME

KN

MEND

KE

T-Patcher

CaliNET

SEARC

FT-L

40.1

36.3

30.6

53.4

42.3

34.0

24.9

33.2

27.0

65.5

45.5

37.3

Memory Usage by Algorithms

Edit Memory
Excess Training Memory

Figure 5: GPU VRAM consumption during training
and editing for different model editing methods.

wise, SERAC can also quickly edit knowledge,
completing the process in about 5 seconds, given a
trained classifier and counterfact model. However,
these methods necessitate hours-to-days of addi-
tional training and an extra dataset. In our experi-
ments, training MEND on the ZsRE dataset took
over 7 hours, and training SERAC required over
36 hours on 3× V100. On the other hand, ROME
and MEMIT necessitate a pre-computation of the
covariance statistics for the Wikitext. However,
this computation is time-consuming and can po-
tentially take hours-to-days to complete. In com-
parison, other methods such as KN, CaliNET, and
T-Patcher may be faster since they do not require
any pre-computation or pre-training. However, KN
and CaliNET’s performance on larger models is
unsatisfactory, and T-Patcher is the slowest due to
the need for individual neuron training for each cor-
responding mistake. Considering the time aspect,
there is a need for a model editing method that is
more time-friendly.

Memory Analysis Figure 5 exhibits the memory
VRAM usage for each model editing method. From
this figure, we observe that the majority of the
methods consume a similar amount of memory,
with the exception of MEND, which requires more
than 60GB for training. Methods that introduce
extra training, such as MEND and SERAC lead
to additional computational overhead, hence the
significant increase in memory consumption.

6 Relationship with Relevant Works

6.1 Knowledge in LLMs

Several model editing approaches aim to discern
how knowledge stored in PLMs precisely and di-
rectly alters the model’s parameters. There is exist-
ing work that examines the principles that govern



how PLMs store knowledge (Geva et al., 2021,
2022; Haviv et al., 2023; Hao et al., 2021; Her-
nandez et al., 2023; Yao et al., 2023; Cao et al.,
2023; Lamparth and Reuel, 2023; Cheng et al.,
2023; Li et al., 2023b; Chen et al., 2023; Ju and
Zhang, 2023), which contribute to the model edit-
ing process. Moreover, some model editing tech-
niques bear resemblance to knowledge augmenta-
tion (Zhang et al., 2019; Lewis et al., 2020; Zhang
et al., 2022b; Yasunaga et al., 2021; Yao et al.,
2022; Pan et al., 2023) approaches, as updating
the model’s knowledge can also be considered as
instilling knowledge into the model.

6.2 Lifelong Learning and Unlearning

Model editing, encompassing lifelong learning and
unlearning, allows adaptive addition, modifica-
tion, and removal of knowledge. Continual learn-
ing (Biesialska et al., 2020), which improves model
adaptability across tasks and domains, has shown
effectiveness in model editing in PLMs (Zhu et al.,
2020). Moreover, it’s vital for models to forget sen-
sitive knowledge, aligning with machine unlearn-
ing concepts (Hase et al., 2023; Wu et al., 2022;
Tarun et al., 2021; Gandikota et al., 2023).

6.3 Security and Privacy for LLMs

Past studies (Carlini et al., 2020; Shen et al., 2023)
show that LLMs can produce unreliable or per-
sonal samples from certain prompts. The task of
erasing potentially harmful and private information
stored in large language models (LLMs) is vital to
enhance the privacy and security of LLM-based ap-
plications (Sun et al., 2023). Model editing, which
can suppress harmful language generation (Geva
et al., 2022; Hu et al., 2023), could help address
these concerns.

7 Conclusion

We systematically analyze methods for editing
large language models (LLMs). We aim to help
researchers better understand existing editing tech-
niques by examining their features, strengths, and
limitations. Our analysis shows much room for
improvement, especially in terms of portability, lo-
cality, and efficiency. Improved LLM editing could
help better align them with the changing needs
and values of users. We hope that our work spurs
progress on open issues and further research.

Acknowledgment

We would like to express gratitude to the anony-
mous reviewers for their kind comments. This
work was supported by the National Natural Sci-
ence Foundation of China (No.62206246), Zhe-
jiang Provincial Natural Science Foundation of
China (No. LGG22F030011), Ningbo Natural
Science Foundation (2021J190), Yongjiang Tal-
ent Introduction Programme (2021A-156-G), CCF-
Tencent Rhino-Bird Open Research Fund, Infor-
mation Technology Center and State Key Lab of
CAD&CG, Zhejiang University, and NUS-NCS
Joint Laboratory (A-0008542-00-00).

Limitations

There remain several aspects of model editing that
are not covered in this paper.

Model Scale & Architecture Due to computa-
tional resource constraints, we have only calculated
the results for models up to 20B in size here. Mean-
while, many model editing methods treat the FFN
of the model as key-value pairs. Whether these
methods are effective for models with different ar-
chitectures, such as Llama, remains to be explored.

Editing Scope Notably, the application of model
editing goes beyond mere factual contexts, under-
scoring its vast potential. Elements such as per-
sonality, emotions, opinions, and beliefs also fall
within the scope of model editing. While these
aspects have been somewhat explored, they remain
relatively uncharted territories and thus are not de-
tailed in this paper. Furthermore, multilingual edit-
ing (Xu et al., 2022; Wang et al., 2023a; Wu et al.,
2023) represents an essential research direction that
warrants future attention and exploration. There
are also some editing works that can deal with
computer vision tasks such as ENN (Sinitsin et al.,
2020) and Ilharco et al. (2023).

Editing Setting In our paper, the comprehensive
study 5 mainly evaluated the method’s performance
on one edit. During the time of our work, Zhong
et al. (2023) proposed a multi-hop reasoning setting
that explored current editing methods’ generaliza-
tion performance for multiple edits simultaneously.
We leave this multiple-edit evaluation for the fu-
ture. Besides, this work focused on changing the
model’s result to reflect specific facts. Cohen et al.
(2023) propose a benchmark for knowledge injec-
tion and knowledge update. However, erasing the



knowledge or information stored in LLMs (Belrose
et al., 2023; Geva et al., 2022; Ishibashi and Shi-
modaira, 2023) is also an important direction for
investigating.

Editing Black-Box LLMs Meanwhile, models
like ChatGPT and GPT-4 exhibit remarkable per-
formance on a wide range of natural language tasks
but are only accessible through APIs. This raises an
important question: How can we edit these “black-
box” models that also tend to produce undesir-
able outputs during downstream usage? Presently,
there are some works that utilize in-context learn-
ing (Onoe et al., 2023) and prompt-based meth-
ods (Murty et al., 2022) to modify these models.
They precede each example with a textual prompt
that specifies the adaptation target, which shows
promise as a technique for model editing.

Ethic Consideration

Model editing pertains to the methods used to alter
the behavior of pre-trained models. However, it’s
essential to bear in mind that ill-intentioned model
editing could lead the model to generate harmful
or inappropriate outputs. Therefore, ensuring safe
and responsible practices in model editing is of
paramount importance. The application of such
techniques should be guided by ethical consider-
ations, and there should be safeguards to prevent
misuse and the production of harmful results. All
our data has been carefully checked by humans,
and any malicious editing or offensive content
has been removed.

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel,
Ryan Cotterell, Edward Raff, and Stella Biderman.
2023. Leace: Perfect linear concept erasure in closed
form.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta Ruiz Costa-jussà. 2020. Continual lifelong
learning in natural language processing: A survey.
ArXiv, abs/2012.09823.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The

Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. Gpt-neox-20b: An open-
source autoregressive language model.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Boxi Cao, Qiaoyu Tang, Hongyu Lin, Xianpei Han, Ji-
awei Chen, Tianshu Wang, and Le Sun. 2023. Reten-
tive or forgetful? diving into the knowledge memoriz-
ing mechanism of language models. arXiv preprint
arXiv:2305.09144.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong
Song, Úlfar Erlingsson, Alina Oprea, and Colin Raf-
fel. 2020. Extracting training data from large lan-
guage models. In USENIX Security Symposium.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2023. Journey to the center of the knowl-
edge neurons: Discoveries of language-independent
knowledge neurons and degenerate knowledge neu-
rons. CoRR, abs/2308.13198.

Siyuan Cheng, Ningyu Zhang, Bozhong Tian, Zelin
Dai, Feiyu Xiong, Wei Guo, and Huajun Chen. 2023.
Editing language model-based knowledge graph em-
beddings. CoRR, abs/2301.10405.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects of
knowledge editing in language models.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational

http://arxiv.org/abs/2306.03819
http://arxiv.org/abs/2306.03819
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.06745
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2308.13198
https://doi.org/10.48550/arXiv.2308.13198
https://doi.org/10.48550/arXiv.2308.13198
https://doi.org/10.48550/arXiv.2308.13198
https://doi.org/10.48550/arXiv.2301.10405
https://doi.org/10.48550/arXiv.2301.10405
http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2307.12976
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581


Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 5937–5947, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-
Kaufman, and David Bau. 2023. Erasing concepts
from diffusion models. CoRR, abs/2303.07345.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Y. Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information inter-
actions inside transformer. In Proc. of AAAI.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2022.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. ArXiv, abs/2211.11031.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. ArXiv,
abs/2301.04213.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster,
Yoav Goldberg, and Mor Geva. 2023. Understand-
ing transformer memorization recall through idioms.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 248–264, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas.
2023. Inspecting and editing knowledge representa-
tions in language models.

J. Hoelscher-Obermaier, Julia Persson, Esben Kran,
Ioannis Konstas, and Fazl Barez. 2023a. Detecting
edit failures in large language models: An improved
specificity benchmark. In ACL Findings.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,
Ionnis Konstas, and Fazl Barez. 2023b. Detecting
edit failures in large language models: An improved
specificity benchmark. In Findings of ACL. Associa-
tion for Computational Linguistics.

Xinshuo Hu, Dongfang Li, Zihao Zheng, Zhenyu Liu,
Baotian Hu, and Min Zhang. 2023. Separate the
wheat from the chaff: Model deficiency unlearn-
ing via parameter-efficient module operation. CoRR,
abs/2308.08090.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Yoichi Ishibashi and Hidetoshi Shimodaira. 2023.
Knowledge sanitization of large language models.
arXiv preprint arXiv:2309.11852.

Jacques Thibodeau. 2022. But is it really in rome? an
investigation of the rome model editing technique.

Yiming Ju and Zheng Zhang. 2023. Klob: a bench-
mark for assessing knowledge locating methods in
language models. arXiv preprint arXiv:2309.16535.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.findings-emnlp.438
https://aclanthology.org/2022.findings-emnlp.438
https://doi.org/10.48550/arXiv.2303.07345
https://doi.org/10.48550/arXiv.2303.07345
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://api.semanticscholar.org/CorpusID:253735429
https://api.semanticscholar.org/CorpusID:253735429
https://aclanthology.org/2023.eacl-main.19
https://aclanthology.org/2023.eacl-main.19
http://arxiv.org/abs/2304.00740
http://arxiv.org/abs/2304.00740
https://doi.org/10.48550/arXiv.2308.08090
https://doi.org/10.48550/arXiv.2308.08090
https://doi.org/10.48550/arXiv.2308.08090
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276


Max Lamparth and Anka Reuel. 2023. Analyzing and
editing inner mechanisms of backdoored language
models. arXiv preprint arXiv:2302.12461.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancouver,
Canada. Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023a. Pmet: Precise model editing
in a transformer.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2023b. Unveiling the pit-
falls of knowledge editing for large language models.
arXiv preprint arXiv:2310.02129.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing
to improve GPT-3 after deployment. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2833–2861,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning.

Shikhar Murty, Christopher D. Manning, Scott M. Lund-
berg, and Marco Túlio Ribeiro. 2022. Fixing model
bugs with natural language patches. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 11600–11613. Association for Computational
Linguistics.

Yasumasa Onoe, Michael J. Q. Zhang, Shankar Pad-
manabhan, Greg Durrett, and Eunsol Choi. 2023.
Can lms learn new entities from descriptions? chal-
lenges in propagating injected knowledge. CoRR,
abs/2305.01651.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. CoRR, abs/2308.03188.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2022. Reasoning with language
model prompting: A survey. CoRR, abs/2212.09597.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020b. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang
Zhang. 2023. In chatgpt we trust? measuring and
characterizing the reliability of chatgpt.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin,
Sergei Popov, and Artem Babenko. 2020. Editable
neural networks. In International Conference on
Learning Representations.

Hao Sun, Zhexin Zhang, Jiawen Deng, Jiale Cheng, and
Minlie Huang. 2023. Safety assessment of chinese
large language models. CoRR, abs/2304.10436.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal,
and Mohan S. Kankanhalli. 2021. Fast yet effective
machine unlearning. IEEE transactions on neural
networks and learning systems, PP.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Ben Wang and Aran Komatsuzaki. 2021a. Gpt-j-6b: A
6 billion parameter autoregressive language model.

https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://api.semanticscholar.org/CorpusID:261030625
https://api.semanticscholar.org/CorpusID:261030625
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://aclanthology.org/2022.emnlp-main.797
https://aclanthology.org/2022.emnlp-main.797
https://doi.org/10.48550/arXiv.2305.01651
https://doi.org/10.48550/arXiv.2305.01651
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2308.03188
https://doi.org/10.48550/arXiv.2308.03188
https://doi.org/10.48550/arXiv.2308.03188
https://doi.org/10.48550/arXiv.2212.09597
https://doi.org/10.48550/arXiv.2212.09597
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2304.08979
http://arxiv.org/abs/2304.08979
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://doi.org/10.48550/arXiv.2304.10436
https://doi.org/10.48550/arXiv.2304.10436
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971


Ben Wang and Aran Komatsuzaki. 2021b. GPT-
J-6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Jiaan Wang, Yunlong Liang, Zengkui Sun, Yuxuan Cao,
and Jiarong Xu. 2023a. Cross-lingual knowledge
editing in large language models.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, and Huajun
Chen. 2023b. Easyedit: An easy-to-use knowledge
editing framework for large language models. CoRR,
abs/2308.07269.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill
neurons in pre-trained transformer-based language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11132–11152, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Ga Wu, Masoud Hashemi, and Christopher Srinivasa.
2022. Puma: Performance unchanged model aug-
mentation for training data removal. In AAAI Confer-
ence on Artificial Intelligence.

Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, and
Mingming Sun. 2023. Eva-kellm: A new benchmark
for evaluating knowledge editing of llms.

Yang Xu, Yutai Hou, and Wanxiang Che. 2022. Lan-
guage anisotropic cross-lingual model editing. ArXiv,
abs/2205.12677.

Yunzhi Yao, Shaohan Huang, Ningyu Zhang, Li Dong,
Furu Wei, and Huajun Chen. 2022. Kformer: Knowl-
edge injection in transformer feed-forward layers. In
Natural Language Processing and Chinese Comput-
ing.

Yunzhi Yao, Peng Wang, Shengyu Mao, Chuanqi Tan,
Fei Huang, Huajun Chen, and Ningyu Zhang. 2023.
Knowledge rumination for pre-trained language mod-
els. CoRR, abs/2305.08732.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022a.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2022b. GreaseLM: Graph REA-
Soning enhanced language models. In International
Conference on Learning Representations.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced
language representation with informative entities. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 1441–1451. Association for Computa-
tional Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Ce Zheng, Lei Li, Qingxiu Dong, Yixuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can
we edit factual knowledge by in-context learning?
ArXiv, abs/2305.12740.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix X. Yu, and Sanjiv
Kumar. 2020. Modifying memories in transformer
models. ArXiv, abs/2012.00363.

A Implementing Details

Since the ZsRE dataset adopts the NQ dataset
to evaluate the locality, here, we use a T5-XL
model (Raffel et al., 2020b) finetuned on the NQ
dataset as the baseline model. As to the GPT-
J (Wang and Komatsuzaki, 2021b), we use the
original pre-trained version to test the locality’s
zero-shot results. As several original implementa-
tions do not support both architectures, we have
re-implemented them to accommodate both models.
We re-implemented some original implementations
to support both models. However, our empirical
findings suggest that ROME and MEMIT are only
suitable for decoder-only models like GPT-J, so we
have not reported results for T5-XL.

FT For basic Fine-Tuning (FT), we follow Meng
et al. (2023) re-implementation in their study,
which uses Adam (Kingma and Ba, 2014) with
early stopping to minimize −logPG′ [o∗ | p], chang-
ing only mlpproj weights at selected layer 21. For

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2309.08952
http://arxiv.org/abs/2309.08952
https://doi.org/10.48550/arXiv.2308.07269
https://doi.org/10.48550/arXiv.2308.07269
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://api.semanticscholar.org/CorpusID:261049822
https://api.semanticscholar.org/CorpusID:261049822
https://doi.org/10.48550/arXiv.2305.08732
https://doi.org/10.48550/arXiv.2305.08732
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.48550/arXiv.2303.18223
http://arxiv.org/abs/2305.14795
http://arxiv.org/abs/2305.14795


Approach Additional
Training

Edit
Type

Batch
Edit

Edit
Area

Editor
Parameters

Preserve
Parameters

Memory-based
SERAC YES Fact&Sentiment YES External Model Modelcf +ModelClassifier

IKE NO Fact&Sentiment NO Input NONE

Additional-Parameters
CaliNET NO Fact YES FFN N ∗ neuron
T-Patcher NO Fact NO FFN N ∗ neuron

Modify
Parameters

Meta-learning
KE YES Fact YES FFN Modelhyper + L ∗mlp
MEND YES Fact YES FFN Modelhyper + L ∗mlp

Locate and Edit
KN NO Fact NO FFN L ∗ neuron
ROME NO Fact NO FFN mlpproj
MEMIT NO Fact YES FFN L ∗mlpproj

Table 6: Comparisons between several existing model editing approaches. “Additional Training” refers to whether
the methods need training before conducting specific edits. “Edit Type” refers to the format the method can edit.
“Batch Edit” refers to editing multiple target knowledge simultaneously. “Editor Area” refers to the specific region
of the LLMs that the methods aim to modify. FFN demonstrates the feed-forward module. “Editor Parameters”
refers to the parameters that need to be updated for editing. L denotes the number of layers to update. mlp is
FFN and mlpproj is the second linear layer in FFN. neurons denotes the key-value pair in FFN. N represents the
quantity of neuron to be updated within a single layer.

both models, all hyperparameters follow default
settings. To ensure fairness in the experiments, we
always use the unconstrained fine-tuning approach.

KE De Cao et al. (2021) develops an LSTM se-
quence model, which employs gradient information
to predict the rank-1 weight alterations in G. Given
that the official code doesn’t facilitate GPT-J, we re-
sort to using the re-implemented version provided
by Mitchell et al. (2022a) in their research. To
foster an equitable comparison across both zsRE
and COUNTERFACT tasks, we have taken addi-
tional steps to train KE-zsRE and KE-CF models.
The hyperparameters employed for training have
been sourced from the default configurations pro-
vided. During testing, KE presents a scaling factor
to tweak the norm of the weight update, for which
we adhere to the default value of 1.0.

CaliNET Dong et al. (2022) enriches the FFN
by incorporating extra parameters aimed at knowl-
edge editing, comprised of a number of calibration
memory slots. In order to adapt CaliNET to the
task at hand, we retain the same architecture as
used in the Feed-Forward Network (FFN), albeit
with a reduced intermediate dimension denoted as
d. This adaptation allows us to effectively apply
CaliNET while managing the model’s complexity
and computational requirements. Regarding hyper-
parameters, we implement adjustments to the FFN
within the final two layers of GPT-J, while all other
configurations remain consistent with the default
settings.

MEND Mitchell et al. (2022a) develop an ef-
ficient method for locally editing language mod-

els using just a single input-output pair. Essen-
tially, MEND employs a technique to manipulate
the gradient of fine-tuned language models which
leverages a low-rank decomposition of gradients.
The hyperparameters follow default settings, with
the exception of several experiments conducted on
GPT-J. Specifically, we adjust the optimizer from
Adam to AdamW.

SERAC Mitchell et al. (2022b) presents
a method for model editing, named MEME
(Memory-Based Model Editing), which stores ed-
its in an explicit memory and learns to reason
over them to adjust the base model’s predictions
as needed. The system uses an explicit cache of
user-provided edit descriptors (arbitrary utterances
for language models), alongside a small auxiliary
scope classifier and counterfactual model. The
scope classifier determines if the input falls within
the scope of any cached items, and if so, the coun-
terfactual model uses the input and the most rele-
vant edit example to make a prediction.

In alignment with the original paper, we
use publicly available Huggingface implementa-
tions and checkpoints for all experiments. For
the SERAC scope classifier model, we adopt
distilbert-base-cased (Sanh et al., 2019)
across all models and experimental settings. For the
counterfactual model, we employ T5-small (Raf-
fel et al., 2020b) for the T5-XL implementation and
architext/gptj-162M (available at here2) for the
GPT-J implementation. All hyperparameters for
training and test-time inference are derived from
default configurations.

2https://huggingface.co/architext/gptj-162M

https://huggingface.co/architext/gptj-162M


Similar to T-Patcher, in auto-regressive model
(like GPT-J) training, we only consider loss at the
output positions.

KN For Knowledge Neuron (Dai et al., 2022),
we follow Meng et al. (2023) re-implementation in
their study. The method begins by identifying neu-
rons that are closely associated with knowledge ex-
pression. This selection is made through gradient-
based attributions, which effectively highlight the
neurons that have a strong influence on the model’s
output. After these critical neurons are identified,
the method modifies the projection layer of the
feed-forward network (denoted as mlp

(l)
proj) specif-

ically at the rows corresponding to the selected
neurons. This modification involves adding scaled
embedding vectors to the current values, effectively
adjusting the model’s behavior in a targeted man-
ner. Specifically, they amplify knowledge neurons
by doubling their activations. Similar to FT, all
hyperparameters are adopted from default configu-
rations(See code3)

T-Patcher The method proposed by Huang et al.
(2023) offers a way to alter the behavior of
transformer-based models with minimal changes.
Specifically, it adds and trains a small number of
neurons in the last Feed-Forward Network (FFN)
layer. This approach effectively provides a means
for fine-tuning model behavior with less computa-
tional demand than comprehensive retraining. It
freezes all original parameters and adds one neu-
ron (patch) to the last FFN layer for one mistake.
And they train the patch to take effect only when
encountering its corresponding mistake. For T5-
XL implementation, all hyperparameters follow the
same default settings as Bart-base4.

Furthermore, in the auto-regressive model (like
GPT-J), the model may make multiple mistakes in
one example. Therefore, for an example where the
model makes n mistakes, we only consider errors
generated by the model at the output positions.
Following the settings of the original paper, we add
up to 5 patches for one edit example. Formally, for
an edit example (xe, ye) in auto-regressive model,
the actual input is given by x̂e = xe + ye and the
patched model’s output is pe, le is defined as:

le = −
N∑
i=1

x̂i log(pi) · 1(i≥len(xe)) (6)

3https://github.com/EleutherAI/knowledge-neurons
4https://github.com/ZeroYuHuang/Transformer-Patcher

ROME ROME, as proposed by Meng et al.
(2022), conceptualizes the MLP module as a
straightforward key-value store. For instance, if the
key represents a subject and the value encapsulates
knowledge about that subject, then the MLP can
reestablish the association by retrieving the value
that corresponds to the key. In order to add a new
key-value pair, ROME applies a rank-one modifica-
tion to the weights of the MLP, effectively “writing
in” the new information directly. This method al-
lows for more precise and direct modification of
the model’s knowledge. We directly apply the code
and MLP weight provided by the original paper 5

and keep the default setting for hyper-parameters.

MEMIT MEMIT (Meng et al., 2023) builds
upon ROME to insert many memories by modi-
fying the MLP weights of a range of critical layers.
We test the ability of MEMIT using their code 6

and all hyperparameters follow the same default
settings. For GPT-J, we choose R = 3, 4, 5, 6,
7, 8, and covariance statistics are collected using
100,000 samples of Wikitext. For GPT-NEOX-
20B, we select R = 6, 7, 8, 9, 10, and covariance
statistics are collected from over 50,000 samples
of Wikitext.

IKE IKE (Zheng et al., 2023) defines three types
of demonstration formatting templates including
(i)copy, (ii)update, (iii)retain, which guide LMs to
edit knowledge facts by in-context learning (ICL).
As there are no parameter modifications, IKE is
applicable to any existing LLMs.

In alignment with the original paper, we
choose k-NN examples from the training cor-
pus(10000 size). The demonstrations are encoded
by all-MiniLM-L6-v2. Following the default set-
ting, we set k to 32(See code7).

B Dataset Details

B.1 Basic DataSet
ZsRE (Levy et al., 2017) is a Question Answering
(QA) dataset using question rephrasings generated
by back-translation as the equivalence neighbor-
hood. COUNTERFACT (Meng et al., 2022) is a
more challenging dataset that accounts for coun-
terfacts that start with low scores in comparison
to correct facts. It constructs out-of-scope data
by substituting the subject entity for a proximate

5https://rome.baulab.info/
6https://memit.baulab.info/
7https://github.com/PKUnlp-icler/IKE



Type Edit Descriptor Portability Question

Subject Replace
In what living being can PRDM16 be found? In what living being can PR domain containing 16 be found?
When was Liu Song dynasty abolished? When was the end of the Former Song dynasty?
Table tennis was formulated in? ping pang, that originated in ?

Reversed Relation What is Wenxiu’s spouse’s name? Who is the wife/husband of Wenxi Emperor?

One-hop Reason What company made Volvo B12M?
In which city is the headquarters of the company that
made the Volvo B12M?

Table 7: Example of portability dataset.

subject entity sharing a predicate. This alteration
enables us to differentiate between superficial word-
ing changes and more significant modifications that
correspond to a meaningful shift in a fact. We fol-
low previous data split (De Cao et al., 2021; Meng
et al., 2022; Mitchell et al., 2022a) to evaluate all
the models on the test set. For models requiring
training, we utilize the training set. Following prior
work (Mitchell et al., 2022a,b), we use the Natu-
ral Questions (NQ; Kwiatkowski et al. (2019)) as
out-of-scope data to evaluate locality.

B.2 Dataset Construction for Portability
Evaluation

B.2.1 One hop
The construction can be seen in Figure 6. To en-
sure that the original model(fθ) has seen the triple
(s, r, o) during the pre-training process, we employ
link prediction to predict o given (s, r, ?). If the tail
entity is present in the Top-10 logits, we consider
the model to have prior knowledge of this triple. In
other words, if the model has sufficient portability,
it can correctly answer new questions based on the
subject and the triplet.

We select data points to measure the perfor-
mance of the model’s portability. The symbolic
representation of the portability dataset is as fol-
lows:

Dport = {GPT4 (s, r, o) | o ∈ Top-10(fθ (s, r, ?))}

To guide GPT-4 in producing the desired ques-
tion and answer, we employ a few-shot manual
demonstration as a prompt (See Table 10). In addi-
tion, we intersect the data filtered by T5-XL and the
data filtered by GPT-J to obtain the final portability
dataset. The GPTJ model achieves a link prediction
score of ZSRE: 72.99 and COUNTERFACT: 69.78,
while the T5 model achieves a link prediction score
of ZSRE: 83.90 and COUNTERFACT: 84.81. It
ensures that the models possess prior knowledge
about this triple.

As a result, we select some data instances from
the ZsRE and the COUNTERFACT dataset. The
description of the data is shown in Table 8.

Subject Replace Inverse Relation One hop

ZsRE 293 385 1,037
COUNTERFACT 213 - 1,031

Table 8: Statistics of portability dataset.

B.2.2 Subject Replace
We replace the question’s subject with an alias or
synonym to test generalization on other descrip-
tions of the subject. We used two approaches to
construct this dataset. 1. For subjects that could be
found in Wikidata, we replaced the original subject
with the alias from Wikidata (Field Name: Also
known as). 2. For subjects that could not be found
in Wikidata, we used GPT-4 to generate synonyms
for the original subject. This process ensures that
the evaluation accurately reflects the model’s ca-
pability to handle various subject representations,
contributing to a more comprehensive understand-
ing of its performance.

B.2.3 Reversed Relation
In an editing instance, the attributes of the target
entity can also change. For instance, in the edited
instance: "Who is the father of Nebaioth? Ishmael
→ Babur." When answering the question "Who is
the son of Babur?" it should be answered based
on the new fact after editing, which is Nebaioth.
Certain types of relations may not be as effective
for evaluation. Let’s consider a hypothetical sce-
nario where we change the location of the Eiffel
Tower to Rome - proposing a valid reversed ques-
tion in such a context would be challenging. Con-
sequently, we carefully handpicked all relations
in the ZsRE dataset that could be reversed, such
as one-to-one relations, and selected related ques-
tions through keywords (such as spouse, wife,
mother, father, brother, sister) screening.



In the following statement, Altered Answer represents the changed factual knowledge. When the answer is changed, some related fact 
should also be changed. You should recall a related relation associated with the Altered Answer. Then generate questions and answers 
based on these recalled concepts and Subject.
Question: QUESTION. Subject: SUBJECT. Altered Answer: ALT. Recalled Relation: RECALLED RELATION.
New Question : NEW QUESTION. New Answer: NEW ANSWER.

Manual Prompt for Data Construction

× N Manual 
Demonstrations

...

...

: RECALLED RELATION
: NEW QUESTION
: NEW ANSWER

RECALL

University of Michigan, locate in, Ann arbor

New Question

Which city did Watts Humphrey 
live in during his university?

Watts Humphrey 𝑠:

Altered

𝑜∗ 𝑟∗ 𝑜"∗

New Answer

Ann arbor
（𝑠, 𝑜∗, 𝑟∗, 𝑜"∗)

Text Completion

GPT4
established

North America

1817

University of Michigan

Ann Arbor

member of 

instance of

public research university

Detroit	Observatory

locate in

locate in

continent0.41

ORCID, Inc.

admission rate

instance of 

nonprofit organization

GRID

used by

Figure 6: Dataset construction procedure to generate portability part (Q,A) with GPT4.

Type Edit Descriptor Locality Question

Other Attribution
Grant Hill is a professional _ Which country does Grant Hill represent in sport? (relation: country)
The language of La Dispute was _ What genre does La Dispute belong to? (relation: genre)
Gleb Kotelnikov is a native speaker of _ What is the gender of Gleb Kotelnikov? (relation: sex or gender)

Distract Neighbor Windows 98 was a product of _ Windows 98 was a product of IBM. Windows Media Center, developed by _
The language of Goodfellas is _ The language of Goodfellas is Tamil. The language of Titanic is _

Table 9: Example of locality dataset.

This allows us to maintain the integrity and rele-
vance of the evaluation process, thus ensuring more
reliable results. To guide GPT-4 in producing the
desired reversed question, we employ a few-shot
manual demonstration as a prompt (See Table 11).

B.3 Dataset Construction for Locality
Evaluation

B.3.1 Other Attribution
Other attributes of the subject updated should re-
main the same before editing. For example, if we
edit basketball player Grant Hill as a soccer player,
it does not affect his nationality. Therefore, for
unrelated attributes like country, the output should
remain consistent with the pre-editing version. We
modified the COUNTERFACT dataset by using
the Wikidata API to traverse all relationships of
a subject and randomly select an unrelated relation-
ship and tail entity as a data sample. We provide
(s, rother) to GPT-4 to generate a question, and the
answer to this question corresponds to the respec-
tive tail entity. As a result, we modify 804 data
instances from the COUNTERFACT dataset.

B.3.2 Distract Neighbor
Following Hoelscher-Obermaier et al. (2023b), we
modify the neighborhood prompt in COUNTER-
FACT dataset by prepending the model edit. For
example(See Table 9), if the original prompt is
"Windows 98 was a product of _" the modified
prompt would be "Windows 98 was a product of
IBM. Windows Media Center, developed by _". It

measures whether the model editing technique has
resulted in significant side effects on the model it-
self due to over-editing. As a result, we select 804
data instances from the COUNTERFACT dataset.

B.3.3 Other Task
We select commonsense tasks here to assess the
post-edited model’s performance on other tasks.
Given a question q, multiple-choice commonsense
reasoning aims to select the correct answer at ∈ A
provided with an optional context c. Physical In-
teraction QA (PIQA ((Bisk et al., 2020)) is a 2-
way multiple-choice QA task testing physics rea-
soning about objects. We evaluate the post-edit
model on the PIQA dataset to reflect the impact of
different model editing techniques on the perfor-
mance of other downstream tasks. Specifically, For
each model editing technique, we sequentially edit
GPT-J with 100 samples in the COUNTERFACT
dataset. Afterward, we test the performance of the
continuously post-edit models on PIQA, using ac-
curacy as the selected metric, which is defined as
:

acc =

N∑
k=1

Q(ck, qk, akp)/N (7)

where akp is the option with the least perplexity
of the post-edit model, Q(ck, qk, akp) is 1 if akp =
akt and 0 otherwise.



Prompt

In the following statement, ‘Altered Answer‘ represents the changed factual knowledge.
When the answer is changed, some related facts should also be changed. You should
recall a related relation associated with the ‘Altered Answer‘. Then generate questions
and answers based on these recalled concepts and ‘Subject‘.

Question: What university did Watts Humphrey attend?
Subject: Watts Humphrey
Altered Answer: University of Michigan
Recalled Relation: (University of Michigan, locate in, Ann Arbor)
New Question: Which city did Watts Humphrey live in during his
undergraduate studies?
New Answer: Ann Arbor in Michigan State

Question: Windows 10, developed by
Subject: Windows 10
Altered Answer: Google
Recalled Relation: (Sundar Pichai, ceo of, Google)
New Question: Who is the CEO of the company that develops the Windows 10 operating system?
New Answer: Sundar Pichai

Question: In Kotka, the language spoken is?
Subject: Kotka
Altered Answer: French
Recalled Relation: (French, evolve from, Romance)
New Question: What language did Kotka’s official language evolve from?
New Answer: Romance

Question: Armand Trousseau’s area of work is?
Subject: Armand Trousseau
Altered Answer: jazz
Recalled Relation: (Miles Davis, genres, jazz)
New Question: Armand Trousseau formed a band during college, they are all fans of?
New Answer: Miles Davis

Table 10: Prompt for dataset construction on zsRE & COUNTERFACT portability dataset. Demonstration examples
are manually constructed. For each data instance, we provide Question, Subject, and Altered Answer to generate
portability data.



Task Prompt

ZSRE
Please generate the Inverse Question(For example, A and B are in a father-son relationship.
In the original question, it says "who is the father of B? Answer is A". You should ask who
is the son/daughter of A, so answer is B.) here are some examples:

Q: Who is Claire Clairmont’s sister? A: Marian Clairmont
Inverse Question: Who is Marian Clairmont’s sister?

Q: What was the name of the father of Jane Seymour? A: Richard Seymour
Inverse Question: Who is the son/daughter of Richard Seymour?

Q: What is Elizabeth Grey, Countess of Kent’s spouse? A: Henry Grey, 1st Duke of Suffolk
Inverse Question: Who was Henry Grey, 1st Duke of Suffolk married to?

Q: Who is listed as Leonor, Princess of Asturias’s father? A: Leonor III of Spain
Inverse Question: Who is the son/daughter of Leonor III of Spain?

Table 11: Prompt for inversed relation dataset construction on zsRE, we provide Question and Answer to generate
an inversed question.


